ON INTEGERS WITH A SPECIAL DIVISIBILITY PROPERTY

WILLIAM D. BANKS AND FLORIAN LUCA

AbStract. In this note, we study those positive integers n which are divisible by $\sum_{d \mid n} \lambda(d)$, where $\lambda(\cdot)$ is the Carmichael function.

1. Introduction

Let $\varphi(\cdot)$ denote the Euler function, whose value at the positive integer n is given by

$$
\varphi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}=\prod_{p^{\nu} \| n} p^{\nu-1}(p-1)
$$

Let $\lambda(\cdot)$ denote the Carmichael function, whose value $\lambda(n)$ at the positive integer n is defined to be the largest order of any element in the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{\times}$. More explicitly, for a prime power p^{ν}, one has

$$
\lambda\left(p^{\nu}\right)= \begin{cases}p^{\nu-1}(p-1) & \text { if } p \geq 3 \text { or } \nu \leq 2 \\ 2^{\nu-2} & \text { if } p=2 \text { and } \nu \geq 3\end{cases}
$$

and for an arbitrary integer $n \geq 2$ with prime factorization $n=p_{1}^{\nu_{1}} \ldots p_{k}^{\nu_{k}}$, one has

$$
\lambda(n)=\operatorname{lcm}\left[\lambda\left(p_{1}^{\nu_{1}}\right), \ldots, \lambda\left(p_{k}^{\nu_{k}}\right)\right]
$$

Note that $\lambda(1)=1$.
Since $\lambda(d) \leq \varphi(d)$ for all $d \geq 1$, it follows that

$$
\sum_{d \mid n} \lambda(d) \leq \sum_{d \mid n} \varphi(d)=n
$$

for every positive integer n, and it is clear that the equality

$$
\begin{equation*}
\sum_{d \mid n} \lambda(d)=n \tag{1}
\end{equation*}
$$

cannot hold unless $\lambda(n)=\varphi(n)$. The latter condition is equivalent to the statement that $(\mathbb{Z} / n \mathbb{Z})^{\times}$is a cyclic group, and by a well known result of Gauss, this happens

[^0]only if $n=1,2,4, p^{\nu}$ or $2 p^{\nu}$ for some odd prime p and integer exponent $\nu \geq 1$. For such $n, \lambda(d)=\varphi(d)$ for every divisor d of n, hence we see that the equality (1) is in fact equivalent to the statement that $\lambda(n)=\varphi(n)$.

When $\lambda(n)<\varphi(n)$, the equality (1) is not possible. However, it may happen that the sum appearing on the left side of (1) is a proper divisor of n. Indeed, one can easily find many examples of this phenomenon:

$$
n=140,189,378,1375,2750,2775,2997,4524,5550,5661,5994, \ldots
$$

These positive integers n are the subject of the present paper.
Throughout the paper, the letters p, q and r are always used to denote prime numbers. For a positive integer n, we write $P(n)$ for the largest prime factor of n, $\omega(n)$ for the number of distinct prime divisors of n, and $\tau(n)$ for the total number of positive integer divisors of n. For a positive real number x and a positive integer k, we write $\log _{k} x$ for the function recursively defined by $\log _{1} x=\max \{\log x, 1\}$ and $\log _{k} x=\log _{1}\left(\log _{k-1} x\right)$, where $\log (\cdot)$ denotes the natural logarithm. We also use the Vinogradov symbols \gg and \ll, as well as the Landau symbols O and o, with their usual meanings.

Acknowledgements. This work was done during a visit by the second author to the University of Missouri, Columbia; the hospitality and support of this institution are gratefully acknowledged. During the preparation of this paper, W. B. was supported in part by NSF grant DMS-0070628, and F. L. was supported in part by grants SEP-CONACYT 37259-E and 37260-E.

