PROLONGATION OF PAIRS OF CONNECTIONS INTO CONNECTIONS ON VERTICAL BUNDLES

MIROSLAV DOUPOVEC AND WŁODZIMIERZ M. MIKULSKI

ABSTRACT. Let F be a natural bundle. We introduce the geometrical construction transforming two general connections into a general connection on the F-vertical bundle. Then we determine all natural operators of this type and we generalize the result by I. Kolář and the second author on the prolongation of connections to F-vertical bundles. We also present some examples and applications.

INTRODUCTION

Let $\mathcal{M}f_m$ be the category of *m*-dimensional manifolds and local diffeomorphisms, \mathcal{FM} be the category of fibered manifolds and fiber respecting mappings and $\mathcal{FM}_{m,n}$ be the category of fibered manifolds with *m*-dimensional bases and *n*-dimensional fibers and locally invertible fiber respecting mappings.

Consider an arbitrary bundle functor F on the category $\mathcal{M}f_n$ and denote by V^F its vertical modification. Our starting point is the paper [9] by I. Kolář and the second author, who studied the prolongation of a connection Γ on an arbitrary fibered manifold $Y \to M$ with respect to an F-vertical functor V^F . In particular, they have introduced an F-vertical prolongation $\mathcal{V}^F\Gamma$ of a connection Γ and have proved that \mathcal{V}^F is the only natural operator of finite order transforming connections on $Y \to M$ into connections on $V^FY \to M$. They have also described some conditions under which every natural operator of such a type has finite order. Further, in the case of the vertical Weil functor V^A they have proved that the operator transforming a connection Γ on $Y \to M$ into its vertical prolongation $\mathcal{V}^A\Gamma$ is the only natural one.

The aim of this paper is to study the prolongation of a pair of connections Γ_1 and Γ_2 on $Y \to M$ into a connection on $V^F Y \to M$. Our main result is Theorem 1 which describes all such natural operators. As a direct consequence we prove the generalization of a result by I. Kolář and the second author. In particular, we show that \mathcal{V}^F is the only natural operator transforming connections on $Y \to M$ into connections on $V^F Y \to M$ (without any additional assumption

²⁰⁰⁰ Mathematics Subject Classification: 58A20.

Key words and phrases: connection, vertical bundle.

The first author was supported by a grant of the GA $\check{C}R$ No. 201/02/0225.

Received March 8, 2004.

on the finite order). In Section 1 we discuss the prolongation of connections on $Y \to M$ into connections on $GY \to M$, where G is a bundle functor on $\mathcal{FM}_{m,n}$. Section 2 is devoted to the construction of a connection on $V^F Y \to M$ by means of a pair Γ_1 , Γ_2 of connections on $Y \to M$. This geometrical construction will be based on linear natural operators transforming vector fields on *n*-manifolds N into vector fields on *FN*. In Section 3 we introduce some examples and applications. We also show, that in the case of a vertical Weil functor V^A the connection on $V^A Y \to M$ depending on a pair Γ_1 , Γ_2 can be constructed by means of the vertical prolongation of the deviation $\delta(\Gamma_1, \Gamma_2)$ of Γ_1 and Γ_2 . Finally, the whole Section 4 is devoted to the proof of Theorem 1.

In what follows $Y \to M$ stands for $\mathcal{FM}_{m,n}$ -objects and N stands for $\mathcal{M}f_n$ objects. All manifolds and maps are assumed to be of the class C^{∞} . Unless
otherwise specified, we use the terminology and notation from the book [7].

1. Prolongation of connections to $GY \rightarrow M$

Recently it has been clarified that the order of bundle functors on \mathcal{FM} is characterized by three integers $(r, s, q), s \ge r \le q$ and is based on the concept of (r, s, q)-jet, [7]. Consider two fibered manifolds $p: Y \to M$ and $\overline{p}: \overline{Y} \to \overline{M}$ and let $r, s \ge r, q \ge r$ be integers. We recall that two \mathcal{FM} -morphisms $f, g: Y \to \overline{Y}$ with the base maps $\underline{f}, \underline{g}: M \to \overline{M}$ determine the same (r, s, q)-jet $j_y^{r,s,q}f = j_y^{r,s,q}g$ at $y \in Y, p(y) = x$, if

$$j_y^r f = j_y^r g, \ j_y^s(f|Y_x) = j_y^s(g|Y_x), \ j_x^q \underline{f} = j_x^q \underline{g}$$

The space of all such (r, s, q)-jets will be denoted by $J^{r,s,q}(Y, \overline{Y})$. By 12.19 in [7], the composition of \mathcal{FM} -morphisms induces the composition of (r, s, q)-jets.

Definition 1 ([9]). A bundle functor G on $\mathcal{FM}_{m,n}$ is said to be of order (r, s, q), if $j_y^{r,s,q}f = j_y^{r,s,q}g$ implies $Gf|G_yY = Gg|G_yY$.

Then the integer q is called the base order, s is called the fiber order and r is called the total order of G.

If $X : N \to TN$ is a vector field and F is a bundle functor on $\mathcal{M}f_n$, then we can define the flow prolongation $\mathcal{F}X : FN \to TFN$ of X with respect to F by

(1)
$$\mathcal{F}X = \frac{\partial}{\partial t}\Big|_0 F(\exp tX)$$

where $\exp tX$ denotes the flow of X, [7]. Quite analogously, a projectable vector field on a fibered manifold $Y \to M$ is an \mathcal{FM} -morphism $Z: Y \to TY$ over the underlying vector field $M \to TM$, and its flow $\exp tZ$ is formed by local $\mathcal{FM}_{m,n}$ morphisms. Further, if G is a bundle functor on $\mathcal{FM}_{m,n}$, the flow prolongation of Z with respect to G is defined by

$$\mathcal{G}Z = \frac{\partial}{\partial t} \big|_0 G(\exp tZ) \,.$$

By [9], this map is **R**-linear and preserves bracket.

