PROLONGATION OF PAIRS OF CONNECTIONS INTO CONNECTIONS ON VERTICAL BUNDLES

MIROSLAV DOUPOVEC AND WŁODZIMIERZ M. MIKULSKI

Abstract

Let F be a natural bundle. We introduce the geometrical construction transforming two general connections into a general connection on the F-vertical bundle. Then we determine all natural operators of this type and we generalize the result by I. Kolár and the second author on the prolongation of connections to F-vertical bundles. We also present some examples and applications.

Introduction

Let $\mathcal{M} f_{m}$ be the category of m-dimensional manifolds and local diffeomorphisms, $\mathcal{F M}$ be the category of fibered manifolds and fiber respecting mappings and $\mathcal{F} \mathcal{M}_{m, n}$ be the category of fibered manifolds with m-dimensional bases and n-dimensional fibers and locally invertible fiber respecting mappings.

Consider an arbitrary bundle functor F on the category $\mathcal{M} f_{n}$ and denote by V^{F} its vertical modification. Our starting point is the paper [9] by I. Kolář and the second author, who studied the prolongation of a connection Γ on an arbitrary fibered manifold $Y \rightarrow M$ with respect to an F-vertical functor V^{F}. In particular, they have introduced an F-vertical prolongation $\mathcal{V}^{F} \Gamma$ of a connection Γ and have proved that \mathcal{V}^{F} is the only natural operator of finite order transforming connections on $Y \rightarrow M$ into connections on $V^{F} Y \rightarrow M$. They have also described some conditions under which every natural operator of such a type has finite order. Further, in the case of the vertical Weil functor V^{A} they have proved that the operator transforming a connection Γ on $Y \rightarrow M$ into its vertical prolongation $\mathcal{V}^{A} \Gamma$ is the only natural one.

The aim of this paper is to study the prolongation of a pair of connections Γ_{1} and Γ_{2} on $Y \rightarrow M$ into a connection on $V^{F} Y \rightarrow M$. Our main result is Theorem 1 which describes all such natural operators. As a direct consequence we prove the generalization of a result by I. Kolár and the second author. In particular, we show that \mathcal{V}^{F} is the only natural operator transforming connections on $Y \rightarrow M$ into connections on $V^{F} Y \rightarrow M$ (without any additional assumption

[^0]on the finite order). In Section 1 we discuss the prolongation of connections on $Y \rightarrow M$ into connections on $G Y \rightarrow M$, where G is a bundle functor on $\mathcal{F} \mathcal{M}_{m, n}$. Section 2 is devoted to the construction of a connection on $V^{F} Y \rightarrow M$ by means of a pair Γ_{1}, Γ_{2} of connections on $Y \rightarrow M$. This geometrical construction will be based on linear natural operators transforming vector fields on n-manifolds N into vector fields on $F N$. In Section 3 we introduce some examples and applications. We also show, that in the case of a vertical Weil functor V^{A} the connection on $V^{A} Y \rightarrow M$ depending on a pair Γ_{1}, Γ_{2} can be constructed by means of the vertical prolongation of the deviation $\delta\left(\Gamma_{1}, \Gamma_{2}\right)$ of Γ_{1} and Γ_{2}. Finally, the whole Section 4 is devoted to the proof of Theorem 1.

In what follows $Y \rightarrow M$ stands for $\mathcal{F} \mathcal{M}_{m, n}$-objects and N stands for $\mathcal{M} f_{n^{-}}$ objects. All manifolds and maps are assumed to be of the class C^{∞}. Unless otherwise specified, we use the terminology and notation from the book [7].

1. Prolongation of connections to $G Y \rightarrow M$

Recently it has been clarified that the order of bundle functors on $\mathcal{F M}$ is characterized by three integers $(r, s, q), s \geq r \leq q$ and is based on the concept of (r, s, q)-jet, [7]. Consider two fibered manifolds $p: Y \rightarrow M$ and $\bar{p}: \bar{Y} \rightarrow \bar{M}$ and let $r, s \geq r, q \geq r$ be integers. We recall that two $\mathcal{F} \mathcal{M}$-morphisms $f, g: Y \rightarrow \bar{Y}$
 at $y \in Y, p(y)=x, \overline{\mathrm{if}}$

$$
j_{y}^{r} f=j_{y}^{r} g, j_{y}^{s}\left(f \mid Y_{x}\right)=j_{y}^{s}\left(g \mid Y_{x}\right), j_{x}^{q} \underline{f}=j_{x}^{q} \underline{g}
$$

The space of all such (r, s, q)-jets will be denoted by $J^{r, s, q}(Y, \bar{Y})$. By 12.19 in [7], the composition of $\mathcal{F} \mathcal{M}$-morphisms induces the composition of (r, s, q)-jets.
Definition 1 ([9]). A bundle functor G on $\mathcal{F} \mathcal{M}_{m, n}$ is said to be of order (r, s, q), if $j_{y}^{r, s, q} f=j_{y}^{r, s, q} g$ implies $G f\left|G_{y} Y=G g\right| G_{y} Y$.

Then the integer q is called the base order, s is called the fiber order and r is called the total order of G.

If $X: N \rightarrow T N$ is a vector field and F is a bundle functor on $\mathcal{M} f_{n}$, then we can define the flow prolongation $\mathcal{F} X: F N \rightarrow T F N$ of X with respect to F by

$$
\begin{equation*}
\mathcal{F} X=\left.\frac{\partial}{\partial t}\right|_{0} F(\exp t X) \tag{1}
\end{equation*}
$$

where $\exp t X$ denotes the flow of $X,[7]$. Quite analogously, a projectable vector field on a fibered manifold $Y \rightarrow M$ is an $\mathcal{F} \mathcal{M}$-morphism $Z: Y \rightarrow T Y$ over the underlying vector field $M \rightarrow T M$, and its flow $\exp t Z$ is formed by local $\mathcal{F} \mathcal{M}_{m, n^{-}}$ morphisms. Further, if G is a bundle functor on $\mathcal{F} \mathcal{M}_{m, n}$, the flow prolongation of Z with respect to G is defined by

$$
\mathcal{G} Z=\left.\frac{\partial}{\partial t}\right|_{0} G(\exp t Z) .
$$

By [9], this map is \mathbf{R}-linear and preserves bracket.

Proposition 1 ([9]). If G is of order (r, s, q), then the value of $\mathcal{G} Z$ at each point of $G_{y} Y$ depends on $j_{y}^{r, s, q} Z$ only.

