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GENERALIZATIONS OF THE FAN-BROWDER FIXED POINT

THEOREM AND MINIMAX INEQUALITIES

MIRCEA BALAJ AND SORIN MURESAN

Abstract. In this paper fixed point theorems for maps with nonempty con-
vex values and having the local intersection property are given. As applica-
tions several minimax inequalities are obtained.

1. Introduction

A map (or a multifunction) T : X ⊸ Y is a function from a set X into the
power set 2Y of Y , that is a function with the values T (x) ⊂ Y . For y ∈ Y ,
T−1 (y) is called the fiber of T on y.

Using an infinite dimensional version of the Knaster-Kuratowski-Mazurkiewicz
theorem, Fan [10] proved in 1961 the following:

Theorem 0. Let X be a nonempty compact convex subset of a Hausdorff topo-

logical vector space and M be a closed subset of X × X such that :
(i) (x, x) ∈ M for all x ∈ X ;
(ii) for each y ∈ X the set {x ∈ X : (x, y) /∈ X} is convex (or empty).

Then X × {y0} ⊂ M for some y0 ∈ X .

Subsequently, Browder [4] obtained in 1968 the following fixed point theorem:

Theorem 1. Let X be a nonempty compact convex subset of a Hausdorff topolog-

ical vector space and T : X ⊸ X be a map with nonempty convex values and open

fibers. Then T has a fixed point.

Browder’s proof for his theorem was based on the existence of a partition of
unity for open coverings of compact sets and on the Brouwer fixed point theorem.
Let us observe that Browder’s theorem is just Theorem 0 reformulated in a more
convenient form (to see this, take T (x) = {y ∈ X : (x, y) /∈ M}). For this reason
Theorem 1 is known in the literature as the Fan-Browder fixed point theorem.

The existence of many significant applications in nonlinear functional analysis,
game theory and economic theory gave rise to a number of generalizations or
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versions of Theorem 1 (see [1], [2], [3], [6], [7], [16], [17], [19]). In Section 2 we
give new generalizations of Theorem 1 involving maps with the local intersection
property. Two well-known applications of the Fan-Browder fixed point theorem
will be considered in this paper. The first one is the following Fan’s minimax
inequality [12]

Theorem 2. Let X be a nonempty compact convex subset of a Hausdorff topo-

logical vector space and f : X × X → R be a function quasiconvex in y and upper

semicontinuous in x. Then

inf
x∈X

f (x, x) ≤ max
x∈X

inf
y∈X

f (x, y) .

The second application is a two-function minimax inequality due also to Fan
[11] which generalizes the celebrate Sion’s minimax theorem [18]. We state this
result as follows

Theorem 3. Let X, Y be nonempty compact convex subsets of topological vector

spaces and f, g : X × Y → R. Suppose that f is lower semicontinuous in y and

quasiconcave in x, g is upper semicontinuous in x and quasiconvex in y, and f ≤ g
on X × Y . Then

min
y∈Y

sup
x∈X

f (x, y) ≤ sup
x∈X

inf
y∈Y

g (x, y) .

Note that “quasiconvex” and further notions will be explained in the last section
of the paper. In the same section, from each fixed point theorem established in
Section 2 we derive a Fan type minimax inequality and a Fan-Sion type minimax
theorem. Throughout this paper we assume that the topological vector spaces are
separated.

2. Local intersection property and fixed point theorems

Let X be a topological space and Y be a set. A map T : X ⊸ Y is said to
have the local intersection property (see[20]) if for each x ∈ X with T (x) 6= ∅ there
exists an open neighbourhood V (x) of x such that

⋂
z∈V (x)

T (z) 6= ∅. It is not hard

to see that each map with open fibers has the local intersection property but the
example given in [20, p.63], shows that the converse is not true.

The following lemma is useful in what follows and can be found in [9].

Lemma 4. Let X be a topological space, Y be a set and T : X ⊸ Y be a map

with nonempty values. Then the following assertions are equivalent

(i) T has the local intersection property;

(ii) There exists a map F : X ⊸ Y such that F (x) ⊂ T (x) for each x ∈ X,

F−1 (y) is open for each y ∈ Y and X =
⋃

y∈Y

F−1 (y).