Proposition 1 ([9]). If G is of order (r, s, q), then the value of $\mathcal{G}Z$ at each point of G_yY depends on $j_y^{r,s,q}Z$ only.

Thus the construction of the flow prolongation of projectable vector fields can be interpreted as a map

$$\mathcal{G}_Y: GY \times_Y J^{r,s,q}TY \to TGY$$
,

where $J^{r,s,q}TY$ denotes the space of all (r, s, q)-jets of projectable vector fields on Y. Since the flow prolongation is **R**-linear, \mathcal{G}_Y is linear in the second factor.

Now let $\Gamma: Y \to J^1 Y$ be a general connection on $p: Y \to M$. In [7] and [9] it is clarified, that if the functor G on $\mathcal{FM}_{m,n}$ has the base order q, then one can construct the induced connection $\mathcal{G}(\Gamma, \Delta)$ on $GY \to M$ by means of an auxiliary linear q-th order connection Δ on the base manifold M. The geometrical construction of the connection $\mathcal{G}(\Gamma, \Delta)$ is the following. Let X be a vector field on Mwith the coordinate components $X^i(x)$ and let

$$dy^p = \Gamma^p_i(x, y) \, dx^i$$

be the coordinate expression of Γ . Then the Γ -lift of X is a vector field ΓX on Y, whose coordinate form is

$$X^{i}(x)\frac{\partial}{\partial x^{i}}+\Gamma^{p}_{i}(x,y)X^{i}(x)\frac{\partial}{\partial y^{p}}.$$

By Proposition 1, the flow prolongation $\mathcal{G}(\Gamma X)$ depends on the q-jets of X only. So we obtain a map

(2)
$$\mathcal{G}\Gamma: GY \times_M J^q TM \to TGY$$
,

which is linear in the second factor. Further, let $\Delta : TM \to J^qTM$ be a linear q-th order connection on M. By linearity, the composition

(3)
$$\mathcal{G}(\Gamma, \Delta) := \mathcal{G}\Gamma \circ (\mathrm{id}_{GY} \times_{\mathrm{id}_M} \Delta) : GY \times_M TM \to TGY$$

is the lifting map of a connection on $GY \to M$. Clearly, if the base order of G is zero, then (2) is a connection on $GY \to M$ and we need no auxiliary linear connection Δ . This is the case of a vertical functor V^F , which is defined as follows. Let F be a bundle functor on $\mathcal{M}f_n$ of order s. Its vertical modification V^F is a bundle functor on $\mathcal{F}\mathcal{M}_{m,n}$ defined by

$$V^F Y = \bigcup_{x \in M} F(Y_x), \quad V^F f = \bigcup_{x \in M} F(f_x),$$

where f_x is the restriction and corestriction of $f: Y \to \overline{Y}$ over $\underline{f}: M \to \overline{M}$ to the fibers Y_x and $\overline{Y}_{\underline{f}(x)}$, [9]. Obviously, the order of the functor V^F is (0, s, 0). Since the base order of V^F is zero, the map (2) defines a connection $\mathcal{V}^F\Gamma$ for every connection Γ on $Y \to M$. **Definition 2** ([9]). The connection $\mathcal{V}^F \Gamma$ is called the *F*-vertical prolongation of Γ .

If $F = T^A$ is a Weil functor, then V^{T^A} is the vertical Weil functor on $\mathcal{FM}_{m,n}$, which will be denoted by V^A . This functor induces the vertical A-prolongation $\mathcal{V}^A\Gamma$. In particular, for F = T we obtain the classical vertical bundle, which will be denoted by V instead of V^T and the corresponding vertical prolongation of Γ will be denoted by $\mathcal{V}\Gamma$. I. Kolář [5] has proved that $\mathcal{V}\Gamma$ is the only natural operator transforming connections on $Y \to M$ into connections on $VY \to M$, see also [7], p. 255. Moreover, the following naturality property of the F-vertical prolongation $\mathcal{V}^F\Gamma$ is an interesting generalization of the well known result concerning the classical vertical prolongation $\mathcal{V}\Gamma$ to an arbitrary bundle functor F on $\mathcal{M}f_n$.

Proposition 2 ([9]). \mathcal{V}^F is the only natural operator of finite order transforming connections on $Y \to M$ into connections on $V^F Y \to M$.

Propositon 3 ([9]). If the standard fiber $F_0(\mathbf{R}^n)$ of F is compact or if $F_0(\mathbf{R}^n)$ contains a point z_0 such that $F(\operatorname{bid}_{\mathbf{R}^n})(z) \to z_0$ if $b \to 0$ for any $z \in F_0(\mathbf{R}^n)$, then every natural operator D transforming connections on $Y \to M$ into connections on $V^F Y \to M$ has finite order.

For example, the assumption of Proposition 3 is satisfied in the case F is a Weil functor T^A . On the other hand, this assumption is not satisfied in the case F is a cotangent bundle functor T^* .

Remark 1. It is well known, that there is no natural operator transforming connections on $Y \to M$ into connections on $J^1Y \to M$, see [5] and [7]. Quite analogously, I. Kolář and the first author have proved that there is no first order natural operator transforming connections on $Y \to M$ into connections on $TY \to M$, [2]. The second author has recently proved the following general result, [13]: If G is a bundle functor on $\mathcal{FM}_{m,n}$ such that $G^1: \mathcal{M}f_m \to \mathcal{FM}, G^1M = G(M \times \mathbb{R}^n), G^1(\varphi) = G(\varphi \times \operatorname{id}_{\mathbb{R}^n})$ is not of order zero, then there is no natural operator transforming connections on $Y \to M$ into connections on $GY \to M$. This means that in this case, the use of an auxiliary linear connection Δ on the base manifold M in the construction (3) is unavoidable. We remark that all natural operators transforming a connection Γ on $Y \to M$ and a linear connection $\Delta: TM \to J^1TM$ into a connection on $J^1Y \to M$ are determined in [5].