Thus the construction of the flow prolongation of projectable vector fields can be interpreted as a map

$$
\mathcal{G}_{Y}: G Y \times_{Y} J^{r, s, q} T Y \rightarrow T G Y
$$

where $J^{r, s, q} T Y$ denotes the space of all (r, s, q)-jets of projectable vector fields on Y. Since the flow prolongation is \mathbf{R}-linear, \mathcal{G}_{Y} is linear in the second factor.

Now let $\Gamma: Y \rightarrow J^{1} Y$ be a general connection on $p: Y \rightarrow M$. In [7] and [9] it is clarified, that if the functor G on $\mathcal{F} \mathcal{M}_{m, n}$ has the base order q, then one can construct the induced connection $\mathcal{G}(\Gamma, \Delta)$ on $G Y \rightarrow M$ by means of an auxiliary linear q-th order connection Δ on the base manifold M. The geometrical construction of the connection $\mathcal{G}(\Gamma, \Delta)$ is the following. Let X be a vector field on M with the coordinate components $X^{i}(x)$ and let

$$
d y^{p}=\Gamma_{i}^{p}(x, y) d x^{i}
$$

be the coordinate expression of Γ. Then the Γ-lift of X is a vector field ΓX on Y, whose coordinate form is

$$
X^{i}(x) \frac{\partial}{\partial x^{i}}+\Gamma_{i}^{p}(x, y) X^{i}(x) \frac{\partial}{\partial y^{p}}
$$

By Proposition 1, the flow prolongation $\mathcal{G}(\Gamma X)$ depends on the q-jets of X only. So we obtain a map

$$
\begin{equation*}
\mathcal{G} \Gamma: G Y \times_{M} J^{q} T M \rightarrow T G Y, \tag{2}
\end{equation*}
$$

which is linear in the second factor. Further, let $\Delta: T M \rightarrow J^{q} T M$ be a linear q-th order connection on M. By linearity, the composition

$$
\begin{equation*}
\mathcal{G}(\Gamma, \Delta):=\mathcal{G} \Gamma \circ\left(\operatorname{id}_{G Y} \times_{\mathrm{id}_{M}} \Delta\right): G Y \times_{M} T M \rightarrow T G Y \tag{3}
\end{equation*}
$$

is the lifting map of a connection on $G Y \rightarrow M$. Clearly, if the base order of G is zero, then (2) is a connection on $G Y \rightarrow M$ and we need no auxiliary linear connection Δ. This is the case of a vertical functor V^{F}, which is defined as follows. Let F be a bundle functor on $\mathcal{M} f_{n}$ of order s. Its vertical modification V^{F} is a bundle functor on $\mathcal{F} \mathcal{M}_{m, n}$ defined by

$$
V^{F} Y=\bigcup_{x \in M} F\left(Y_{x}\right), \quad V^{F} f=\bigcup_{x \in M} F\left(f_{x}\right)
$$

where f_{x} is the restriction and corestriction of $f: Y \rightarrow \bar{Y}$ over $\underline{f}: M \rightarrow \bar{M}$ to the fibers Y_{x} and $\bar{Y}_{\underline{f}(x)}$, [9]. Obviously, the order of the functor V^{F} is $(0, s, 0)$. Since the base order of V^{F} is zero, the map (2) defines a connection $\mathcal{V}^{F} \Gamma$ for every connection Γ on $Y \rightarrow M$.

Definition $2([9])$. The connection $\mathcal{V}^{F} \Gamma$ is called the F-vertical prolongation of Γ.
If $F=T^{A}$ is a Weil functor, then $V^{T^{A}}$ is the vertical Weil functor on $\mathcal{F} \mathcal{M}_{m, n}$, which will be denoted by V^{A}. This functor induces the vertical A-prolongation $\mathcal{V}^{A} \Gamma$. In particular, for $F=T$ we obtain the classical vertical bundle, which will be denoted by V instead of V^{T} and the corresponding vertical prolongation of Γ will be denoted by $\mathcal{V} \Gamma$. I. Kolář [5] has proved that $\mathcal{V} \Gamma$ is the only natural operator transforming connections on $Y \rightarrow M$ into connections on $V Y \rightarrow M$, see also [7], p. 255. Moreover, the following naturality property of the F-vertical prolongation $\mathcal{V}^{F} \Gamma$ is an interesting generalization of the well known result concerning the classical vertical prolongation $\mathcal{V} \Gamma$ to an arbitrary bundle functor F on $\mathcal{M} f_{n}$.

Proposition $2([9]) . \mathcal{V}^{F}$ is the only natural operator of finite order transforming connections on $Y \rightarrow M$ into connections on $V^{F} Y \rightarrow M$.

Propositon 3 ([9]). If the standard fiber $F_{0}\left(\mathbf{R}^{n}\right)$ of F is compact or if $F_{0}\left(\mathbf{R}^{n}\right)$ contains a point z_{0} such that $F\left(\operatorname{bid}_{\mathbf{R}^{n}}\right)(z) \rightarrow z_{0}$ if $b \rightarrow 0$ for any $z \in F_{0}\left(\mathbf{R}^{n}\right)$, then every natural operator D transforming connections on $Y \rightarrow M$ into connections on $V^{F} Y \rightarrow M$ has finite order.

For example, the assumption of Proposition 3 is satisfied in the case F is a Weil functor T^{A}. On the other hand, this assumption is not satisfied in the case F is a cotangent bundle functor T^{*}.

Remark 1. It is well known, that there is no natural operator transforming connections on $Y \rightarrow M$ into connections on $J^{1} Y \rightarrow M$, see [5] and [7]. Quite analogously, I. Kolář and the first author have proved that there is no first order natural operator transforming connections on $Y \rightarrow M$ into connections on $T Y \rightarrow M$, [2]. The second author has recently proved the following general result, [13]: If G is a bundle functor on $\mathcal{F} \mathcal{M}_{m, n}$ such that $G^{1}: \mathcal{M} f_{m} \rightarrow \mathcal{F} \mathcal{M}, G^{1} M=G\left(M \times \mathbf{R}^{n}\right)$, $G^{1}(\varphi)=G\left(\varphi \times \mathrm{id}_{\mathbf{R}^{n}}\right)$ is not of order zero, then there is no natural operator transforming connections on $Y \rightarrow M$ into connections on $G Y \rightarrow M$. This means that in this case, the use of an auxiliary linear connection Δ on the base manifold M in the construction (3) is unavoidable. We remark that all natural operators transforming a connection Γ on $Y \rightarrow M$ and a linear connection $\Delta: T M \rightarrow J^{1} T M$ into a connection on $J^{1} Y \rightarrow M$ are determined in [5].

