ON AN EFFECTIVE CRITERION OF SOLVABILITY OF BOUNDARY VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION OF n-TH ORDER

NGUYEN ANH TUAN

Abstract. New sufficient conditions for the existence of a solution of the boundary value problem for an ordinary differential equation of n-th order with certain functional boundary conditions are constructed by a method of a priori estimates.

InTRODUCTION

In this paper we give new sufficient conditions for the existence of a solution of the ordinary differential equation

$$
\begin{equation*}
u^{(n)}(t)=f\left(t, u(t), \ldots, u^{(n-1)}(t)\right) \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\Phi_{0 i}\left(u^{(i-1)}\right)=\varphi_{i}(u) \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

resp.

$$
\begin{array}{cl}
l_{i}\left(u, u^{\prime}, \ldots, u^{\left(k_{0}-1\right)}\right)=0 & i=1, \ldots, k_{0}, \tag{1}\\
\Phi_{0 i}\left(u^{(i-1)}\right)=\varphi_{i}\left(u^{\left(k_{0}\right)}\right) & i=k_{0}+1, \ldots, n,
\end{array}
$$

where $f:[a, b] \times R^{n} \rightarrow R$ satisfies the local Carathéodory conditions, $n \geq 2$, and $1 \leq k_{0} \leq n-2$.

For each index i, the functional $\Phi_{0 i}$ in the conditions (2), resp. (32), is supposed to be linear, nondecreasing, nontrivial, continuous on $C([a, b])$, and concentrated on $\left[a_{i}, b_{i}\right] \subseteq[a, b]$ (i.e., the value of functional $\Phi_{0 i}$ depends only on a function restricted to $\left[a_{i}, b_{i}\right]$ and this segment can be degenerated to a point). In general $\Phi_{0 i}(1) \in R$, without loss of generality we can suppose that $\Phi_{0 i}(1)=1$, which simplifies the notation.

[^0]In the condition $\left(3_{1}\right)$, the functionals $l_{i}:[C([a, b])]^{k_{0}} \rightarrow R\left(i=1, \ldots, k_{0}\right)$ are linear and continuous.

For each index $i(i=1, \ldots, n)$, the functional $\varphi_{i}: C^{n-1}([a, b]) \rightarrow R$ in the conditions (2) is continuous and satisfies

$$
\begin{equation*}
\xi_{i}(\rho)=\frac{1}{\rho} \sup \left\{\left|\varphi_{i}(\rho v)\right|:\|v\|_{C_{[[a, b])}^{n-1}} \leq 1\right\} \rightarrow 0 \quad \text { as } \quad \rho \rightarrow+\infty \tag{1}
\end{equation*}
$$

For each index $i\left(i=k_{0}+1, \ldots, n\right)$, the functional $\varphi_{i}: C^{n-1-k_{0}}([a, b]) \rightarrow R$ in the conditions (3_{2}) is continuous and satisfies

$$
\begin{equation*}
\delta_{i}(\rho)=\frac{1}{\rho} \sup \left\{\left|\varphi_{i}(\rho v)\right|:\|v\|_{C_{([a, b])}^{n-1-k_{0}}} \leq 1\right\} \rightarrow 0 \quad \text { as } \quad \rho \rightarrow+\infty \tag{2}
\end{equation*}
$$

The special cases of boundary conditions (2) are

$$
\begin{equation*}
u^{(i-1)}\left(t_{i}\right)=\varphi_{i}(u) \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

where $a \leq a_{i} \leq t_{i} \leq b_{i} \leq b(i=1, \ldots, n)$ or

$$
\begin{equation*}
\int_{a_{i}}^{b_{i}} u^{(i-1)}(t) d \sigma_{i}(t)=\varphi_{i}(u) \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

The integral is understood in the Lebesgue-Stieltjes sense, where σ_{i} is nondecreasing in $\left[a_{i}, b_{i}\right]$ and $\sigma\left(b_{i}\right)-\sigma\left(a_{i}\right)>0(i=1, \ldots, n)$. We know that the problem (1), $\left(5_{1}\right)$ was studied by B. Půža in the paper [4], so in this paper we will receive more general results than in [4].

Problem (1), (3) was studied by Nguyen Anh Tuan in the paper [5] and by Gegelia G. T. in the paper [1]. In this paper, however, we will give new sufficient conditions for the existence of a solution of the problem (1), (3).