2. Main Results

Let $b(\cdot)$ be the arithmetical function whose value at the positive integer n is given by

$$
b(n)=\sum_{d \mid n} \lambda(d) .
$$

Our aim is to investigate the set \mathcal{B} defined as follows:

$$
\mathcal{B}=\{n: b(n) \text { is a proper divisor of } n\} .
$$

For a positive real number x, let $\mathcal{B}(x)=\mathcal{B} \cap[1, x]$. Our first result provides a nontrivial upper bound on $\# \mathcal{B}(x)$ as $x \rightarrow \infty$:
Theorem 1. The following inequality hold as $x \rightarrow \infty$:

$$
\# \mathcal{B}(x) \leq x \exp \left(-2^{-1 / 2}(1+o(1)) \sqrt{\log x \log _{2} x}\right)
$$

Proof. Our proof closely follows that of Theorem 1 in [2]. Let x be a large real number, and let

$$
y=y(x)=\exp \left(2^{-1 / 2} \sqrt{\log x \log _{2} x}\right) .
$$

Also, put

$$
\begin{equation*}
u=u(x)=\frac{\log x}{\log y}=2^{1 / 2} \sqrt{\frac{\log x}{\log _{2} x}} \tag{2}
\end{equation*}
$$

Finally, we recall that a number m is said to be powerful if $p^{2} \mid m$ for every prime factor p of m.

Let us consider the following sets:

$$
\begin{aligned}
& \mathcal{B}_{1}(x)=\{n \in \mathcal{B}(x): P(n) \leq y\}, \\
& \mathcal{B}_{2}(x)=\{n \in \mathcal{B}(x): \omega(n) \geq u\}, \\
& \mathcal{B}_{3}(x)=\left\{n \in \mathcal{B}(x): m \mid n \text { for some powerful number } m>y^{2}\right\}, \\
& \mathcal{B}_{4}(x)=\{n \in \mathcal{B}(x): \tau(\varphi(n))>y\}, \\
& \mathcal{B}_{5}(x)=\mathcal{B}(x) \backslash\left(\mathcal{B}_{1}(x) \cup \mathcal{B}_{2}(x) \cup \mathcal{B}_{3}(x) \cup \mathcal{B}_{4}(x)\right) .
\end{aligned}
$$

Since $\mathcal{B}(x)$ is the union of the sets $\mathcal{B}_{j}(x), j=1, \ldots, 5$, it suffices to find an appropriate bound on the cardinality of each set $\mathcal{B}_{j}(x)$.

By the well known estimate (see, for instance, Tenenbaum [7]):

$$
\Psi(x, y)=\#\{n \leq x: P(n) \leq y\}=x \exp \{-(1+o(1)) u \log u\}
$$

which is valid for u satisfying (2), we derive that

$$
\begin{equation*}
\# \mathcal{B}_{1}(x) \leq x \exp \left(-2^{-1 / 2}(1+o(1)) \sqrt{\log x \log _{2} x}\right) . \tag{3}
\end{equation*}
$$

Next, using Stirling's formula together with the estimate

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+O(1)
$$

we obtain that

$$
\begin{aligned}
\#\{n \leq x: \omega(n) \geq u\} & \leq \sum_{p_{1} \ldots p_{\lfloor u\rfloor} \leq x} \frac{x}{p_{1} \ldots p_{\lfloor u\rfloor}} \leq \frac{x}{\lfloor u\rfloor!}\left(\sum_{p \leq x} \frac{1}{p}\right)^{\lfloor u\rfloor} \\
& \leq x\left(\frac{e \log \log x+O(1)}{\lfloor u\rfloor}\right)^{\lfloor u\rfloor} \\
& \leq x \exp (-(1+o(1)) u \log u),
\end{aligned}
$$

therefore

$$
\begin{equation*}
\# \mathcal{B}_{2}(x) \leq x \exp \left(-2^{-1 / 2}(1+o(1)) \sqrt{\log x \log _{2} x}\right) \tag{4}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\# \mathcal{B}_{3}(x) \leq \sum_{\substack{m>y^{2} \\ m \text { powerful }}} \frac{x}{m} \ll \frac{x}{y}=x \exp \left(-2^{-1 / 2} \sqrt{\log x \log _{2} x}\right) \tag{5}
\end{equation*}
$$