2. Prolongation of pairs of connections into Connections on vertical bundles

Let $F: \mathcal{M} f_{n} \rightarrow \mathcal{F} \mathcal{M}$ be a natural bundle of order s and $V^{F}: \mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{F} \mathcal{M}$ be the corresponding vertical modification. Suppose we have a natural linear operator

$$
L: T \rightsquigarrow T F
$$

transforming vector fields on N into vector fields on $F N$. Let $\Gamma_{1}, \Gamma_{2}: Y \times_{M} T M \rightarrow$ $T Y$ be connections on an $\mathcal{F} \mathcal{M}_{m, n}$-object $Y \rightarrow M$. We are going to construct
a connection $\mathcal{V}^{F, L}\left(\Gamma_{1}, \Gamma_{2}\right)$ on $V^{F} Y \rightarrow M$ depending canonically on Γ_{1} and Γ_{2}. Clearly, such a connection can be written in the form

$$
\mathcal{V}^{F, L}\left(\Gamma_{1}, \Gamma_{2}\right): V^{F} Y \times_{M} T M \rightarrow T V^{F} Y
$$

Firstly, we define a fiber linear map

$$
\begin{equation*}
\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}: V^{F} Y \times_{M} T M \rightarrow V\left(V^{F} Y\right) \tag{4}
\end{equation*}
$$

covering the identity on $V^{F} Y$ as follows. Let $(u, v) \in\left(V^{F} Y \times_{M} T M\right)_{x}, x \in M$ and let $v^{\Gamma_{1}}, v^{\Gamma_{2}}$ (defined on Y_{x}) be the horizontal lifts of v with respect to Γ_{1} and Γ_{2} respectively. The difference $v^{\Gamma_{1}, \Gamma_{2}}:=\left(v^{\Gamma_{1}}-v^{\Gamma_{2}}\right)$ is vertical, so it can be considered as the vector field on $Y_{x}, v^{\Gamma_{1}, \Gamma_{2}}: Y_{x} \rightarrow T\left(Y_{x}\right)=(V Y)_{x}$. Using the linear operator L, we have the vector field

$$
L\left(v^{\Gamma_{1}, \Gamma_{2}}\right): F\left(Y_{x}\right)=\left(V^{F} Y\right)_{x} \rightarrow T\left(\left(V^{F} Y\right)_{x}\right)=\left(V\left(V^{F} Y\right)\right)_{x}
$$

which can be considered as (defined on $\left.\left(V^{F} Y\right)_{x}\right)$ vertical vector field $L\left(v^{\Gamma_{1}, \Gamma_{2}}\right)$: $V^{F} Y \rightarrow V\left(V^{F} Y\right)$. We put

$$
\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}(u, v)=L\left(v^{\Gamma_{1}, \Gamma_{2}}\right)(u) .
$$

Since L is a linear operator, the map $\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}$ is linear in the second factor. Further,

$$
\mathcal{V}^{F, L}\left(\Gamma_{1}, \Gamma_{2}\right):=\mathcal{V}^{F} \Gamma_{1}+\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}: V^{F} Y \times_{M} T M \rightarrow T V^{F} Y
$$

is a connection on $V^{F} Y \rightarrow M$ canonically dependent on Γ_{1} and Γ_{2}.
Definition 3. The connection $\mathcal{V}^{F, L}\left(\Gamma_{1}, \Gamma_{2}\right)$ is called the (F, L)-vertical prolongation of $\left(\Gamma_{1}, \Gamma_{2}\right)$.

From the geometrical construction of $\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}$ it follows directly
Lemma 1. We have
(i) $\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}=-\left(\Gamma_{2}, \Gamma_{1}\right)^{F, L}$,
(ii) $\left(\Gamma_{1}, \Gamma_{2}\right)^{F, c_{1} L_{1}+c_{2} L_{2}}=c_{1}\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L_{1}}+c_{2}\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L_{2}}, c_{1}, c_{2} \in \mathbf{R}$,
(iii) $\mathcal{V}^{F, L}(\Gamma, \Gamma)=\mathcal{V}^{F} \Gamma$.

The main result of the present paper is the following classification theorem.
Theorem 1. $\mathcal{V}^{F, L}$ are the only natural operators transforming pairs of connections on $Y \rightarrow M$ into connections on $V^{F} Y \rightarrow M$.

We have the following corollary of Theorem 1.

Corollary 1. $\tilde{\mathcal{V}}^{F}\left(\Gamma_{1}, \Gamma_{2}\right):=\frac{1}{2}\left(\mathcal{V}^{F} \Gamma_{1}+\mathcal{V}^{F} \Gamma_{2}\right)$ is the only natural symmetric operator transforming pairs of connections on $Y \rightarrow M$ into connections on $V^{F} Y \rightarrow M$.
Proof of Corollary 1. Let D be such an operator. By Theorem 1, $D\left(\Gamma_{1}, \Gamma_{2}\right)=$ $\mathcal{V}^{F} \Gamma_{1}+\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}$. By the symmetry of D we get $\mathcal{V}^{F} \Gamma_{1}+\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}=\mathcal{V}^{F} \Gamma_{2}-$ $\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}$ because $\left(\Gamma_{2}, \Gamma_{1}\right)^{F, L}=-\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}$. Then $\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}=\frac{1}{2}\left(\mathcal{V}^{F} \Gamma_{2}-\right.$ $\left.\mathcal{V}^{F} \Gamma_{1}\right)$ and $D\left(\Gamma_{1}, \Gamma_{2}\right)=\frac{1}{2}\left(\mathcal{V}^{F} \Gamma_{1}+\mathcal{V}^{F} \Gamma_{2}\right)$ as well.