2. PROLONGATION OF PAIRS OF CONNECTIONS INTO CONNECTIONS ON VERTICAL BUNDLES

Let $F : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be a natural bundle of order s and $V^F : \mathcal{F}\mathcal{M}_{m,n} \to \mathcal{F}\mathcal{M}$ be the corresponding vertical modification. Suppose we have a natural linear operator

$$L:T \rightsquigarrow TF$$

transforming vector fields on N into vector fields on FN. Let $\Gamma_1, \Gamma_2: Y \times_M TM \to TY$ be connections on an $\mathcal{FM}_{m,n}$ -object $Y \to M$. We are going to construct

a connection $\mathcal{V}^{F,L}(\Gamma_1,\Gamma_2)$ on $V^FY \to M$ depending canonically on Γ_1 and Γ_2 . Clearly, such a connection can be written in the form

$$\mathcal{V}^{F,L}(\Gamma_1,\Gamma_2): V^FY \times_M TM \to TV^FY.$$

Firstly, we define a fiber linear map

(4)
$$(\Gamma_1, \Gamma_2)^{F,L} : V^F Y \times_M TM \to V(V^F Y)$$

covering the identity on $V^F Y$ as follows. Let $(u, v) \in (V^F Y \times_M TM)_x, x \in M$ and let $v^{\Gamma_1}, v^{\Gamma_2}$ (defined on Y_x) be the horizontal lifts of v with respect to Γ_1 and Γ_2 respectively. The difference $v^{\Gamma_1,\Gamma_2} := (v^{\Gamma_1} - v^{\Gamma_2})$ is vertical, so it can be considered as the vector field on Y_x , $v^{\Gamma_1,\Gamma_2}: Y_x \to T(Y_x) = (VY)_x$. Using the linear operator L, we have the vector field

$$L(v^{\Gamma_1,\Gamma_2}):F(Y_x)=(V^FY)_x\to T\bigl((V^FY)_x\bigr)=\bigl(V(V^FY)\bigr)_x$$

which can be considered as (defined on $(V^FY)_x$) vertical vector field $L(v^{\Gamma_1,\Gamma_2})$: $V^F Y \to V(V^F Y)$. We put

$$(\Gamma_1, \Gamma_2)^{F,L}(u, v) = L(v^{\Gamma_1, \Gamma_2})(u).$$

Since L is a linear operator, the map $(\Gamma_1, \Gamma_2)^{F,L}$ is linear in the second factor. Further,

$$\mathcal{V}^{F,L}(\Gamma_1,\Gamma_2) := \mathcal{V}^F \Gamma_1 + (\Gamma_1,\Gamma_2)^{F,L} : V^F Y \times_M TM \to TV^F Y$$

is a connection on $V^F Y \to M$ canonically dependent on Γ_1 and Γ_2 .

Definition 3. The connection $\mathcal{V}^{F,L}(\Gamma_1,\Gamma_2)$ is called the (F,L)-vertical prolongation of (Γ_1, Γ_2) .

From the geometrical construction of $(\Gamma_1, \Gamma_2)^{F,L}$ it follows directly

Lemma 1. We have

(i)
$$(\Gamma_1, \Gamma_2)^{F,L} = -(\Gamma_2, \Gamma_1)^{F,L}$$
.

- (ii) $(\Gamma_1, \Gamma_2)^{F,c_1L_1+c_2L_2} = c_1(\Gamma_1, \Gamma_2)^{F,L_1} + c_2(\Gamma_1, \Gamma_2)^{F,L_2}, c_1, c_2 \in \mathbf{R},$ (iii) $\mathcal{V}^{F,L}(\Gamma, \Gamma) = \mathcal{V}^F \Gamma.$

The main result of the present paper is the following classification theorem.

Theorem 1. $\mathcal{V}^{F,L}$ are the only natural operators transforming pairs of connections on $Y \to M$ into connections on $V^F Y \to M$.

We have the following corollary of Theorem 1.

Corollary 1. $\tilde{\mathcal{V}}^F(\Gamma_1, \Gamma_2) := \frac{1}{2} (\mathcal{V}^F \Gamma_1 + \mathcal{V}^F \Gamma_2)$ is the only natural symmetric operator transforming pairs of connections on $Y \to M$ into connections on $V^F Y \to M$.

Proof of Corollary 1. Let *D* be such an operator. By Theorem 1, $D(\Gamma_1, \Gamma_2) = \mathcal{V}^F \Gamma_1 + (\Gamma_1, \Gamma_2)^{F,L}$. By the symmetry of *D* we get $\mathcal{V}^F \Gamma_1 + (\Gamma_1, \Gamma_2)^{F,L} = \mathcal{V}^F \Gamma_2 - (\Gamma_1, \Gamma_2)^{F,L}$ because $(\Gamma_2, \Gamma_1)^{F,L} = -(\Gamma_1, \Gamma_2)^{F,L}$. Then $(\Gamma_1, \Gamma_2)^{F,L} = \frac{1}{2}(\mathcal{V}^F \Gamma_2 - \mathcal{V}^F \Gamma_1)$ and $D(\Gamma_1, \Gamma_2) = \frac{1}{2}(\mathcal{V}^F \Gamma_1 + \mathcal{V}^F \Gamma_2)$ as well.