where the second inequality follows by partial summation from the well known estimate:

$$
\#\{m \leq x: m \text { powerful }\} \ll \sqrt{x} .
$$

(see, for example, Theorem 14.4 in [5]).
By a result from [6], it is known that

$$
\begin{equation*}
\sum_{n \leq x} \tau(\varphi(n)) \leq x \exp \left(O\left(\sqrt{\frac{\log x}{\log _{2} x}}\right)\right) \tag{6}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\# \mathcal{B}_{4}(x) & \leq \sum_{\substack{n \leq x \\
\tau(\varphi(n))>y}} 1<\frac{1}{y} \sum_{n \leq x} \tau(\varphi(n)) \leq \frac{x}{y} \exp (O(u)) \\
& \leq x \exp \left(-2^{-1 / 2}(1+o(1)) \sqrt{\log x \log _{2} x}\right) \tag{7}
\end{align*}
$$

In view of the estimates (3), (4), (5) and (7), to complete the proof it suffices to show that

$$
\begin{equation*}
\# \mathcal{B}_{5}(x) \leq x \exp \left(-2^{-1 / 2}(1+o(1)) \sqrt{\log x \log _{2} x}\right) \tag{8}
\end{equation*}
$$

We first make some comments about the integers in the set $\mathcal{B}_{5}(x)$. For each $n \in \mathcal{B}_{5}(x)$, write $n=n_{1} n_{2}$, where $\operatorname{gcd}\left(n_{1} n_{2}\right)=1, n_{1}$ is powerful, and n_{2} is squarefree. Since $n_{1} \leq y^{2}$ (as $\left.n \notin \mathcal{B}_{3}(x)\right)$ and $P(n)>y$ (as $n \notin \mathcal{B}_{1}(x)$), it follows that $P(n) \mid n_{2}$; in particular, $P(n) \| n$. By the multiplicativity of $\tau(\cdot)$, we also have

$$
\tau(n)=\tau\left(n_{1}\right) \tau\left(n_{2}\right)
$$

Since $n \notin \mathcal{B}_{2}(x)$,

$$
\tau\left(n_{2}\right) \leq 2^{\omega(n)}<2^{u}=\exp (O(u))
$$

Also,

$$
\tau\left(n_{1}\right) \leq \exp \left(O\left(\frac{\log n_{1}}{\log \log n_{1}}\right)\right) \leq \exp \left(O\left(\frac{\log y}{\log \log y}\right)\right)=\exp (O(u))
$$

In particular,

$$
\begin{equation*}
\tau(n) \leq \exp (O(u)) \tag{9}
\end{equation*}
$$

Now let $n \in B_{5}(x)$, and write $n=P m$, where $P=P(n)$ and m is a positive integer with $m \leq x / y$. Put

$$
\begin{equation*}
D_{1}=\operatorname{gcd}(P-1, \lambda(m)) \quad \text { and } \quad D_{2}=\operatorname{gcd}(m, b(n)) \tag{10}
\end{equation*}
$$

Since $b(n)$ is a (proper) divisor of $n=P m$, it follows that $b(n)=D_{2} P^{\delta}$, where $\delta=0$ or 1 . Since $P \| n$ and $P \neq 2$, we also have

$$
\begin{aligned}
b(n) & =\sum_{d \mid n} \lambda(d)=\sum_{d \mid m} \lambda(d)+\sum_{d \mid m} \operatorname{lcm}[P-1, \lambda(d)] \\
& =b(m)+\sum_{d \mid m} \frac{(P-1) \lambda(d)}{\operatorname{gcd}\left(D_{1}, \lambda(d)\right)}=b(m)+(P-1) b\left(D_{1}, m\right),
\end{aligned}
$$

where

$$
b\left(D_{1}, m\right)=\sum_{d \mid m} \frac{\lambda(d)}{\operatorname{gcd}\left(D_{1}, \lambda(d)\right)}
$$