Now we show that one can omit the finite order assumption in Proposition 2. In this way we obtain the following generalization of this result:

Proposition 2'. \mathcal{V}^{F} is the only natural operator transforming connections on $Y \rightarrow M$ into connections on $V^{F} Y \rightarrow M$.
Proof. Write $\Gamma_{1}=\Gamma_{2}=\Gamma$ in Corollary 1. Then we obtain $\tilde{\mathcal{V}}^{F}(\Gamma, \Gamma)=\mathcal{V}^{F} \Gamma$.
Remark 2. The (F, L)-prolongation is a geometrical construction, which transforms two connections Γ_{1} and Γ_{2} on $Y \rightarrow M$ into a connection $\mathcal{V}^{F, L}\left(\Gamma_{1}, \Gamma_{2}\right)$ on $V^{F} Y \rightarrow M$. Another example of a geometrical construction defined on pairs of connections is the mixed curvature, which is defined as the Frölicher-Nijenhuis bracket $\left[\Gamma_{1}, \Gamma_{2}\right]$. We remark that the mixed curvature is a section $Y \rightarrow V Y \otimes$ $\otimes^{2} T^{*} M$, see 27.4 in [7].

By Theorem 1, natural operators transforming pairs of connections on $Y \rightarrow M$ into a connection on $V^{F} Y \rightarrow M$ depend on linear natural operators $L: T \rightsquigarrow T F$ on vector fields. Now we show that it suffices to find the basis of such linear operators.
Proposition 4. Let L_{1}, \ldots, L_{k} be the basis of linear natural operators $T \rightsquigarrow T F$ transforming vector fields on n-manifolds N into vector fields on $F N$. Then all natural operators transforming pairs of connections on $Y \rightarrow M$ into a connection on $V^{F} Y \rightarrow M$ are of the form

$$
\left(\Gamma_{1}, \Gamma_{2}\right) \mapsto \mathcal{V}^{F} \Gamma_{1}+c_{1}\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L_{1}}+\cdots+c_{k}\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L_{k}}, \quad, c_{i} \in \mathbf{R} .
$$

Proof. An arbitrary linear operator $L: T \rightsquigarrow T F$ is of the form $L=c_{1} L_{1}+\cdots+$ $c_{k} L_{k}, c_{i} \in \mathbf{R}$. Then the assertion follows from Theorem 1 and from Lemma 1.

3. Applications

Clearly, the flow prolongation (1) is a natural linear operator $T \rightsquigarrow T F$. So for an arbitrary natural bundle F on $\mathcal{M} f_{n}$ there exists a natural operator transforming pairs of connections Γ_{1}, Γ_{2} on $Y \rightarrow M$ into a connection $\mathcal{V}^{F, \mathcal{F}}\left(\Gamma_{1}, \Gamma_{2}\right)$ on $V^{F} Y \rightarrow$ M. Now let $F=T^{A}$ be a Weil functor determined by a Weil algebra A. By [7], all product preserving functors on $\mathcal{M} f$ are of this type. We have the following action

$$
\begin{equation*}
A \times T T^{A} N \rightarrow T T^{A} N \tag{5}
\end{equation*}
$$

of the elements of A on the tangent vectors on $T^{A} N$. Indeed, the multiplication of the tangent vectors of N by reals is a map $m: \mathbf{R} \times T N \rightarrow T N$. Applying the
functor T^{A} and using the fact that $T^{A} \mathbf{R}=A$ we obtain a map $T^{A} m: A \times T^{A} T N \rightarrow$ $T^{A} T N$. Finally, the canonical identification $T^{A} T N \cong T T^{A} N$ yields the action (5). So for an arbitrary $a \in A$ we have a natural affinor on $T^{A} N$ of the form

$$
\operatorname{af}(a)_{N}: T T^{A} N \rightarrow T T^{A} N
$$

By [7], all natural linear operators $T \rightsquigarrow T T^{A}$ transforming vector fields on N into vector fields on $T^{A} N$ are of the form

$$
\operatorname{af}(a) \circ \mathcal{T}^{A}
$$

for all $a \in A$, where \mathcal{T}^{A} means the flow operator. Thus, we have
Proposition 5. All natural operators transforming pairs of connections on $Y \rightarrow$ M into a connection on $V^{A} Y \rightarrow M$ are of the form

$$
\left(\Gamma_{1}, \Gamma_{2}\right) \mapsto \mathcal{V}^{T^{A}}, \operatorname{af}(a) \circ \mathcal{T}^{A}\left(\Gamma_{1}, \Gamma_{2}\right)
$$

for all $a \in A$.
It is well known that $J^{1} Y \rightarrow Y$ is an affine bundle with the associated vector bundle $V Y \otimes T^{*} M$. So the difference of two connections $\Gamma_{1}, \Gamma_{2}: Y \rightarrow J^{1} Y$ is a map $\delta\left(\Gamma_{1}, \Gamma_{2}\right): Y \rightarrow V Y \otimes T^{*} M$, which is called the deviation of Γ_{1} and Γ_{2}. Clearly, this map can be written as

$$
\begin{equation*}
\delta\left(\Gamma_{1}, \Gamma_{2}\right): Y \times_{M} T M \rightarrow V Y . \tag{6}
\end{equation*}
$$

A. Cabras and I. Kolář [1] have constructed the vertical A-prolongation of (6) with respect to the first factor

$$
\begin{equation*}
\mathcal{V}_{1}^{A} \delta\left(\Gamma_{1}, \Gamma_{2}\right): V^{A} Y \times_{M} T M \rightarrow V V^{A} Y \tag{7}
\end{equation*}
$$

fiberwise in the following way. Denoting by $q: T M \rightarrow M$ the bundle projection, we can write $\delta_{z}: Y_{x} \rightarrow(V Y)_{x}$ for the map $y \mapsto \delta\left(\Gamma_{1}, \Gamma_{2}\right)(y, z), y \in Y, z \in T M$, $q(z)=x$. Applying T^{A} we obtain a map

$$
\left(V_{1}^{A} \delta\right)_{z}:=T^{A}\left(\delta_{z}\right): T^{A}\left(Y_{x}\right)=\left(V^{A} Y\right)_{x} \rightarrow T^{A}\left((V Y)_{x}\right)=\left(V^{A} V Y\right)_{x}
$$

which yields a map $V_{1}^{A} \delta: V^{A} Y \times_{M} T M \rightarrow V^{A} V Y$. Further, the canonical exchange diffeomorphism of Weil functors $i_{N}^{B, A}: T^{B}\left(T^{A} N\right) \rightarrow T^{A}\left(T^{B} N\right)$ from [7] induces the exchange diffeomorphism $i_{Y}: V^{A} V Y \rightarrow V V^{A} Y$, [1]. Then the map (7) can be defined by

$$
\begin{equation*}
\mathcal{V}_{1}^{A} \delta\left(\Gamma_{1}, \Gamma_{2}\right)=i_{Y} \circ V_{1}^{A} \delta \tag{8}
\end{equation*}
$$