Now we show that one can omit the finite order assumption in Proposition 2. In this way we obtain the following generalization of this result:

Proposition 2'. \mathcal{V}^F is the only natural operator transforming connections on $Y \to M$ into connections on $V^F Y \to M$.

Proof. Write $\Gamma_1 = \Gamma_2 = \Gamma$ in Corollary 1. Then we obtain $\widetilde{\mathcal{V}}^F(\Gamma, \Gamma) = \mathcal{V}^F\Gamma$. \Box

Remark 2. The (F, L)-prolongation is a geometrical construction, which transforms two connections Γ_1 and Γ_2 on $Y \to M$ into a connection $\mathcal{V}^{F,L}(\Gamma_1, \Gamma_2)$ on $V^F Y \to M$. Another example of a geometrical construction defined on pairs of connections is the mixed curvature, which is defined as the Frölicher-Nijenhuis bracket $[\Gamma_1, \Gamma_2]$. We remark that the mixed curvature is a section $Y \to VY \otimes \otimes^2 T^*M$, see 27.4 in [7].

By Theorem 1, natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^F Y \to M$ depend on linear natural operators $L: T \rightsquigarrow TF$ on vector fields. Now we show that it suffices to find the basis of such linear operators.

Proposition 4. Let L_1, \ldots, L_k be the basis of linear natural operators $T \rightsquigarrow TF$ transforming vector fields on n-manifolds N into vector fields on FN. Then all natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^F Y \to M$ are of the form

$$(\Gamma_1,\Gamma_2)\mapsto \mathcal{V}^F\Gamma_1+c_1(\Gamma_1,\Gamma_2)^{F,L_1}+\cdots+c_k(\Gamma_1,\Gamma_2)^{F,L_k}, \quad ,c_i\in\mathbf{R}.$$

Proof. An arbitrary linear operator $L: T \rightsquigarrow TF$ is of the form $L = c_1L_1 + \cdots + c_kL_k, c_i \in \mathbf{R}$. Then the assertion follows from Theorem 1 and from Lemma 1. \Box

3. Applications

Clearly, the flow prolongation (1) is a natural linear operator $T \rightsquigarrow TF$. So for an arbitrary natural bundle F on $\mathcal{M}f_n$ there exists a natural operator transforming pairs of connections Γ_1, Γ_2 on $Y \to M$ into a connection $\mathcal{V}^{F,\mathcal{F}}(\Gamma_1,\Gamma_2)$ on $V^F Y \to M$. Now let $F = T^A$ be a Weil functor determined by a Weil algebra A. By [7], all product preserving functors on $\mathcal{M}f$ are of this type. We have the following action

of the elements of A on the tangent vectors on $T^A N$. Indeed, the multiplication of the tangent vectors of N by reals is a map $m : \mathbf{R} \times TN \to TN$. Applying the functor T^A and using the fact that $T^A \mathbf{R} = A$ we obtain a map $T^A m : A \times T^A T N \to T^A T N$. Finally, the canonical identification $T^A T N \cong T T^A N$ yields the action (5). So for an arbitrary $a \in A$ we have a natural affinor on $T^A N$ of the form

$$af(a)_N: TT^A N \to TT^A N$$

By [7], all natural linear operators $T \rightsquigarrow TT^A$ transforming vector fields on N into vector fields on $T^A N$ are of the form

af
$$(a) \circ \mathcal{T}^A$$

for all $a \in A$, where \mathcal{T}^A means the flow operator. Thus, we have

Proposition 5. All natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^A Y \to M$ are of the form

$$(\Gamma_1, \Gamma_2) \mapsto \mathcal{V}^{T^A, \operatorname{af}(a) \circ \mathcal{T}^A}(\Gamma_1, \Gamma_2)$$

for all $a \in A$.

It is well known that $J^1Y \to Y$ is an affine bundle with the associated vector bundle $VY \otimes T^*M$. So the difference of two connections $\Gamma_1, \Gamma_2 : Y \to J^1Y$ is a map $\delta(\Gamma_1, \Gamma_2) : Y \to VY \otimes T^*M$, which is called the deviation of Γ_1 and Γ_2 . Clearly, this map can be written as

(6)
$$\delta(\Gamma_1, \Gamma_2) : Y \times_M TM \to VY.$$

A. Cabras and I. Kolář [1] have constructed the vertical A-prolongation of (6) with respect to the first factor

(7)
$$\mathcal{V}_1^A \delta(\Gamma_1, \Gamma_2) : V^A Y \times_M TM \to V V^A Y$$

fiberwise in the following way. Denoting by $q: TM \to M$ the bundle projection, we can write $\delta_z: Y_x \to (VY)_x$ for the map $y \mapsto \delta(\Gamma_1, \Gamma_2)(y, z), y \in Y, z \in TM$, q(z) = x. Applying T^A we obtain a map

$$(V_1^A \delta)_z := T^A(\delta_z) : T^A(Y_x) = (V^A Y)_x \to T^A((VY)_x) = (V^A V Y)_x$$

which yields a map $V_1^A \delta : V^A Y \times_M TM \to V^A VY$. Further, the canonical exchange diffeomorphism of Weil functors $i_N^{B,A} : T^B(T^AN) \to T^A(T^BN)$ from [7] induces the exchange diffeomorphism $i_Y : V^A VY \to VV^A Y$, [1]. Then the map (7) can be defined by

(8)
$$\mathcal{V}_1^A \delta(\Gamma_1, \Gamma_2) = i_Y \circ V_1^A \delta.$$

On the other hand, we can construct the vertical A-prolongations $\mathcal{V}^A\Gamma_1, \mathcal{V}^A\Gamma_2$: $V^AY \times_M TM \to TV^AY$ of Γ_1 and Γ_2 . The deviation of the connections $\mathcal{V}^A\Gamma_1$ and $\mathcal{V}^A\Gamma_2$ is a map