Main Results

We adopt the following notation:
$[a, b]$ - a segment, $-\infty<a \leq a_{i} \leq b_{i} \leq b<+\infty(i=1, \ldots, n)$.
$R^{n}-n$-dimensional real space with elements $x=\left(x_{i}\right)_{i=1}^{n}$ normed by $\|x\|=$ $\sum_{i=1}^{n}\left|x_{i}\right|$.
$R_{+}^{n}=\left\{x \in R^{n}: x_{i} \geq 0, i=1, \ldots, n\right\},(0,+\infty)=R_{+}-\{0\}$.
$C^{n-1}([a, b])$ - the space of functions continuous together with their derivatives up to the order $(n-1)$ on $[a, b]$ with the norm

$$
\|u\|_{C_{([a, b])}^{n-1}}=\max \left\{\sum_{i=1}^{n}\left|u^{(i-1)}(t)\right|: a \leq t \leq b\right\}
$$

$A C^{n-1}([a, b])$ - the set of all functions absolutely continuous together with their derivatives up to the order $(n-1)$ on $[a, b]$.
$L^{p}([a, b])$ - the space of functions Lebesgue integrable on $[a, b]$ in the p-th power with the norm

$$
\|u\|_{L_{([a, b])}^{p}}=\left\{\begin{array}{lll}
\left(\int_{a}^{b}|u(t)|^{p} d t\right)^{\frac{1}{p}} & \text { if } & 1 \leq p<+\infty \\
\text { ess } \sup \{|u(t)|: a \leq t \leq b\} & \text { if } & p=+\infty
\end{array}\right.
$$

$L^{p}\left([a, b], R_{+}\right)=\left\{u \in L^{p}([a, b]): u(t) \geq 0\right.$ for a. a. $\left.a \leq t \leq b\right\}$.
Let $x=\left(x_{i}(t)\right)_{i=1}^{n}, y=\left(y_{i}(t)\right)_{i=1}^{n} \in[C([a, b])]^{n}$. We will say that $x \leq y$ if $x_{i}(t) \leq y_{i}(t)$ for all $t \in[a, b]$ and $i=1, \ldots, n$.

A functional $\Phi:[C([a, b])]^{n} \rightarrow R$ is said to be nondecreasing if $\Phi(x) \leq \Phi(y)$ for all $x, y \in[C([a, b])]^{n}, x \leq y$, and positively homogeneous if $\Phi(\lambda x)=\lambda \Phi(x)$ for all $\lambda \in(0,+\infty)$ and $x \in[C([a, b])]^{n}$.

Let us consider the problems (1), (2) and (1), (3). Under a solution of the problem (1), (2), resp. (1), (3), we understand a function $u \in A C^{n-1}([a, b])$ which satisfies the equation (1) almost everywhere on $[a, b]$ and fulfils the boundary conditions (2), resp. (3).

Theorem 1. Let the inequalities

$$
\begin{equation*}
f\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \operatorname{sign} x_{n} \leq \omega\left(\left|x_{n}\right|\right) \sum_{i=1}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(x_{i}\right)\left|x_{i+1}\right|^{\frac{1}{q_{i j}}} \tag{1}
\end{equation*}
$$

$$
\text { for } \quad t \in\left[a_{n}, b\right],\left(x_{i}\right)_{i=1}^{n} \in R^{n}
$$

$$
\begin{gather*}
f\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \operatorname{sign} x_{n} \geq-\omega\left(\left|x_{n}\right|\right) \sum_{i=1}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(x_{i}\right)\left|x_{i+1}\right|^{\frac{1}{q_{i j}}} \tag{2}\\
\text { for } \quad t \in\left[a, b_{n}\right],\left(x_{i}\right)_{i=1}^{n} \in R^{n}
\end{gather*}
$$

hold, where $g_{i j} \in L^{p_{i j}}\left([a, b], R_{+}\right), p_{i j}, q_{i j} \geq 1,1 / p_{i j}+1 / q_{i j}=1(i=1, \ldots, n-1 ; j=$ $1, \ldots, m), \omega: R_{+} \rightarrow(0,+\infty)$ and $h_{i j}: R \rightarrow R_{+}(i=1, \ldots, n-1 ; j=1, \ldots m)$ are continuous nondecreasing functions satisfying