On the other hand, we can construct the vertical A-prolongations $\mathcal{V}^{A} \Gamma_{1}, \mathcal{V}^{A} \Gamma_{2}$: $V^{A} Y \times_{M} T M \rightarrow T V^{A} Y$ of Γ_{1} and Γ_{2}. The deviation of the connections $\mathcal{V}^{A} \Gamma_{1}$ and $\mathcal{V}^{A} \Gamma_{2}$ is a map

$$
\begin{equation*}
\delta\left(\mathcal{V}^{A} \Gamma_{1}, \mathcal{V}^{A} \Gamma_{2}\right): V^{A} Y \times_{M} T M \rightarrow V\left(V^{A} Y\right) . \tag{9}
\end{equation*}
$$

A. Cabras and I. Kolář have proved the formula

$$
\begin{equation*}
\delta\left(\mathcal{V}^{A} \Gamma_{1}, \mathcal{V}^{A} \Gamma_{2}\right)=\mathcal{V}_{1}^{A} \delta\left(\Gamma_{1}, \Gamma_{2}\right) \tag{10}
\end{equation*}
$$

Consider now a linear map (4), where we put $F=T^{A}$ and $L=\mathcal{T}^{A},\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{A}, \mathcal{T}^{A}}$: $V^{A} Y \times_{M} T M \rightarrow V\left(V^{A} Y\right)$. We have

Proposition 6. Let \mathcal{T}^{A} be the flow operator. Then we have

$$
\begin{equation*}
\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{A}, \mathcal{T}^{A}}=\mathcal{V}_{1}^{A} \delta\left(\Gamma_{1}, \Gamma_{2}\right) \tag{11}
\end{equation*}
$$

Proof. Denoting by $\delta:=\delta\left(\Gamma_{1}, \Gamma_{2}\right)(y,-):(T M)_{x} \rightarrow(V Y)_{x}$, we have $\delta(v)=$ $\Gamma_{1} v-\Gamma_{2} v$ for $v \in(T M)_{x}$. Since $\delta(v)$ is vertical, it can be considered as a vector field $Y_{x} \rightarrow T\left(Y_{x}\right)$. Applying the flow operator \mathcal{T}^{A} we obtain a vector field $\mathcal{T}^{A} \delta(v)$: $T^{A}\left(Y_{x}\right)=\left(V^{A} Y\right)_{x} \rightarrow T\left(\left(V^{A} Y\right)_{x}\right)=\left(V\left(V^{A} Y\right)\right)_{x}$, which can be considered as a vertical vector field on $V^{A} Y$. This defines the map
$\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{A}, \mathcal{T}^{A}}: V^{A} Y \times_{M} T M \rightarrow V\left(V^{A} Y\right), \quad\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{A}, \mathcal{T}^{A}}(u, v)=\mathcal{T}^{A} \delta(v)(u)$.
In general, given a vector field $\xi: N \rightarrow T N$, the flow prolongation $\mathcal{T}^{A} \xi$ can be also constructed as the composition $\mathcal{T}^{A} \xi=\mathrm{i}_{N}^{A, \mathbb{D}} \circ T^{A} \xi$, where $\mathrm{i}_{N}^{A, \mathbb{D}}: T^{A} T N \rightarrow T T^{A} N$ is the canonical exchange diffeomorphism and \mathbb{D} is the Weil algebra of dual numbers corresponding to the tangent bundle T. By (8) and (12) we have $\mathcal{T}^{A} \delta=\mathcal{V}_{1}^{A} \delta$.
Remark 3. It is interesting to pose a question whether the formulas (10) and (11) can be generalized for an arbitrary natural bundle F on $\mathcal{M} f_{n}$. Given any connections Γ_{1} and Γ_{2} on $Y \rightarrow M$, one can construct their F-vertical prolongations $\mathcal{V}^{F} \Gamma_{1}, \mathcal{V}^{F} \Gamma_{2}: V^{F} Y \times_{M} T M \rightarrow T\left(V^{F} Y\right)$ and then the deviation

$$
\begin{equation*}
\delta\left(\mathcal{V}^{F} \Gamma_{1}, \mathcal{V}^{F} \Gamma_{2}\right): V^{F} Y \times_{M} T M \rightarrow V\left(V^{F} Y\right) . \tag{13}
\end{equation*}
$$

Further, for any linear natural operator $L: T \rightsquigarrow T F$ we have the map (4). From Theorem 1 it follows that

$$
\delta\left(\mathcal{V}^{F} \Gamma_{1}, \mathcal{V}^{F} \Gamma_{2}\right)=\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}
$$

for some linear natural operator L. By (10) and (11), if $F=T^{A}$, then $L=$ \mathcal{T}^{A}. From the proof of Theorem 1 (see the construction (14) of L^{D}) it follows that even in the general case of an arbitrary natural bundle F we have $L=\mathcal{F}$, where \mathcal{F} is the flow operator (1). We remark that the construction of the vertical prolongation (7) and the proof of (11) essentially depend on the existence of the exchange diffeomorphism i $i_{Y}: V^{A} V Y \rightarrow V V^{A} Y$. We recall that the bundle functor F is said to have the point property, if $F(\mathrm{pt})=\mathrm{pt}$, where pt denote the one-point manifold. From Theorem 39.2 in [7] it follows directly that if F has the point property, then there exists a natural equivalence $\mathrm{i}_{Y}^{F}: V^{F} V Y \rightarrow V V^{F} Y$ if and only if F is a Weil functor T^{A}. In this case, i_{Y}^{F} coincides with i_{Y}.