(9)
$$\delta(\mathcal{V}^A\Gamma_1, \mathcal{V}^A\Gamma_2) : V^AY \times_M TM \to V(V^AY).$$

A. Cabras and I. Kolář have proved the formula

(10)
$$\delta(\mathcal{V}^A\Gamma_1, \mathcal{V}^A\Gamma_2) = \mathcal{V}_1^A\delta(\Gamma_1, \Gamma_2).$$

Consider now a linear map (4), where we put $F = T^A$ and $L = \mathcal{T}^A$, $(\Gamma_1, \Gamma_2)^{T^A, \mathcal{T}^A}$: $V^A Y \times_M TM \to V(V^A Y)$. We have

Proposition 6. Let \mathcal{T}^A be the flow operator. Then we have

(11)
$$(\Gamma_1, \Gamma_2)^{T^A, \mathcal{T}^A} = \mathcal{V}_1^A \delta(\Gamma_1, \Gamma_2).$$

Proof. Denoting by $\delta := \delta(\Gamma_1, \Gamma_2)(y, -) : (TM)_x \to (VY)_x$, we have $\delta(v) = \Gamma_1 v - \Gamma_2 v$ for $v \in (TM)_x$. Since $\delta(v)$ is vertical, it can be considered as a vector field $Y_x \to T(Y_x)$. Applying the flow operator \mathcal{T}^A we obtain a vector field $\mathcal{T}^A \delta(v) : T^A(Y_x) = (V^A Y)_x \to T((V^A Y)_x) = (V(V^A Y))_x$, which can be considered as a vertical vector field on $V^A Y$. This defines the map (12)

$$(\Gamma_1, \Gamma_2)^{T^A, \mathcal{T}^A} : V^A Y \times_M T M \to V(V^A Y), \quad (\Gamma_1, \Gamma_2)^{T^A, \mathcal{T}^A}(u, v) = \mathcal{T}^A \delta(v)(u).$$

In general, given a vector field $\xi : N \to TN$, the flow prolongation $\mathcal{T}^A \xi$ can be also constructed as the composition $\mathcal{T}^A \xi = \mathbf{i}_N^{A,\mathbb{D}} \circ T^A \xi$, where $\mathbf{i}_N^{A,\mathbb{D}} : T^A TN \to TT^A N$ is the canonical exchange diffeomorphism and \mathbb{D} is the Weil algebra of dual numbers corresponding to the tangent bundle T. By (8) and (12) we have $\mathcal{T}^A \delta = \mathcal{V}_1^A \delta$. \Box

Remark 3. It is interesting to pose a question whether the formulas (10) and (11) can be generalized for an arbitrary natural bundle F on $\mathcal{M}f_n$. Given any connections Γ_1 and Γ_2 on $Y \to M$, one can construct their F-vertical prolongations $\mathcal{V}^F\Gamma_1, \mathcal{V}^F\Gamma_2: \mathcal{V}^FY \times_M TM \to T(\mathcal{V}^FY)$ and then the deviation

(13)
$$\delta(\mathcal{V}^F\Gamma_1, \mathcal{V}^F\Gamma_2) : V^FY \times_M TM \to V(V^FY).$$

Further, for any linear natural operator $L:T \rightsquigarrow TF$ we have the map (4). From Theorem 1 it follows that

$$\delta(\mathcal{V}^F\Gamma_1, \mathcal{V}^F\Gamma_2) = (\Gamma_1, \Gamma_2)^{F,L}$$

for some linear natural operator L. By (10) and (11), if $F = T^A$, then $L = \mathcal{T}^A$. From the proof of Theorem 1 (see the construction (14) of L^D) it follows that even in the general case of an arbitrary natural bundle F we have $L = \mathcal{F}$, where \mathcal{F} is the flow operator (1). We remark that the construction of the vertical prolongation (7) and the proof of (11) essentially depend on the existence of the exchange diffeomorphism $i_Y : V^A V Y \to V V^A Y$. We recall that the bundle functor F is said to have the point property, if F(pt) = pt, where pt denote the one-point manifold. From Theorem 39.2 in [7] it follows directly that if F has the point property, then there exists a natural equivalence $i_Y^F : V^F V Y \to V V^F Y$ if and only if F is a Weil functor T^A . In this case, i_Y^F coincides with i_Y .

Let $T^{r*}N = J^r(N, \mathbf{R})_0$ be the space of all *r*-jets from an *n*-manifold N into reals with target 0. Since **R** is a vector space, $T^{r*}N$ has a canonical structure of the vector bundle over N. $T^{r*}N$ is called the *r*-th order cotangent bundle and the dual vector bundle

$$T^{(r)}N = (T^{r*}N)^*$$

is called the r-th order tangent bundle. For every map $f: N \to N_1$ the jet composition $A \mapsto A \circ (j_x^r f), x \in N, A \in (T^{r*}N_1)_{f(x)}$ defines a linear map

 $(T^{r*}N_1)_{f(x)} \to (T^{r*}N)_x$. The dual map $T_x^{(r)}f : (T^{(r)}N)_x \to (T^{(r)}N_1)_{f(x)}$ is called the r-th order tangent map of f at x. This defines a vector bundle functor $T^{(r)}$, which is defined on the whole category $\mathcal{M}f$ of all smooth manifolds and all smooth maps. Clearly, for r = 1 we obtain the classical tangent functor T and for r > 1 the functor $T^{(r)}$ does not preserve products. Obviously, we have the canonical inclusion $TN \subset T^{(r)}N$. Using fiber translations on $T^{(r)}N$, we can extend every section $X : N \to TN$ into a vector field V(X) on $T^{(r)}N$. This defines a linear natural operator $V : T \rightsquigarrow TT^{(r)}$. The second author has in [10] determined all natural operators $T \rightsquigarrow TT^{(r)}$ transforming vector fields on N into vector fields on $T^{(r)}N$ are of the form $c_1\mathcal{T}^{(r)} + c_2V$, $c_i \in \mathbf{R}$. Using Proposition 4 we have