$$
\begin{equation*}
\Omega(\rho)=\int_{0}^{\rho} \frac{d s}{\omega(s)} \rightarrow+\infty \quad \text { as } \quad \rho \rightarrow+\infty \tag{7}
\end{equation*}
$$

and

$$
\begin{gather*}
\lim _{\rho \rightarrow+\infty} \frac{\Omega\left(\rho \xi_{n}(\rho)\right)}{\Omega(\rho)}=0=\lim _{\rho \rightarrow+\infty} \frac{\left\|h_{i j}\right\|_{L_{([-\rho, \rho])}^{q_{i j}}}}{\Omega(\rho)} \tag{8}\\
i=1, \ldots, n-1 ; j=1, \ldots, m .
\end{gather*}
$$

Then the problem (1), (2) has at least one solution.
To prove Theorem 1 we need the following
Lemma 1. Let the functions $\omega, \Omega, g_{i j}, h_{i j}$ and the numbers $p_{i j}, q_{i j}(i=1, \ldots, n-$ $1 ; j=1, \ldots, m)$ be given as in Theorem 1, and let $\eta_{i}: R_{+} \rightarrow R_{+}(i=1, \ldots, n)$ be
nondecreasing functions satisfying

$$
\begin{equation*}
\lim _{\rho \rightarrow+\infty} \frac{\Omega\left(\eta_{n}(\rho)\right)}{\Omega(\rho)}=0=\lim _{\rho \rightarrow+\infty} \frac{\eta_{i}(\rho)}{\rho} \quad i=1, \ldots, n \tag{9}
\end{equation*}
$$

Then there exists a constant $\rho_{0}>0$ such that the estimate

$$
\begin{equation*}
\|u\|_{C_{([a, b])}^{n-1}} \leq \rho_{0} \tag{10}
\end{equation*}
$$

holds for each solution $u \in A C^{n-1}([a, b])$ of the differential inequalities
$\left(11_{1}\right) \quad u^{(n)}(t) \operatorname{sign} u^{(n-1)}(t)$

$$
\begin{array}{r}
\leq \omega\left(\left|u^{(n-1)}(t)\right|\right) \sum_{i=1}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(u^{(i-1)}(t)\right)\left|u^{(i)}(t)\right|^{\frac{1}{q_{i j}}} \\
\quad \text { for } \quad t \in\left[a_{n}, b\right]
\end{array}
$$

$\left(11_{2}\right) \quad u^{(n)}(t) \operatorname{sign} u^{(n-1)}(t)$

$$
\begin{array}{r}
\geq-\omega\left(\left|u^{(n-1)}(t)\right|\right) \sum_{i=1}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(u^{(i-1)}(t)\right)\left|u^{(i)}(t)\right|^{\frac{1}{q_{i j}}} \\
\quad \text { for } \quad t \in\left[a, b_{n}\right]
\end{array}
$$

with the boundary condition

$$
\begin{equation*}
\min \left\{\left|u^{(i-1)}(t)\right|: a_{i} \leq t \leq b_{i}\right\} \leq \eta_{i}\left(\|u\|_{\left.C_{([a, b])}^{n-1}\right)}\right) \quad i=1, \ldots, n \tag{12}
\end{equation*}
$$

Proof. Put

$$
\mu=\sum_{i=1}^{n}(b-a)^{n-i} \quad \text { and } \quad \varepsilon=[2 \mu(n-1)]^{-1} .
$$

Then according to (9) there exists a number $r_{0}>0$ such that

$$
\begin{equation*}
\eta_{i}(\rho) \leq \varepsilon \rho \quad \text { for } \quad \rho>r_{0} \quad i=1, \ldots, n \tag{13}
\end{equation*}
$$

We suppose that the estimate (10) does not hold. Then for arbitrary $\rho_{1} \geq r_{0}$ there exists a solution u of the problem (11), (12) such that

$$
\begin{equation*}
\|u\|_{C_{([a, b])}^{n-1}}>\rho_{1} \tag{14}
\end{equation*}
$$