Let $T^{r *} N=J^{r}(N, \mathbf{R})_{0}$ be the space of all r-jets from an n-manifold N into reals with target 0 . Since \mathbf{R} is a vector space, $T^{r *} N$ has a canonical structure of the vector bundle over $N . T^{r *} N$ is called the r-th order cotangent bundle and the dual vector bundle

$$
T^{(r)} N=\left(T^{r *} N\right)^{*}
$$

is called the r-th order tangent bundle. For every map $f: N \rightarrow N_{1}$ the jet composition $A \mapsto A \circ\left(j_{x}^{r} f\right), x \in N, A \in\left(T^{r *} N_{1}\right)_{f(x)}$ defines a linear map
$\left(T^{r *} N_{1}\right)_{f(x)} \rightarrow\left(T^{r *} N\right)_{x}$. The dual map $T_{x}^{(r)} f:\left(T^{(r)} N\right)_{x} \rightarrow\left(T^{(r)} N_{1}\right)_{f(x)}$ is called the r-th order tangent map of f at x. This defines a vector bundle functor $T^{(r)}$, which is defined on the whole category $\mathcal{M} f$ of all smooth manifolds and all smooth maps. Clearly, for $r=1$ we obtain the classical tangent functor T and for $r>1$ the functor $T^{(r)}$ does not preserve products. Obviously, we have the canonical inclusion $T N \subset T^{(r)} N$. Using fiber translations on $T^{(r)} N$, we can extend every section $X: N \rightarrow T N$ into a vector field $V(X)$ on $T^{(r)} N$. This defines a linear natural operator $V: T \rightsquigarrow T T^{(r)}$. The second author has in [10] determined all natural operators $T \rightsquigarrow T T^{(r)}$. From this result we obtain directly that all linear natural operators $T \rightsquigarrow T T^{(r)}$ transforming vector fields on N into vector fields on $T^{(r)} N$ are of the form $c_{1} \mathcal{T}^{(r)}+c_{2} V, c_{i} \in \mathbf{R}$. Using Proposition 4 we have

Proposition 7. All natural operators transforming pairs of connections on $Y \rightarrow$ M into a connection on $V^{T^{(r)}} Y \rightarrow M$ are of the form

$$
\left(\Gamma_{1}, \Gamma_{2}\right) \mapsto \mathcal{V}^{T^{(r)}} \Gamma_{1}+c_{1}\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{(r)}, \mathcal{T}^{(r)}}+c_{2}\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{(r)}, V}, \quad c_{i} \in \mathbf{R}
$$

By Corollary 4.1 in [11], all linear natural operators $T \rightsquigarrow T T^{*}$ are linear combinations (with real coefficients) of the flow operator \mathcal{T}^{*} and the operator V defined by $V(X)_{\omega}=\left\langle\omega, X_{x}\right\rangle \cdot C_{\omega}$, where C is the Liouville vector field of the cotangent bundle and $X \in \mathcal{X}(N), \omega \in T_{x}^{*} N, x \in N$. Thus, we have

Proposition 8. All natural operators transforming pairs of connections on $Y \rightarrow$ M into a connection on $V^{T^{*}} Y \rightarrow M$ are of the form

$$
\left(\Gamma_{1}, \Gamma_{2}\right) \mapsto \mathcal{V}^{T^{*}} \Gamma_{1}+c_{1}\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{*}, \mathcal{T}^{*}}+c_{2}\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{*}, V}, \quad c_{i} \in \mathbf{R}
$$

Using [11], we can generalize this result in the following way. First, we have r linear natural operators $E_{1}, \ldots, E_{r}: T \rightsquigarrow T T^{r *}$ defined by

$$
E_{k}(X)\left(j_{x}^{r} \gamma\right)=\left.\left\langle X(x), j_{x}^{1} \gamma\right\rangle \cdot \frac{\mathrm{d}}{\mathrm{~d} t}\right|_{0}\left(j_{x}^{r} \gamma+t j_{x}^{r}(\gamma)^{k}\right), \quad k=1, \ldots, r
$$

where $X \in \mathcal{X}(N)$ is a vector field on $N, j_{x}^{r} \gamma \in T_{x}^{r *} N$ and $(\gamma)^{k}$ is the k-th power of the map $\gamma: N \rightarrow \mathbf{R}$. Further, if we interpret X as the differentiation, then $(X \gamma-X \gamma(x))(\gamma)^{s-1}$ is a function on N which maps the point $x \in N$ into zero. So we can define linear natural operators $F_{2}, \ldots, F_{r}: T \rightsquigarrow T T^{r *}$ by

$$
F_{s}(X)\left(j_{x}^{r} \gamma\right)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{0}\left[j_{x}^{r} \gamma+t j_{x}^{r}\left((X \gamma-X \gamma(x))(\gamma)^{s-1}\right)\right], \quad s=2, \ldots, r
$$

By [11], the flow operator $\mathcal{T}^{r *}$ and the operators $E_{1}, \ldots, E_{r}, F_{2}, \ldots, F_{r}$ form the basis over \mathbf{R} of the vector space of all linear natural operators $T \rightsquigarrow T T^{r *}$. By Proposition 4 we have

Proposition 9. All natural operators transforming pairs of connections on $Y \rightarrow$ M into a connection on $V^{T^{r *}} Y \rightarrow M$ are of the form

$$
\begin{aligned}
\left(\Gamma_{1}, \Gamma_{2}\right) \mapsto \mathcal{V}^{T^{r *}} \Gamma_{1} & +c_{0}\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{r *}, \mathcal{T}^{r *}}+c_{1}\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{r *}, E_{1}}+\cdots+c_{r}\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{r *}, E_{r}} \\
& +d_{2}\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{r *}, F_{2}}+\cdots+d_{r}\left(\Gamma_{1}, \Gamma_{2}\right)^{T^{r *}, F_{r}}, \quad c_{i}, d_{i} \in \mathbf{R}
\end{aligned}
$$

We remark that there are many papers which classify all natural operators $T \rightsquigarrow T F$ for particular natural bundles F, see e.g. [4], [6], [10]-[12], [14] and [15]. For example, P. Kobak [4] has determined all natural operators $T \rightsquigarrow T T T^{*}$ and J. Tomáš [14] has classified all natural operators $T \rightsquigarrow T T^{*} T_{k}^{r}$, where $T_{k}^{r} N=$ $J_{0}^{r}\left(\mathbf{R}^{k}, N\right)$ is the bundle of k-dimensional velocities of order r. If we restrict ourselves only to linear natural operators, we can easily determine all natural operators transforming pairs of connections on $Y \rightarrow M$ into a connection on $V^{F} Y \rightarrow M$.