Proposition 7. All natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^{T^{(r)}}Y \to M$ are of the form

$$(\Gamma_1, \Gamma_2) \mapsto \mathcal{V}^{T^{(r)}} \Gamma_1 + c_1 (\Gamma_1, \Gamma_2)^{T^{(r)}, \mathcal{T}^{(r)}} + c_2 (\Gamma_1, \Gamma_2)^{T^{(r)}, V}, \quad c_i \in \mathbf{R}.$$

By Corollary 4.1 in [11], all linear natural operators $T \rightsquigarrow TT^*$ are linear combinations (with real coefficients) of the flow operator \mathcal{T}^* and the operator V defined by $V(X)_{\omega} = \langle \omega, X_x \rangle \cdot C_{\omega}$, where C is the Liouville vector field of the cotangent bundle and $X \in \mathcal{X}(N)$, $\omega \in T_x^*N$, $x \in N$. Thus, we have

Proposition 8. All natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^{T^*}Y \to M$ are of the form

$$(\Gamma_1, \Gamma_2) \mapsto \mathcal{V}^{T^*} \Gamma_1 + c_1(\Gamma_1, \Gamma_2)^{T^*, \mathcal{T}^*} + c_2(\Gamma_1, \Gamma_2)^{T^*, \mathcal{V}}, \quad c_i \in \mathbf{R}.$$

Using [11], we can generalize this result in the following way. First, we have r linear natural operators $E_1, \ldots, E_r : T \rightsquigarrow TT^{r*}$ defined by

$$E_k(X)(j_x^r\gamma) = \left\langle X(x), j_x^1\gamma \right\rangle \cdot \frac{\mathrm{d}}{\mathrm{d}t} \Big|_0 (j_x^r\gamma + tj_x^r(\gamma)^k), \quad k = 1, \dots, n$$

where $X \in \mathcal{X}(N)$ is a vector field on N, $j_x^r \gamma \in T_x^{r*}N$ and $(\gamma)^k$ is the k-th power of the map $\gamma : N \to \mathbf{R}$. Further, if we interpret X as the differentiation, then $(X\gamma - X\gamma(x))(\gamma)^{s-1}$ is a function on N which maps the point $x \in N$ into zero. So we can define linear natural operators $F_2, \ldots, F_r : T \rightsquigarrow TT^{r*}$ by

$$F_s(X)(j_x^r\gamma) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_0 \left[j_x^r\gamma + t j_x^r \left((X\gamma - X\gamma(x))(\gamma)^{s-1} \right) \right], \quad s = 2, \dots, r$$

By [11], the flow operator \mathcal{T}^{r*} and the operators $E_1, \ldots, E_r, F_2, \ldots, F_r$ form the basis over **R** of the vector space of all linear natural operators $T \rightsquigarrow TT^{r*}$. By Proposition 4 we have

Proposition 9. All natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^{T^{r*}}Y \to M$ are of the form

$$(\Gamma_1, \Gamma_2) \mapsto \mathcal{V}^{T^{r*}} \Gamma_1 + c_0 (\Gamma_1, \Gamma_2)^{T^{r*}, T^{r*}} + c_1 (\Gamma_1, \Gamma_2)^{T^{r*}, E_1} + \dots + c_r (\Gamma_1, \Gamma_2)^{T^{r*}, E_r} + d_2 (\Gamma_1, \Gamma_2)^{T^{r*}, F_2} + \dots + d_r (\Gamma_1, \Gamma_2)^{T^{r*}, F_r}, \quad c_i, d_i \in \mathbf{R}.$$

We remark that there are many papers which classify all natural operators $T \rightsquigarrow TF$ for particular natural bundles F, see e.g. [4], [6], [10]-[12], [14] and [15]. For example, P. Kobak [4] has determined all natural operators $T \rightsquigarrow TTT^*$ and J. Tomáš [14] has classified all natural operators $T \rightsquigarrow TT^*T_k^r$, where $T_k^r N = J_0^r(\mathbf{R}^k, N)$ is the bundle of k-dimensional velocities of order r. If we restrict ourselves only to linear natural operators, we can easily determine all natural operators transforming pairs of connections on $Y \to M$ into a connection on $V^F Y \to M$.

4. Proof of Theorem 1

From now on $\mathbf{R}^{m,n}$ is the trivial bundle $\mathbf{R}^m \times \mathbf{R}^n$ over \mathbf{R}^m . The usual coordinates on $\mathbf{R}^{m,n}$ will be denoted by $x^1, \ldots, x^m, y^1, \ldots, y^n$. If \tilde{D} is a natural operator of our type, then for given connections Γ_1 and Γ_2 on an $\mathcal{FM}_{m,n}$ -object $Y \to M$ the difference

$$\Delta(\Gamma_1, \Gamma_2) = \tilde{D}(\Gamma_1, \Gamma_2) - \mathcal{V}^F \Gamma_1 : V^F Y \times_M TM \to V(V^F Y)$$

is a fiber linear map covering the identity on $V^F Y$. So it remains to describe all natural operators of the type as Δ . Consider a natural operator D of the type as Δ . We prove some auxiliary lemmas.