We put

$$
\begin{equation*}
\rho=\max \left\{\left|u^{(n-1)}(t)\right|: a \leq t \leq b\right\} \tag{15}
\end{equation*}
$$

and choose $\tau_{i} \in\left[a_{i}, b_{i}\right] \quad(i=1, \ldots, n)$ such that

$$
\left|u^{(i-1)}\left(\tau_{i}\right)\right|=\min \left\{\left|u^{(i-1)}(t)\right|: a_{i} \leq t \leq b_{i}\right\} .
$$

Then from (12) we have

$$
\begin{equation*}
\left|u^{(i-1)}\left(\tau_{i}\right)\right| \leq \eta_{i}\left(\|u\|_{C_{([a, b])}^{n-1}}\right) \quad i=1, \ldots, n \tag{16}
\end{equation*}
$$

Using (15), (16) we have

$$
\begin{align*}
\left|u^{(n-2)}(t)\right| & \leq\left|\int_{\tau_{n-1}}^{t}\right| u^{(n-1)}(\tau)|d \tau|+\left|u^{(n-2)}\left(\tau_{n-1}\right)\right| \tag{17}\\
& \leq(b-a) \rho+\eta_{n-1}\left(\|u\|_{\left.C_{([a, b])}^{n-1}\right)}\right) \quad \text { for } \quad t \in[a, b]
\end{align*}
$$

Integrating $u^{(n-2)}$ from τ_{n-2} to t and using (16) and (17) again we get

$$
\begin{aligned}
\left|u^{(n-3)}(t)\right| & \leq\left|\int_{\tau_{n-2}}^{t}\right| u^{(n-2)}(\tau)|d \tau|+\left|u^{(n-3)}\left(\tau_{n-2}\right)\right| \\
& \leq(b-a)^{2} \rho+(b-a) \eta_{n-1}\left(\|u\|_{C_{([a, b])}^{n-1}}\right)+\eta_{n-2}\left(\|u\|_{C_{([a, b])}^{n-1}}\right)
\end{aligned}
$$

for $t \in[a, b]$. Applying this procedure $(n-1)$-times we obtain

$$
\|u\|_{C_{([a, b])}^{n-1}} \leq \mu\left(\rho+\sum_{i=1}^{n-1} \eta_{i}\left(\|u\|_{C_{([a, b])}^{n-1}}\right)\right) .
$$

Using (13) and (14) we get

$$
\|u\|_{C_{([a, b])}^{n-1}} \leq \mu\left(\rho+(n-1) \varepsilon\|u\|_{C_{([a, b])}^{n-1}}\right)=\mu \rho+\frac{1}{2}\|u\|_{C_{([a, b])}^{n-1}} .
$$

Therefore we have

$$
\begin{equation*}
\|u\|_{C_{([a, b])}^{n-1}} \leq 2 \mu \rho \tag{18}
\end{equation*}
$$

We choose a point $\tau^{*} \in[a, b]$ such that $\tau^{*} \neq \tau_{n}$ and

$$
\left|u^{(n-1)}\left(\tau^{*}\right)\right|=\max \left\{\left|u^{(n-1)}(t)\right|: a \leq t \leq b\right\} .
$$

Then either $\tau_{n}<\tau^{*}$ or $\tau^{*}<\tau_{n}$.
If $\tau_{n}<\tau^{*}$, then the integration of $\left(11_{1}\right)$ from τ_{n} to τ^{*}, in view of (18) and using Hölder's inequality, we get

$$
\begin{align*}
\int_{\tau_{n}}^{\tau^{*}} \frac{u^{(n)}(t) \operatorname{sign} u^{(n-1)}(t) d t}{\omega\left(\left|u^{(n-1)}(t)\right|\right)} & \leq \int_{\tau_{n}}^{\tau^{*}} \sum_{i=1}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(u^{(i-1)}(t)\right)\left|u^{(i)}(t)\right|^{\frac{1}{q_{i j}}} d t \tag{19}\\
& \leq \sum_{i=1}^{n-1} \sum_{j=1}^{m}\left\|g_{i j}\right\|_{L_{([a, b])}^{p_{i j}}}\left\|h_{i j}\right\|_{L_{([-2 \mu \rho, 2 \mu \rho])}^{q_{i j}}}
\end{align*}
$$