Theorem 5. Let X be a topological space, Y be a convex subset of a topological

vector space and T : X ⊸ Y be a map with nonempty convex values and having

the local intersection property. Then T admits a selection G (i.e. G (x) ⊂ T (x)
for all x ∈ X) with nonempty convex values and open fibers.
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Proof. By Lemma 4, T admits a selection F with open fibers such that

(1) X =
⋃

y∈Y

F−1 (y) .

From (1) we infer that F (x) 6= ∅ for all x ∈ X . Define the map G : X ⊸ Y , by
G (x) = coF (x). Since T has convex values, G (x) ⊂ T (x) and G (x) is convex for
each x ∈ X . Since F has open fibers, by Lemma 5.1 in [21], it follows that G has
also open fibers. �

The first generalization of the Fan-Browder fixed point theorem is the following

Theorem 6. Let X be a compact convex subset of a topological vector space and

T : X ⊸ X be a map with nonempty convex values having the local intersection

property. Then T has a fixed point.

Proof. By Theorem 5, T has a selection G with nonempty convex values and
open fibers, and Theorem 1 guarantees the existence of a point x0 ∈ X such that
x0 ∈ G (x0) ⊂ T (x0). �

Theorem 7. Let X be a compact convex subset of a topological vector space and

Y a nonempty set. Suppose that F : X ⊸ Y, T : X ⊸ X are two maps satisfying

the following conditions

(i) T takes convex values;

(ii) F has nonempty values and open fibers;

(iii) for each y ∈ Y there exists z ∈ X such that F−1 (y) ⊂ T−1 (z).

Then T has a fixed point.

Proof. Since F has nonempty values,
⋃

y∈Y

F−1 (y) = X , and from (iii) we get

⋃
z∈X

T−1 (z) = X , hence T has also nonempty values. According to Theorem 6

it suffices to show that T has the local intersection property. Let x ∈ X . Since
F (x) 6= ∅ there exist y ∈ Y and z ∈ X such that

(2) x ∈ F−1 (y) ⊂ T−1 (z) .

Then F−1 (y) is an open neighbourhood of x and, by (2), it follows that z ∈⋂
x′∈F−1(y)

T (x′). Thus the proof is complete. �

The following result extends the Fan-Browder fixed point theorem to the case
when the convex set X is not compact.

Theorem 8. Let X be a convex subset of a topological vector space and T : X ⊸ X
be a map with nonempty convex values, having the local intersection property.

Suppose that there exist a nonempty compact convex subset X0 of X and a compact

subset K of X satisfying the following condition

for each x ∈ X\K there exists an open neighbourhood V (x) of x such that

(3)
⋂

z∈V (x)

T (z) ∩ X0 6= ∅ .
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Then T has a fixed point.

Proof. Define the maps H, G : X ⊸ X by

H (y) = int
(
T−1 (y)

)
for y ∈ X

and

G (x) = co H−1 (x) for x ∈ X .

We see that H takes open values and H (y) ⊂ T−1 (y) for each y ∈ X . Since the
values of T are convex, G (x) ⊂ T (x) for all x ∈ X . Using once again Lemma 5.1
in [21] we infer that G has open fibers. For an arbitrary x ∈ X , since T has the
local intersection property, there exist a neighbourhood V (x) of x and a point y
such that

x ∈ V (x) ⊂ T−1 (y) whence x ∈ H (y) ⊂ G−1 (y) .

Consequently, G has nonempty values and

(4) X = G−1 (X) .

For each x ∈ X\K, by (3), there exists y ∈ X0 such that x ∈ H (y) ⊂ G−1 (y),
hence

(5) X\K = G−1 (X0) .

On the other hand, by (4), K ⊂ G−1 (X) and, since K is compact, there exists a
finite set A ⊂ X such that

(6) K ⊂ G−1 (A) .