Consequently,

$$
b(m)+(P-1) b\left(D_{1}, m\right)=D_{2} P^{\delta}
$$

and thus

$$
P= \begin{cases}1+\frac{D_{2}-b(m)}{b\left(D_{1}, m\right)} & \text { if } \quad \delta=0 \tag{11}\\ \frac{b(m)-b\left(D_{1}, m\right)}{D_{2}-b\left(D_{1}, m\right)} & \text { if } \quad \delta=1\end{cases}
$$

We remark that $D_{2} \neq b\left(D_{1}, m\right)$ in the second case. Indeed, noting that $m>2$ (since n is neither prime nor twice a prime), it follows that D_{1} is even; in particular, $D_{1} \geq 2$. Thus,

$$
1=\frac{\lambda(1)}{\operatorname{gcd}\left(D_{1}, \lambda(1)\right)} \leq b\left(D_{1}, m\right) \leq \sum_{\substack{d \mid m \\ d<m}} \lambda(d)+\frac{\lambda(m)}{D_{1}}<b(m)
$$

which shows that $b(m)-b\left(D_{1}, m\right)>0$, and therefore D_{2} cannot be equal to $b\left(D_{1}, m\right)$ in view of (11). Hence, from (11), we conclude that for all fixed choices of m, an even divisor D_{1} of $\lambda(m)$, and a divisor D_{2} of m, there are at most two possible primes P satisfying (10) and such that $P m \in \mathcal{B}_{5}(x)$. Using (6) and (9), and recalling that $m \leq x / y$, we derive that

$$
\begin{aligned}
\# B_{5}(x) & \ll \sum_{m \leq x / y} \tau(m) \tau(\lambda(m)) \leq \exp (O(u)) \sum_{m \leq x / y} \tau(\varphi(m)) \\
& \ll \frac{x}{y} \exp (O(u))
\end{aligned}
$$

The estimate (8) now follows from our choice of y, and this completes the proof.

Our next result provides a complete characterization of those odd integers $n \in \mathcal{B}$ with $\omega(n)=2$.

Theorem 2. Suppose that $n=p^{a} q^{b}$, where p and q are odd primes with $p<q$, and a, b are positive integers. If $n \neq 2997$, then $n \in \mathcal{B}$ if and only if $b=1$ and there exists a positive integer k such that

$$
q=2 p^{\left(p^{k}-1\right) /(p-1)}+1 \quad \text { and } \quad a=k+2\left(p^{k}-1\right) /(p-1) .
$$

Proof. Let c be the largest nonnegative integer such that $p^{c} \mid(q-1)$.
First, suppose that $p \nmid(q-1)$ (that is, $c=0)$. We must show that $n \notin \mathcal{B}$. Indeed, let $t=\operatorname{gcd}(p-1, q-1)$; then

$$
\begin{aligned}
b(n) & =1+\sum_{j=1}^{a} \lambda\left(p^{j}\right)+\sum_{k=1}^{b} \lambda\left(q^{k}\right)+\sum_{j=1}^{a} \sum_{k=1}^{b} \lambda\left(p^{j} q^{k}\right) \\
& =1+\sum_{j=1}^{a} \varphi\left(p^{j}\right)+\sum_{k=1}^{b} \varphi\left(q^{k}\right)+\sum_{j=1}^{a} \sum_{k=1}^{b} \frac{\varphi\left(p^{j} q^{k}\right)}{t} \\
& =1+\left(p^{a}-1\right)+\left(q^{b}-1\right)+t^{-1}\left(p^{a} q^{b}-p^{a}-q^{b}+1\right)
\end{aligned}
$$

If $n \in \mathcal{B}, b(n)=p^{e} q^{f}$ for some integers e, f with $0 \leq e \leq a$ and $0 \leq f \leq b$. Thus,

$$
\begin{equation*}
t p^{e} q^{f}=(t-1)\left(p^{a}+q^{b}-1\right)+p^{a} q^{b} \tag{12}
\end{equation*}
$$

If $e \leq a-1$, then since $t \leq p-1$, it follows that

$$
t p^{e} q^{f}<p^{e+1} q^{f} \leq p^{a} q^{b}
$$

which contradicts (12); therefore, $e=a$. A similar argument shows that $f=b$. But then $b(n)=p^{a} q^{b}=n$, which is not possible since $b(n)$ is a proper divisor of n. This contradiction establishes our claim that $n \notin \mathcal{B}$.