Applying (15), (16), (18), and the definition of Ω in (19), we get

$$
\Omega(\rho) \leq \Omega\left(\eta_{n}(2 \mu \rho)\right)+\sum_{i=1}^{n-1} \sum_{j=1}^{m}\left\|g_{i j}\right\|_{L_{([a, b])}^{p_{i j}}}\left\|h_{i j}\right\|_{L_{([-2 \mu \rho, 2 \mu \rho])}^{q_{i j}}}
$$

Now, in view of (8), (9), (14), and (18), since ρ_{1} was chosen arbitrarily, we get

$$
\lim _{\rho \rightarrow+\infty} \frac{\Omega(\rho)}{\Omega(2 \mu \rho)}=0
$$

On the other hand, in view of (7) and the facts that $2 \mu>1$ and ω is a nondecreasing function, we have

$$
\liminf _{\rho \rightarrow+\infty} \frac{\Omega(\rho)}{\Omega(2 \mu \rho)}>0
$$

a contradiction.
If $\tau^{*}<\tau_{n}$, then the integration of $\left(11_{2}\right)$ from τ^{*} to τ_{n} yields the same contradiction in analogous way.

Proof of Theorem 1. Let ρ_{0} be the constant from Lemma 1. Put

$$
\begin{gather*}
\chi(s)= \begin{cases}1 & \text { if } \quad|s| \leq \rho_{0} \\
2-\frac{|s|}{\rho_{0}} & \text { if } \quad \rho_{0}<|s|<2 \rho_{0}, \\
0 & \text { if } \quad|s| \geq 2 \rho_{0}\end{cases} \\
\widetilde{f}\left(t, x_{1}, \ldots, x_{n}\right)=\chi(\|x\|) f\left(t, x_{1}, \ldots, x_{n}\right) \quad \text { for } \quad a \leq t \leq b, \quad\left(x_{i}\right)_{i=1}^{n} \in R^{n}, \\
\widetilde{\varphi}_{i}(u)=\chi\left(\|u\|_{\left.C_{([a, b])}^{n-1}\right) \varphi_{i}(u) \quad \text { for } \quad u \in C^{n-1}([a, b]) \quad i=1, \ldots, n}\right. \tag{20}
\end{gather*}
$$

and consider the problem

$$
\begin{align*}
u^{(n)}(t) & =\widetilde{f}\left(t, u(t), \ldots, u^{(n-1)}(t)\right) \tag{21}\\
\Phi_{0 i}\left(u^{(i-1)}\right) & =\widetilde{\varphi}_{i}(u) \quad i=1, \ldots, n \tag{22}
\end{align*}
$$

From (20) it immediately follows that $\tilde{f}:[a, b] \times R^{n} \rightarrow R$ satisfies the local Carathéodory conditions, $\widetilde{\varphi}_{i}: C^{n-1}([a, b]) \rightarrow R(i=1, \ldots, n)$ are continuous functionals and

$$
\begin{align*}
& \sup \left\{\left|\widetilde{f}\left(\cdot, x_{1}, \ldots, x_{n}\right)\right|:\left(x_{i}\right)_{i=1}^{n} \in R^{n}\right\} \in L([a, b]) \tag{1}\\
& \sup \left\{\left|\widetilde{\varphi}_{i}(u)\right|: u \in C^{n-1}([a, b])\right\}<+\infty \quad i=1, \ldots, n
\end{align*}
$$

Now we will show that the homogeneous problem

$$
\begin{align*}
v^{(n)}(t) & =0, \tag{0}\\
\Phi_{0 i}\left(v^{(i-1)}\right) & =0 \quad i=1, \ldots, n \tag{0}
\end{align*}
$$

has only the trivial solution.
Let v be an arbitrary solution of this problem. Integrating $\left(21_{0}\right)$ we get

$$
v^{(n-1)}(t)=\text { const } \quad \text { for } \quad a \leq t \leq b
$$

According to $\left(22_{0}\right)$ we have

$$
v^{(n-1)}(a) \Phi_{0 n}(1)=0
$$

However, since $\Phi_{0 n}(1)=1$, we have $v^{(n-1)}(t)=0$ for $a \leq t \leq b$. Referring to $\left(22_{0}\right)$ and $\Phi_{0 i}(1)=1(i=1, \ldots, n-1)$, we come to the conclusion that $v(t) \equiv 0$. Using Theorem 2.1 from [3], in view of (23) and the uniqueness of the trivial solution of the problem $\left(21_{0}\right),\left(22_{0}\right)$, we get the existence of a solution of the problem (21), (22).