Thus, by (5) and (6), we have X = G−1 (X0 ∪ A).
Let C = co (X0 ∪ A). Then C is a compact, convex subset of X and

(7) C ⊂ G−1 (X0 ∪ A) ⊂ G−1 (C) .

Define the map G̃ : C → C by G̃ (x) = G (x)
⋂

C. Then the values of G̃ are

nonempty (by (7)) and convex. Since G̃−1 (y) = G−1 (y)
⋂

C for each y ∈ C, the

fibers of G̃ are open in C. Applying Theorem 1 to the map G̃ we find a point

x0 ∈ C such that x0 ∈ G̃ (x0) ⊂ T (x0). �

Remark. The local intersection property imposed on T and condition (3) can be
unified in the following condition

the map T̃ : X ⊸ X, defined by T̃ (x) =

{
T (x) for x ∈ K

T (x) ∩ X0 for x ∈ X\K

has the local intersection property.

In our opinion it is worth comparing Theorem 8 with other noncompact gener-
alizations of the Fan-Browder fixed point theorem due to Browder [4], Lassonde
[15], Mehta [16] and Park [17].
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3. Minimax inequalities

Let X , Y nonempty convex subsets of topological vector spaces. Recall that a
function f : X × Y → R = R∪{±∞} is said to be:

(i) quasiconcave (resp. upper semicontinuous) in x if for each y ∈ Y and
λ ∈ R the set {x ∈ X : f (x, y) ≥ λ} is convex (resp. closed);

(ii) quasiconvex (resp. lower semicontinuous) in y if for each x ∈ X and λ ∈ R

the set {y ∈ Y : f (x, y) ≤ λ} is convex (resp. closed).

A function f : X × Y → R (X, Y topological spaces) is said to be:

(iii) transfer upper semicontinuous in x (see [8]) if, for each λ ∈ R and all
x ∈ X , y ∈ Y with f (x, y) < λ, there exist a neighbourhood V (x) of x
and a point y′ ∈ Y such that f (z, y′) < λ, for all z ∈ V (x);

(iv) transfer lower semicontinous in y (see [8]) if, for each λ ∈ R and all x ∈ X ,
y ∈ Y with f (x, y) > λ, there exist a neighbourhood V (y) of y and a point
x′ ∈ X such that f (x′, u) > λ, for all u ∈ V (y).

It is clear that every function which is upper semicontinuous in x (resp. lower
semicontinuous in y) is transfer upper semicontinous in x (resp. transfer lower
semicontinuous in y) but the converse is not true (see [8]).
From each fixed point theorem obtained in the previous section we shall derive a
Fan type minimax inequality and a Fan-Sion type minimax theorem.

Theorem 9. Let X be a nonempty compact convex subset of a topological vector

space and f : X × X → R be a function quasiconvex in y and transfer upper

semicontinuous in x. Then

inf
x∈X

f (x, x) ≤ sup
x∈X

inf
y∈X

f (x, y) .

Proof. We may assume that sup
x∈X

inf
y∈X

f (x, y) < ∞. Let λ > sup
x∈X

inf
y∈X

f (x, y) be

arbitrarily fixed; we define the map T : X ⊸ X by

T (x) = {y ∈ X : f (x, y) < λ} .

From λ > sup
x∈X

inf
y∈X

f (x, y) it follows that T (x) is nonempty for each x ∈ X .

Since f is quasiconvex in y, the values of T are convex; since f is transfer upper
semicontinuous in x, T has the local intersection property. By Theorem 6 there
exists a point x0 ∈ X such that x0 ∈ T (x0). Hence inf

x∈X
f (x, x) ≤ f (x0, x0) ≤ λ,

which proves the theorem. �

Theorem 10. Let X and Y be nonempty compact convex subsets of topological

vector spaces and f, g : X × Y → R be two functions satisfying the following

conditions:

(i) f ≤ g;

(ii) f is quasiconcave in x;

(iii) f is transfer lower semicontinuous in y

(iv) g is quasiconvex in y;
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(v) g is transfer upper semicontinuous in x.

Then

inf
y∈Y

sup
x∈X

f (x, y) ≤ sup
x∈X

inf
y∈Y

g (x, y) .