Lemma 2. Suppose that

$$D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \le K} \Gamma_{1i\alpha\beta}^{j} x^{\alpha} y^{\beta} dx^{i} \otimes \frac{\partial}{\partial y^{j}},$$
$$\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \le K} \Gamma_{2i\alpha\beta}^{j} x^{\alpha} y^{\beta} dx^{i} \otimes \frac{\partial}{\partial y^{j}}\Big)(u, v) = 0$$

for any $K \in \mathbf{N}$, any $(u, v) \in (V^F \mathbf{R}^{m,n})_0 \times T_0 \mathbf{R}^m$, any $\Gamma^j_{1i\alpha\beta}$ and any $\Gamma^j_{2i\alpha\beta}$ for i, j, α, β as indicated. Then D = 0.

Proof. It follows from a corollary of non-linear Peetre theorem (Corollary 19.8 in [7]).

Lemma 3. Suppose that

$$D\Big(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + y^\beta dx^{i_0} \otimes \frac{\partial}{\partial y^{j_0}}, \sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i}\Big)(u, v) = 0$$

and

$$D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}}, \sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + y^{\beta} dx^{i_{0}} \otimes \frac{\partial}{\partial y^{j_{0}}}\Big)(u, v) = 0$$

for any $(u,v) \in (V^F \mathbf{R}^{m,n})_0 \times T_0 \mathbf{R}^m$, any n-tuple β and any $i_0 = 1, \ldots, m$ and $j_0 = 1, \ldots, n$. Then D = 0.

Proof. Using the invariance of D with respect to the base homotheties $t \operatorname{id}_{\mathbf{R}^m} \times \operatorname{id}_{\mathbf{R}^n}$ for t > 0 we get the homogeneity condition

$$D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \le K} t^{|\alpha|+1} \Gamma_{1i\alpha\beta}^{j} x^{\alpha} y^{\beta} dx^{i} \otimes \frac{\partial}{\partial y^{j}},$$

$$\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \le K} t^{|\alpha|+1} \Gamma_{2i\alpha\beta}^{j} x^{\alpha} y^{\beta} dx^{i} \otimes \frac{\partial}{\partial y^{j}}\Big)(u,v)$$

$$= tD\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \le K} \Gamma_{1i\alpha\beta}^{j} x^{\alpha} y^{\beta} dx^{i} \otimes \frac{\partial}{\partial y^{j}},$$

$$\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \le K} \Gamma_{2i\alpha\beta}^{j} x^{\alpha} y^{\beta} dx^{i} \otimes \frac{\partial}{\partial y^{j}}\Big)(u,v).$$

By the homogeneous function theorem, this type of homogeneity gives that

$$D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \le K} \Gamma^{j}_{1i\alpha\beta} x^{\alpha} y^{\beta} dx^{i} \otimes \frac{\partial}{\partial y^{j}},$$
$$\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{|\alpha|+|\beta| \le K} \Gamma^{j}_{2i\alpha\beta} x^{\alpha} y^{\beta} dx^{i} \otimes \frac{\partial}{\partial y^{j}}\Big)(u,v)$$

depends linearly on $\Gamma_{1i(0)\beta}^{j}$ and $\Gamma_{2i(0)\beta}^{j}$ and is independent of $\Gamma_{1i\alpha\beta}^{j}$ and $\Gamma_{2i\alpha\beta}^{j}$ for $|\alpha| > 0$. So, the assumptions of the lemma imply the assumption of Lemma 2, which completes the proof.

Lemma 4. Suppose that

$$D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + dx^{i_{0}} \otimes Y, \sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}}\Big)(u, v) = 0$$

and

$$D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}}, \sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + dx^{i_{0}} \otimes Y\Big)(u, v) = 0$$

for any $(u, v) \in (V^F \mathbf{R}^{m,n})_0 \times T_0 \mathbf{R}^m$, any $i_0 = 1, \ldots, m$ and any vector field Y on \mathbf{R}^n . Then D = 0.

Proof. Obviously, the assumptions of the lemma imply the assumptions of Lemma 3, which completes the proof. $\hfill \Box$

Lemma 5. Suppose that

$$D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + dx^{1} \otimes \frac{\partial}{\partial y^{1}}, \sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}}\Big)(u, v) = 0$$

and

$$D\Big(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i}, \sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes \frac{\partial}{\partial y^1}\Big)(u, v) = 0$$

for any $(u,v) \in (V^F \mathbf{R}^{m,n})_0 \times T_0 \mathbf{R}^m$. Then D = 0.

Proof. Any non-vanishing vector field Y on \mathbb{R}^n is locally $\frac{\partial}{\partial y^1}$ modulo a local diffeomorphism $\varphi : \mathbb{R}^n \to \mathbb{R}^n$. There exists a diffeomorphism $\psi : \mathbb{R}^m \to \mathbb{R}^m$ sending x^{i_0} into x^1 . Using the invariance of D with respect to $\mathcal{FM}_{m,n}$ -map $\psi \times \varphi$ we can see that the assumptions of the lemma imply the assumptions of Lemma 4 with non-vanishing Y. Then the regularity of D implies the assumptions of Lemma 4, which completes the proof.

Lemma 6. Suppose that

$$D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + dx^{1} \otimes Y, \sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}}\Big)(u, v) = 0$$

for any $(u, v) \in (V^F \mathbf{R}^{m,n})_0 \times T_0 \mathbf{R}^m$, and any vector field Y on \mathbf{R}^n . Then D = 0.

Proof. The assumption of the lemma implies the first assumption of Lemma 5. Further, using the invariance of D with respect to $\mathcal{FM}_{m,n}$ -map $(x^1, \ldots, x^m, -y^1 + x^1, y^2, \ldots, y^n)$ we obtain the second assumption of Lemma 5. Finally, Lemma 5 completes the proof.