Let u be a solution of the problem (21), (22). Then, using (6), we get

$$
\begin{aligned}
u^{(n)}(t) \operatorname{sign} u^{(n-1)}(t) & =\widetilde{f}\left(t, u(t), \ldots, u^{(n-1)}(t)\right) \operatorname{sign} u^{(n-1)}(t) \\
& =\chi\left(\sum_{j=1}^{n}\left|u^{(j-1)}(t)\right|\right) f\left(t, u(t), \ldots, u^{(n-1)}(t)\right) \operatorname{sign} u^{(n-1)}(t) \\
& \leq \omega\left(\left|u^{(n-1)}(t)\right|\right) \sum_{i=1}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(u^{(i-1)}(t)\right)\left|u^{(i)}(t)\right|^{\frac{1}{q_{i j}}}
\end{aligned}
$$

for $t \in\left[a_{n}, b\right]$, and

$$
\begin{aligned}
u^{(n)}(t) \operatorname{sign} u^{(n-1)}(t) & =\widetilde{f}\left(t, u(t), \ldots, u^{(n-1)}(t)\right) \operatorname{sign} u^{(n-1)}(t) \\
& =\chi\left(\sum_{j=1}^{n}\left|u^{(j-1)}(t)\right|\right) f\left(t, u(t), \ldots, u^{(n-1)}(t)\right) \operatorname{sign} u^{(n-1)}(t) \\
& \geq-\omega\left(\left|u^{(n-1)}(t)\right|\right) \sum_{i=1}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(u^{(i-1)}(t)\right)\left|u^{(i)}(t)\right|^{\frac{1}{q_{i j}}}
\end{aligned}
$$

for $t \in\left[a, b_{n}\right]$. Put

$$
\eta_{i}(\rho)=\sup \left\{\left|\widetilde{\varphi}_{i}(v)\right|:\|v\|_{C_{([a, b])}^{n-1}} \leq \rho\right\} \quad i=1, \ldots, n
$$

From (4) and (8), it immediately follows that the functions $\eta_{i}(i=1, \ldots, n)$ satisfy (9) and

$$
\begin{aligned}
\min \left\{\left|u^{(i-1)}(t)\right|: a_{i} \leq t \leq b_{i}\right\}= & \Phi_{0 i}\left(\min \left\{\left|u^{(i-1)}(t)\right|: a_{i} \leq t \leq b_{i}\right\}\right) \\
\leq & \left|\Phi_{0 i}\left(u^{(i-1)}\right)\right|=\left|\widetilde{\varphi}_{i}(u)\right| \leq \eta_{i}\left(\|u\|_{\left.C_{([a, b])}^{n-1}\right)}^{n-1}\right) \\
& i=1, \ldots, n
\end{aligned}
$$

Therefore, by Lemma 1 we get

$$
\|u\|_{C_{([a, b])}^{n-1}} \leq \rho_{0}
$$

Consequently,

$$
\chi\left(\sum_{i=1}^{n}\left|u^{(i-1)}(t)\right|\right)=1 \quad \text { for } a \leq t \leq b
$$

and

$$
\chi\left(\|u\|_{C_{([a, b])}^{n-1}}\right)=1 .
$$

Using these equalities in (20), we obtain that u is a solution of the problem (1), (2).

Remark 1. If $\Phi_{0 i}\left(u^{(i-1)}\right)=u^{(i-1)}\left(t_{i}\right), a \leq a_{i} \leq t_{i} \leq b_{i} \leq b(i=1, \ldots, n)$, then Theorem 1 is Theorem in [4].

Now we give new sufficient conditions guaranteeing the existence of a solution of the problem (1), (3) provided that the equation

$$
\begin{equation*}
u^{\left(k_{0}\right)}=0 \tag{24}
\end{equation*}
$$

with the boundary conditions $\left(3_{1}\right)$ has only the trivial solution.
Theorem 2. Let the problem (24), (31) have only the trivial solution and let the inequalities