Proof. Suppose that there exists a real λ such that

sup
x∈X

inf
y∈Y

g (x, y) < λ < inf
y∈Y

sup
x∈X

f (x, y) .

Define the map T : X × Y → X × Y by

T (x, y) = {x′ ∈ X : f (x′, y) > λ} × {y′ ∈ Y : g (x, y′) < λ} .

Then T (x, y) is nonempty and convex (by (ii) and (iv)) for each (x, y) ∈ X × Y .
By (iii) and (v) one can easily prove that T has the local intersection property.
Applying Theorem 6 we get a fixed point (x0, y0) ∈ T (x0, y0). Therefore λ <
f (x0, y0) ≤ g (x0, y0) < λ, a contradiction. �

Theorem 11. Let X be a compact convex subset of a topological vector space and

Y be a nonempty set. Suppose that f : X × X → R, g : X × Y → R are two

functions satisfying the following conditions:

(i) f is quasiconvex in the second variable;

(ii) g is upper semicontinuous in x;

(iii) for each y ∈ Y there exists z ∈ X such that f (·, z) ≤ g (·, y).

Then

inf
x∈X

f (x, x) ≤ sup
x∈X

inf
y∈Y

g (x, y) .

Proof. We may assume that sup
x∈X

inf
y∈Y

g (x, y) < ∞. Let λ > sup
x∈X

inf
y∈Y

g (x, y) be

arbitrarily fixed; we define the maps T : X ⊸ X , F : X ⊸ Y , by

T (x) = {z ∈ X : f (x, z) < λ}

and

F (x) = {y ∈ Y : g (x, y) < λ} .

Since λ > sup
x∈X

inf
y∈Y

g (x, y), F (x) is nonempty for each x ∈ X . It is easy to

prove that conditions (i), (ii), (iii) in our theorem imply the conditions similarly
denoted in Theorem 7. By Theorem 7, T has a fixed point x0. It follows that
inf

x∈X
f (x, x) ≤ f (x0, x0) < λ and the proof is complete. �

Theorem 12. Let X1, Y1 be nonempty compact convex subsets of topological vector

spaces and X2, Y2 be nonempty sets. Let f : X2 × Y1 → R, g : X1 × Y2 → R,

h, k : X1 × Y1 → R be four functions satisfying:

(i) h ≤ k;

(ii) f is lower semicontinuous on Y1;

(iii) g is upper semicontinous on X1;

(iv) h is quasiconcave on X1;

(v) k is quasiconvex on Y1;
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(vi) for each x2 ∈ X2 there exists x1 ∈ X1 such that f (x2, ·) ≤ h (x1, ·);
(vii) for each y2 ∈ Y2 there exists y1 ∈ Y1 such that k (·, y1) ≤ g (·, y2).

Then

inf
y1∈Y1

sup
x2∈X2

f (x2, y1) ≤ sup
x1∈X1

inf
y2∈Y2

g (x1, y2) .

Proof. Suppose that there exists a real λ such that

(8) sup
x1∈X1

inf
y2∈Y2

g (x1, y2) < λ < inf
y1∈Y1

sup
x2∈X2

f (x2, y1) .

Define the maps T : X1 × Y1 → X1 × Y1, F : X1 × Y1 → X2 × Y2 by

T (x1, y1) = {x′

1 ∈ X1 : h (x′

1, y1) > λ} × {y′

1 ∈ Y1 : k (x1, y
′

1) < λ}

and

F (x1, y1) = {x′

2 ∈ X2 : f (x′

2, y1) > λ} × {y′

2 ∈ Y2 : g (x1, y
′

2) < λ} .

By (8), F has nonempty values. In view of conditions (iv) and (v) the values
of T are convex and by (ii) and (iii), F has open fibers. From (vi) and (vii) it
follows readily that for each (x2, y2) ∈ X2 × Y2 there exists (x1, y1) ∈ X1 × Y1

such that F−1 (x2, y2) ⊂ T−1 (x1, y1). Therefore all hypotheses of Theorem 7
are verified. Applying Theorem 7 we get a point (x1, y1) ∈ X1 × Y1 such that
(x1, y1) ∈ T (x1, y1). Taking into account condition (i) we obtain the following
contradiction

λ < h (x1, y1) ≤ k (x1, y1) < λ .