Lemma 7. Suppose that

$$D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + dx^{1} \otimes Y, \sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}}\Big)\Big(u, \frac{\partial}{\partial x^{1}}(0)\Big) = 0$$

for any $u \in (V^F \mathbf{R}^{m,n})_0$, and any vector field Y on \mathbf{R}^n . Then D = 0.

Proof. Any vector $v \in T_0 \mathbf{R}^m$ with $d_0 x^1(v) \neq 0$ is proportional to $\frac{\partial}{\partial x^1}(0)$ modulo a diffeomorphism $\psi : \mathbf{R}^m \to \mathbf{R}^m$ preserving x^1 . Using the invariance of D with respect to $\mathcal{FM}_{m,n}$ -map $\psi \times \operatorname{id}_{\mathbf{R}^n}$ we see that the assumption of the lemma implies the assumption of Lemma 6 with $d_0 x^1(v) \neq 0$. Then using the regularity of D we obtain the assumption of Lemma 6, which completes the proof. \Box

Let Y be a vector field on an n-manifold N. Define a vector field $L^D(Y)$ on F(N) by (14)

$$L^{D}(Y)(u) = D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + dx^{1} \otimes Y, \sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}}\Big)\Big(u, \frac{\partial}{\partial x^{1}}(0)\Big) \in T_{u}F(N)$$

for any $u \in (V^F(\mathbf{R}^m \times N))_0 = F(N)$, where we use the obvious identification $V_u(V^F(\mathbf{R}^m \times N)) = T_uF(N)$.

Proof. The $\mathcal{M}f_n$ -naturality is a simple consequence of the invariance of D with respect to $\mathcal{F}\mathcal{M}_{m,n}$ -maps of the form $\operatorname{id}_{\mathbf{R}^m} \times \varphi$. Further, by the invariance of D with respect to the base homotheties $t \operatorname{id}_{\mathbf{R}^m} \times \operatorname{id}_{\mathbf{R}^n}$ for t > 0 we get the homogeneity condition D(tY)(u) = tD(Y)(u). So, the linearity is an immediate consequence of the homogeneous function theorem.

Lemma 9. We have

$$D\Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + dx^{1} \otimes Y, \sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}}\Big)\Big(u, \frac{\partial}{\partial x^{1}}(0)\Big)$$
$$= \Big(\sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + dx^{1} \otimes Y, \sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}}\Big)^{F, L^{D}}\Big(u, \frac{\partial}{\partial x^{1}}(0)\Big)$$

for any $u \in (V^F \mathbf{R}^{m,n})_0$ and $Y \in \mathcal{X}(\mathbf{R}^n)$, where $(\Gamma_1, \Gamma_2)^{F,L}$ was defined in Section 2.

Proof. Observe that $v^{\Gamma} = v + Y$ if $\Gamma = \sum_{i=1}^{m} dx^{i} \otimes \frac{\partial}{\partial x^{i}} + dx^{1} \otimes Y$ and $v = \frac{\partial}{\partial x^{1}}(0)$.

Now, using Lemma 7 we see that $D(\Gamma_1, \Gamma_2) = (\Gamma_1, \Gamma_2)^{F, L^D}$. Therefore $\tilde{D} = \mathcal{V}^{F, L^{\Delta}}$ and the proof of Theorem 1 is complete.

References

- Cabras, A., Kolář, I., Prolongation of second order connections to vertical Weil bundles, Arch. Math. (Brno) 37 (2001), 333–347.
- [2] Doupovec, M., Kolář, I., On the natural operators transforming connections to the tangent bundle of a fibred manifold, Knižnice VUT Brno, B-119 (1988), 47–56.
- Gancarzewicz, J., Liftings of functions and vector fields to natural bundles, Dissertationes Math. Warszawa 1983.
- Kobak, P., Natural liftings of vector fields to tangent bundles of bundles of 1-forms, Math. Bohem. 3 (116) (1991), 319–326.
- [5] Kolář, I., Some natural operations with connections, J. Nat. Acad. Math. India 5 (1987), 127–141.
- [6] Kolář, I., Slovák, J., Prolongations of vector fields to jet bundles, Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 103–111.
- [7] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer--Verlag 1993.
- [8] Kolář, I., Mikulski, W. M., On the fiber product preserving bundle functors, Differential Geom. Appl. 11 (1999), 105–115.
- Kolář, I., Mikulski, W. M., Natural lifting of connections to vertical bundles, Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 97–102.
- [10] Mikulski, W. M., Some natural operations on vector fields, Rend. Mat. Appl. (7) 12 (1992), 783–803.

- [11] Mikulski, W. M., Some natural constructions on vector fields and higher order cotangent bundles, Monatsh. Math. 117 (1994), 107–119.
- [12] Mikulski, W. M., The natural operators lifting vector fields to generalized higher order tangent bundles, Arch. Math. (Brno) 36 (2000), 207–212.
- Mikulski, W. M., Non-existence of some canonical constructions on connections, Comment. Math. Univ. Carolin. 44, 4 (2003), 691–695.
- [14] Tomáš, J., Natural operators on vector fields on the cotangent bundles of the bundles of (k, r)-velocities, Rend. Circ. Mat. Palermo (2) Suppl. **54** (1988), 113–124.
- [15] Tomáš, J., Natural T-functions on the cotangent bundle of a Weil bundle, to appear in Czechoslovak Math. J.

MIROSLAV DOUPOVEC DEPARTMENT OF MATHEMATICS BRNO UNIVERSITY OF TECHNOLOGY, FSI VUT BRNO TECHNICKÁ 2, 616 69 BRNO, CZECH REPUBLIC *E-mail:* doupovec@fme.vutbr.cz

Włodzimierz M. Mikulski Institute of Mathematics, Jagiellonian University Kraków, Reymonta 4, Poland *E-mail:* mikulski@im.uj.edu.pl