$$
\begin{align*}
& f\left(t, x_{1}, \ldots, x_{n}\right) \operatorname{sign} x_{n} \leq \omega\left(\left|x_{n}\right|\right) \sum_{i=k_{0}+1}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(x_{i}\right)\left|x_{i+1}\right|^{\frac{1}{q_{i j}}} \tag{1}\\
& \text { for } \quad t \in\left[a_{n}, b\right],\left(x_{i}\right)_{i=1}^{n} \in R^{n} \\
& f\left(t, x_{1}, \ldots, x_{n}\right) \operatorname{sign} x_{n} \geq-\omega\left(\left|x_{n}\right|\right) \sum_{i=k_{0}+1}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(x_{i}\right)\left|x_{i+1}\right|^{\frac{1}{q_{i j}}} \\
& \text { for } t \in\left[a, b_{n}\right],\left(x_{i}\right)_{i=1}^{n} \in R^{n}
\end{align*}
$$

hold, where $g_{i j} \in L^{p_{i j}}\left([a, b], R_{+}\right), p_{i j}, q_{i j} \geq 1,1 / p_{i j}+1 / q_{i j}=1\left(i=k_{0}+1, \ldots\right.$, $n-1 ; j=1, \ldots, m), \omega: R_{+} \rightarrow(0,+\infty)$ and $h_{i j}: R \rightarrow R_{+}\left(i=k_{0}+1, \ldots\right.$, $n-1 ; j=1, \ldots, m)$ are continuous nondecreasing functions satisfying (7) and

$$
\begin{align*}
& \lim _{\rho \rightarrow+\infty} \frac{\Omega\left(\rho \delta_{n}(\rho)\right)}{\Omega(\rho)}=0 \\
& \lim _{\rho \rightarrow+\infty} \frac{\left\|h_{i j}\right\|_{L_{([-\rho, \rho])}^{q_{i j}}}}{\Omega(\rho)}=0 \quad i=k_{0}+1, \ldots, n-1 ; j=1, \ldots, m . \tag{26}
\end{align*}
$$

Then the problem (1), (3) has at least one solution.
To prove Theorem 2 we need the following
Lemma 2. Let the problem (24), (31) have only the trivial solution and let the functions $\omega, \Omega, g_{i j}, h_{i j}$ and the numbers $p_{i j}, q_{i j}\left(i=k_{0}+1, \ldots, n-1\right.$; $j=1, \ldots, m)$ be given as in Theorem 2, and let $\eta_{i}: R_{+} \rightarrow R_{+}\left(i=k_{0}+1, \ldots, n\right)$ be nondecreasing functions satisfying

$$
\lim _{\rho \rightarrow+\infty} \frac{\Omega\left(\eta_{n}(\rho)\right)}{\Omega(\rho)}=0=\lim _{\rho \rightarrow+\infty} \frac{\eta_{i}(\rho)}{\rho} \quad i=k_{0}+1, \ldots, n
$$

Then there exists a constant $\rho_{0}>0$ such that the estimate (10) holds for each solution $u \in A C^{n-1}([a, b])$ of the differential inequalities

$$
\begin{align*}
& u^{(n)}(t) \operatorname{sign} u^{(n-1)}(t) \leq \omega\left(\left|u^{(n-1)}(t)\right|\right) \sum_{i=k_{0}+1}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(u^{(i-1)}(t)\right)\left|u^{(i)}(t)\right|^{\frac{1}{q_{i j}}} \\
& \left.7_{1}\right) \quad \text { for } \quad t \in\left[a_{n}, b\right] \tag{1}
\end{align*}
$$

$$
\begin{align*}
& u^{(n)}(t) \operatorname{sign} u^{(n-1)}(t) \geq-\omega\left(\left|u^{(n-1)}(t)\right|\right) \sum_{\substack{i=k_{0}+1}}^{n-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(u^{(i-1)}(t)\right)\left|u^{(i)}(t)\right|^{\frac{1}{q_{i j}}} \\
& \left.27_{2}\right) \quad \text { for } \quad t \in\left[a, b_{n}\right] \tag{2}
\end{align*}
$$

with the boundary conditions $\left(3_{1}\right)$ and
(28) $\min \left\{\left|u^{(i-1)}(t)\right|: a_{i} \leq t \leq b_{i}\right\} \leq \eta_{i}\left(\left\|u^{\left(k_{0}\right)}\right\|_{\left.C_{([a, b])}^{n-k_{0}-1}\right)}\right) \quad i=k_{0}+1, \ldots, n$.