�

When X1 = Y1, X2 = Y2 and conditions (vi), (vii) are replaced by a unique
stronger condition one can get at once the following known result (see [3]).

Corollary 13. Let X and Y be nonempty compact convex subsets of topological

vector spaces and f, g, h, k : X × Y → R, be four functions satisfying:

(i) f ≤ h ≤ k ≤ g;
(ii) f is lower semicontinuous in y;

(iii) g is upper semicontinous in x;

(iv) h is quasiconcave in x;

(v) k is quasiconvex in y.

Then

inf
y∈Y

sup
x∈X

f (x, y) ≤ sup
x∈X

inf
y∈Y

g (x, y) .

Theorem 14. Let X be a nonempty convex subset of a topological vector space and

f : X ×X → R be a function quasiconvex in y and transfer upper semicontinuous

in x. Suppose that there exists a nonempty compact convex subset X0 of X and a

compact subset K of X satisfying the following condition

for each x ∈ X\K and any y′ ∈ Xthere exists a neighbourhood V (x) of

(9) x and a point y0 ∈ X0 such that f(z, y0) ≤ f(z, y′) for all z ∈ V (x) .
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Then

inf
x∈X

f (x, x) ≤ sup
x∈X

inf
y∈Y

f (x, y) .

Proof. As in previous proof we assume sup
x∈X

inf
y∈Y

f (x, y) < ∞ and fix a real λ >

sup
x∈X

inf
y∈Y

f (x, y). The map T : X ⊸ X defined by

T (x) = {y ∈ X : f (x, y) < λ}

takes nonempty convex values and has the local intersection property. We show
that it satisfies condition (3) from Theorem 8. Let x ∈ X\K. Since T (x) 6= ∅ and
f is transfer upper semicontinous in x, there exists a neighbourhood V ′ (x) of x
and a point y′ ∈ X such that f (z, y′) < λ for each z ∈ V ′ (x). By (9) there exist
a neighbourhood V ′′ (x) of x and a point y0 ∈ K such that f (z, y0) ≤ f (z, y′)
for all z ∈ V ′′ (x). Then for each z ∈ V (x) = V ′ (x) ∩ V ′′ (x) we have f (z, y0) ≤
f (z, y′) < λ, hence

y0 ∈
⋂

z∈V (x)

T (z) ∩ X0 .

Theorem 8 implies that x0 ∈ T (x0) for some x0 ∈ X . Hence

inf
x∈X

f (x, x) ≤ f (x0, x0) < λ

and the proof is complete. �

Combining the lines of the proofs of Theorems 10 and 14 one can easily prove
the following result

Theorem 15. Let X and Y be nonempty compact convex subsets of topological

vector spaces and f, g : X × Y → R be two functions satisfying the following

conditions

(i) f ≤ g;
(ii) f is quasiconcave in x;

(iii) f is transfer lower semicontinuous in y;

(iv) there exist a nonempty compact convex subset Y0 of Y and a compact

subset K of X satisfying the following condition:

for each x ∈ X\K and any y′ ∈ Y there exists a neighbourhood V (x) of

x and a point y0 ∈ Y0 such that f (z, y0) ≤ f (z, y′) for all z ∈ V (x) ;

(v) g is quasiconvex in y;

(vi) g is transfer upper semicontinuous in x;

(vii) there exist a nonempty compact convex subset X0 of Xand a compact sub-

set L of Y satisfying the following condition:

for each y ∈ Y \L and any x′ ∈ Xthere exists a neighbourhood V (y) of

y and a point x0 ∈ X0 such that g (x0, u) ≥ g (x′, u) for all u ∈ V (y) .

Then

inf
y∈Y

sup
x∈X

f (x, y) ≤ sup
x∈X

inf
y∈Y

g (x, y) .
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