4. Proof of Theorem 1

From now on $\mathbf{R}^{m, n}$ is the trivial bundle $\mathbf{R}^{m} \times \mathbf{R}^{n}$ over \mathbf{R}^{m}. The usual coordinates on $\mathbf{R}^{m, n}$ will be denoted by $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}$. If \tilde{D} is a natural operator of our type, then for given connections Γ_{1} and Γ_{2} on an $\mathcal{F} \mathcal{M}_{m, n}$-object $Y \rightarrow M$ the difference

$$
\Delta\left(\Gamma_{1}, \Gamma_{2}\right)=\tilde{D}\left(\Gamma_{1}, \Gamma_{2}\right)-\mathcal{V}^{F} \Gamma_{1}: V^{F} Y \times_{M} T M \rightarrow V\left(V^{F} Y\right)
$$

is a fiber linear map covering the identity on $V^{F} Y$. So it remains to describe all natural operators of the type as Δ. Consider a natural operator D of the type as Δ. We prove some auxiliary lemmas.

Lemma 2. Suppose that

$$
\begin{aligned}
& D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} \Gamma_{1 i \alpha \beta}^{j} x^{\alpha} y^{\beta} d x^{i} \otimes \frac{\partial}{\partial y^{j}},\right. \\
& \left.\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} \Gamma_{2 i \alpha \beta}^{j} x^{\alpha} y^{\beta} d x^{i} \otimes \frac{\partial}{\partial y^{j}}\right)(u, v)=0
\end{aligned}
$$

for any $K \in \mathbf{N}$, any $(u, v) \in\left(V^{F} \mathbf{R}^{m, n}\right)_{0} \times T_{0} \mathbf{R}^{m}$, any $\Gamma_{1 i \alpha \beta}^{j}$ and any $\Gamma_{2 i \alpha \beta}^{j}$ for i, j, α, β as indicated. Then $D=0$.

Proof. It follows from a corollary of non-linear Peetre theorem (Corollary 19.8 in [7]).
Lemma 3. Suppose that

$$
D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+y^{\beta} d x^{i_{0}} \otimes \frac{\partial}{\partial y^{j_{0}}}, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}\right)(u, v)=0
$$

and

$$
D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+y^{\beta} d x^{i_{0}} \otimes \frac{\partial}{\partial y^{j_{0}}}\right)(u, v)=0
$$

for any $(u, v) \in\left(V^{F} \mathbf{R}^{m, n}\right)_{0} \times T_{0} \mathbf{R}^{m}$, any n-tuple β and any $i_{0}=1, \ldots, m$ and $j_{0}=1, \ldots, n$. Then $D=0$.
Proof. Using the invariance of D with respect to the base homotheties $t \mathrm{id}_{\mathbf{R}^{m}} \times$ $\mathrm{id}_{\mathbf{R}^{n}}$ for $t>0$ we get the homogeneity condition

$$
\begin{aligned}
& D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} t^{|\alpha|+1} \Gamma_{1 i \alpha \beta}^{j} x^{\alpha} y^{\beta} d x^{i} \otimes \frac{\partial}{\partial y^{j}}\right. \\
& \left.\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} t^{|\alpha|+1} \Gamma_{2 i \alpha \beta}^{j} x^{\alpha} y^{\beta} d x^{i} \otimes \frac{\partial}{\partial y^{j}}\right)(u, v) \\
& =t D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} \Gamma_{1 i \alpha \beta}^{j} x^{\alpha} y^{\beta} d x^{i} \otimes \frac{\partial}{\partial y^{j}},\right. \\
& \left.\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} \Gamma_{2 i \alpha \beta}^{j} x^{\alpha} y^{\beta} d x^{i} \otimes \frac{\partial}{\partial y^{j}}\right)(u, v) .
\end{aligned}
$$

By the homogeneous function theorem, this type of homogeneity gives that

$$
\begin{aligned}
& D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} \Gamma_{1 i \alpha \beta}^{j} x^{\alpha} y^{\beta} d x^{i} \otimes \frac{\partial}{\partial y^{j}},\right. \\
& \left.\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \leq K} \Gamma_{2 i \alpha \beta}^{j} x^{\alpha} y^{\beta} d x^{i} \otimes \frac{\partial}{\partial y^{j}}\right)(u, v)
\end{aligned}
$$

depends linearly on $\Gamma_{1 i(0) \beta}^{j}$ and $\Gamma_{2 i(0) \beta}^{j}$ and is independent of $\Gamma_{1 i \alpha \beta}^{j}$ and $\Gamma_{2 i \alpha \beta}^{j}$ for $|\alpha|>0$. So, the assumptions of the lemma imply the assumption of Lemma 2, which completes the proof.
Lemma 4. Suppose that

$$
D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+d x^{i_{0}} \otimes Y, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}\right)(u, v)=0
$$

and

$$
D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+d x^{i_{0}} \otimes Y\right)(u, v)=0
$$

for any $(u, v) \in\left(V^{F} \mathbf{R}^{m, n}\right)_{0} \times T_{0} \mathbf{R}^{m}$, any $i_{0}=1, \ldots, m$ and any vector field Y on \mathbf{R}^{n}. Then $D=0$.
Proof. Obviously, the assumptions of the lemma imply the assumptions of Lemma 3, which completes the proof.

Lemma 5. Suppose that

$$
D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+d x^{1} \otimes \frac{\partial}{\partial y^{1}}, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}\right)(u, v)=0
$$

and

$$
D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+d x^{1} \otimes \frac{\partial}{\partial y^{1}}\right)(u, v)=0
$$

for any $(u, v) \in\left(V^{F} \mathbf{R}^{m, n}\right)_{0} \times T_{0} \mathbf{R}^{m}$. Then $D=0$.
Proof. Any non-vanishing vector field Y on \mathbf{R}^{n} is locally $\frac{\partial}{\partial y^{1}}$ modulo a local diffeomorphism $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$. There exists a diffeomorphism $\psi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}$ sending $x^{i_{0}}$ into x^{1}. Using the invariance of D with respect to $\mathcal{F} \mathcal{M}_{m, n}$-map $\psi \times \varphi$ we can see that the assumptions of the lemma imply the assumptions of Lemma 4 with non-vanishing Y. Then the regularity of D implies the assumptions of Lemma 4, which completes the proof.
Lemma 6. Suppose that

$$
D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+d x^{1} \otimes Y, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}\right)(u, v)=0
$$

for any $(u, v) \in\left(V^{F} \mathbf{R}^{m, n}\right)_{0} \times T_{0} \mathbf{R}^{m}$, and any vector field Y on \mathbf{R}^{n}. Then $D=0$.
Proof. The assumption of the lemma implies the first assumption of Lemma 5. Further, using the invariance of D with respect to $\mathcal{F} \mathcal{M}_{m, n}$-map $\left(x^{1}, \ldots, x^{m},-y^{1}+\right.$ $x^{1}, y^{2}, \ldots, y^{n}$) we obtain the second assumption of Lemma 5. Finally, Lemma 5 completes the proof.
Lemma 7. Suppose that