Proof. Let u be an arbitrary solution of the problem (27), (31), (28). Put

$$
\begin{equation*}
v(t)=u^{\left(k_{0}\right)}(t) \tag{29}
\end{equation*}
$$

Then the formulas (27) and (28) imply that

$$
\begin{aligned}
& v^{\left(n-k_{0}\right)}(t) \operatorname{sign} v^{\left(n-k_{0}-1\right)}(t) \leq \omega\left(\left|v^{\left(n-k_{0}-1\right)}(t)\right|\right) \\
& \times \sum_{i=1}^{n-k_{0}-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(v^{(i-1)}(t)\right)\left|v^{(i)}(t)\right|^{\frac{1}{q_{i j}}} \\
& \text { for } \quad t \in\left[a_{n}, b\right], \\
& v^{\left(n-k_{0}\right)}(t) \operatorname{sign} v^{\left(n-k_{0}-1\right)}(t) \geq-\omega\left(\left|v^{\left(n-k_{0}-1\right)}(t)\right|\right) \\
& \times \sum_{i=1}^{n-k_{0}-1} \sum_{j=1}^{m} g_{i j}(t) h_{i j}\left(v^{(i-1)}(t)\right)\left|v^{(i)}(t)\right|^{\frac{1}{q_{i j}}} \\
& \text { for } \quad t \in\left[a, b_{n}\right],
\end{aligned}
$$

and

$$
\min \left\{\left|v^{(i-1)}(t)\right|: a_{i} \leq t \leq b_{i}\right\} \leq \eta_{i}\left(\|v\|_{C_{([a, b])}^{n-k_{0}-1}}\right) \quad i=1, \ldots, n-k_{0}
$$

Consequently, according to Lemma 1 there exists $\rho_{1}>0$ such that

$$
\begin{equation*}
\|v\|_{C_{([a, b])}^{n-k_{0}-1}} \leq \rho_{1} \tag{30}
\end{equation*}
$$

By virtue of the assumption that the problem (24), (31) has only the trivial solution, there exists a Green function $G(t, s)$ such that

$$
\begin{equation*}
u^{(i-1)}(t)=\int_{a}^{b} \frac{\partial^{i-1} G(t, s)}{\partial t^{i-1}} v(s) d s \quad \text { for } \quad t \in[a, b] \quad i=1, \ldots, k_{0} \tag{31}
\end{equation*}
$$

(see e.g., [2]).
Put

$$
\rho_{2}=\max _{a \leq t \leq b} \int_{a}^{b} \sum_{i=1}^{k_{0}}\left|\frac{\partial^{i-1} G(t, s)}{\partial t^{i-1}}\right| d s .
$$

According to (30) and (31) we have

$$
\|u\|_{C_{([a, b])}^{k_{0}-1}} \leq \rho_{1} \rho_{2} .
$$

Therefore we obtain (10), where $\rho_{0}=\rho_{1}+\rho_{2} \rho_{1}$.

Theorem 2 can be proved analogously to Theorem 1 using Lemma 2.

References

[1] Gegelia, G. T., Ob odnom klasse nelineinykh kraevykh zadach, Trudy IPM Im. Vekua TGU 3 (1988), 53-71.
[2] Hartman, P., Ordinary differential equations, John Wiley \& Sons, 1964.
[3] Kiguradze, I., Boundary value problems for systems of ordinary differential equations (Russian), Current problems in mathematics. Newest results, VINI'TI, Moscow 30 (1987), 3-103.
[4] Půža, B., Sur certains problemes aux limites pour des equations differentielles ordinaires d'ordre n, Seminaire de math. (Nouvelle série), IMPA UC Louvain-la-Neuve, Rapport No 24, Mai 1983, 1-6.
[5] Nguyen Anh Tuan, On one class of solvable boundary value problems for ordinary differential equation of n-th order, Comment. Math. Univ. Carolin. 35, 2 (1994), 299-309.

Department of Mathematics, College of Education
280 Duong Vuong, Ho Chi Minh City, Vietnam
E-mail: nguyenanhtuan@hcmup.edu.vn

[^0]: 2000 Mathematics Subject Classification: 34A15, 34B10.
 Key words and phrases: boundary value problem with functional condition, differential equation of n-th order, method of a priori estimates, differential inequalities.

 Received March 10, 2004, revised June 2005.