$$
D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+d x^{1} \otimes Y, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}\right)\left(u, \frac{\partial}{\partial x^{1}}(0)\right)=0
$$

for any $u \in\left(V^{F} \mathbf{R}^{m, n}\right)_{0}$, and any vector field Y on \mathbf{R}^{n}. Then $D=0$.
Proof. Any vector $v \in T_{0} \mathbf{R}^{m}$ with $d_{0} x^{1}(v) \neq 0$ is proportional to $\frac{\partial}{\partial x^{1}}(0)$ modulo a diffeomorphism $\psi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}$ preserving x^{1}. Using the invariance of D with respect to $\mathcal{F} \mathcal{M}_{m, n}$-map $\psi \times \mathrm{id}_{\mathbf{R}^{n}}$ we see that the assumption of the lemma implies the assumption of Lemma 6 with $d_{0} x^{1}(v) \neq 0$. Then using the regularity of D we obtain the assumption of Lemma 6, which completes the proof.

Let Y be a vector field on an n-manifold N. Define a vector field $L^{D}(Y)$ on $F(N)$ by

$$
\begin{equation*}
L^{D}(Y)(u)=D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+d x^{1} \otimes Y, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}\right)\left(u, \frac{\partial}{\partial x^{1}}(0)\right) \in T_{u} F(N) \tag{14}
\end{equation*}
$$

for any $u \in\left(V^{F}\left(\mathbf{R}^{m} \times N\right)\right)_{0}=F(N)$, where we use the obvious identification $V_{u}\left(V^{F}\left(\mathbf{R}^{m} \times N\right)\right)=T_{u} F(N)$.

Lemma 8. The $\mathcal{M} f_{n}$-natural operator $L^{D}: T \rightsquigarrow T F$ is linear.
Proof. The $\mathcal{M} f_{n}$-naturality is a simple consequence of the invariance of D with respect to $\mathcal{F} \mathcal{M}_{m, n}$-maps of the form $\operatorname{id}_{\mathbf{R}^{m}} \times \varphi$. Further, by the invariance of D with respect to the base homotheties $t \mathrm{id}_{\mathbf{R}^{m}} \times \mathrm{id}_{\mathbf{R}^{n}}$ for $t>0$ we get the homogeneity condition $D(t Y)(u)=t D(Y)(u)$. So, the linearity is an immediate consequence of the homogeneous function theorem.

Lemma 9. We have

$$
\begin{aligned}
& D\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+d x^{1} \otimes Y, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}\right)\left(u, \frac{\partial}{\partial x^{1}}(0)\right) \\
& =\left(\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+d x^{1} \otimes Y, \sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}\right)^{F, L^{D}}\left(u, \frac{\partial}{\partial x^{1}}(0)\right)
\end{aligned}
$$

for any $u \in\left(V^{F} \mathbf{R}^{m, n}\right)_{0}$ and $Y \in \mathcal{X}\left(\mathbf{R}^{n}\right)$, where $\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L}$ was defined in Section 2.
Proof. Observe that $v^{\Gamma}=v+Y$ if $\Gamma=\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+d x^{1} \otimes Y$ and $v=\frac{\partial}{\partial x^{1}}(0)$.

Now, using Lemma 7 we see that $D\left(\Gamma_{1}, \Gamma_{2}\right)=\left(\Gamma_{1}, \Gamma_{2}\right)^{F, L^{D}}$. Therefore $\tilde{D}=$ $\mathcal{V}^{F, L^{\Delta}}$ and the proof of Theorem 1 is complete.

References

[1] Cabras, A., Kolář, I., Prolongation of second order connections to vertical Weil bundles, Arch. Math. (Brno) 37 (2001), 333-347.
[2] Doupovec, M., Kolář, I., On the natural operators transforming connections to the tangent bundle of a fibred manifold, Knižnice VUT Brno, B-119 (1988), 47-56.
[3] Gancarzewicz, J., Liftings of functions and vector fields to natural bundles, Dissertationes Math. Warszawa 1983.
[4] Kobak, P., Natural liftings of vector fields to tangent bundles of bundles of 1-forms, Math. Bohem. 3 (116) (1991), 319-326.
[5] Kolář, I., Some natural operations with connections, J. Nat. Acad. Math. India 5 (1987), 127-141.
[6] Kolář, I., Slovák, J., Prolongations of vector fields to jet bundles, Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 103-111.
[7] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer--Verlag 1993.
[8] Kolář, I., Mikulski, W. M., On the fiber product preserving bundle functors, Differential Geom. Appl. 11 (1999), 105-115.
[9] Kolář, I., Mikulski, W. M., Natural lifting of connections to vertical bundles, Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 97-102.
[10] Mikulski, W. M., Some natural operations on vector fields, Rend. Mat. Appl. (7) 12 (1992), 783-803.
[11] Mikulski, W. M., Some natural constructions on vector fields and higher order cotangent bundles, Monatsh. Math. 117 (1994), 107-119.
[12] Mikulski, W. M., The natural operators lifting vector fields to generalized higher order tangent bundles, Arch. Math. (Brno) 36 (2000), 207-212.
[13] Mikulski, W. M., Non-existence of some canonical constructions on connections, Comment. Math. Univ. Carolin. 44, 4 (2003), 691-695.
[14] Tomáš, J., Natural operators on vector fields on the cotangent bundles of the bundles of (k, r)-velocities, Rend. Circ. Mat. Palermo (2) Suppl. 54 (1988), 113-124.
[15] Tomáš, J., Natural T-functions on the cotangent bundle of a Weil bundle, to appear in Czechoslovak Math. J.

Miroslav Doupovec
Department of Mathematics
Brno University of Technology, FSI VUT Brno
Technická 2, 61669 Brno, Czech Republic
E-mail: doupovec@fme.vutbr.cz
Weodzimierz M. Mikulski
Institute of Mathematics, Jagiellonian University
Kraków, Reymonta 4, Poland
E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: 58A20.
 Key words and phrases: connection, vertical bundle.
 The first author was supported by a grant of the GA ČR No. 201/02/0225.
 Received March 8, 2004.