If $c \geq 1$, we have

$$
\begin{aligned}
b(n)=1 & +\sum_{j=1}^{a} \lambda\left(p^{j}\right)+\sum_{k=1}^{b} \lambda\left(q^{k}\right)+\sum_{\substack{1 \leq j \leq a \\
j \leq c}} \sum_{k=1}^{b} \lambda\left(p^{j} q^{k}\right) \\
& +\sum_{\substack{1 \leq j \leq a \\
j \geq c+1}} \sum_{k=1}^{b} \lambda\left(p^{j} q^{k}\right) \\
=1 & +\sum_{j=1}^{a} \varphi\left(p^{j}\right)+\sum_{k=1}^{b} \varphi\left(q^{k}\right)+\sum_{\substack{1 \leq j \leq a \\
j \leq c}} \sum_{k=1}^{b} \frac{\varphi\left(p q^{k}\right)}{t} \\
& +\sum_{\substack{1 \leq j \leq a \\
j \geq c+1}} \sum_{k=1}^{b} \frac{\varphi\left(p^{j-c} q^{k}\right)}{t} .
\end{aligned}
$$

For any integer $r \geq 1$, we have the identity:

$$
\sum_{k=1}^{b} \varphi\left(p^{r} q^{k}\right)=\varphi\left(p^{r}\right) \sum_{k=1}^{b} \varphi\left(q^{k}\right)=\left(p^{r}-p^{r-1}\right)\left(q^{b}-1\right)
$$

Hence, it follows that
(13) $\quad b(n)=$

$$
p^{a}+q^{b}-1+\frac{\left(q^{b}-1\right)}{t}\left((p-1) \min \{a, c\}+p^{\max \{a-c, 0\}}-1\right)
$$

Assuming that $n \in \mathcal{B}$, write $b(n)=p^{e} q^{f}$ as before.
We claim that $c<a$. Indeed, if $c \geq a$, then reducing (13) modulo p^{c} (and recalling that $\left.q \equiv 1\left(\bmod p^{c}\right)\right)$, we obtain that

$$
p^{e} \equiv p^{e} q^{f}=b(n) \equiv p^{a} \quad\left(\bmod p^{c}\right)
$$

which implies that $e=a$. Then

$$
p^{a} q^{f}=b(n)=p^{a}+q^{b}-1+\frac{\left(q^{b}-1\right)(p-1) a}{t}
$$

which in turn gives

$$
\begin{equation*}
t p^{a}\left(q^{f}-1\right)=\left(q^{b}-1\right)(1+(p-1) a) \tag{14}
\end{equation*}
$$

The following result can be easily deduced from [1].
Lemma 3. For every odd prime q and integer $b \geq 2$, then there exists a prime P such that $P \mid\left(q^{b}-1\right)$, but $P \nmid\left(q^{f}-1\right)$ for any positive integer $f<b$, except in the case that $b=2$ and q is a Mersenne prime.

If $f<b$ and the prime P of Lemma 3 exists, the equality (14) is not possible as P divides only the right-hand side. Thus, if (14) holds and $f<b$, it must be the case that $b=2, f=1$, and $q=2^{r}-1$ for some prime r. But this leads to the equality

$$
t p^{a}=2^{r}(1+(p-1) a),
$$

and since t divides $(q-1) \equiv 2(\bmod 4)$, we obtain a contradiction after reducing everything modulo 4. Therefore, $f=b$, and we again have that $b(n)=p^{a} q^{b}=n$, contradicting the fact that $n \in \mathcal{B}$. This establishes our claim that $c<a$.

From now on, we can assume that $c<a$; then (13) takes the form:

$$
p^{e} q^{f}=b(n)=p^{a}+q^{b}-1+\frac{\left(q^{b}-1\right)}{t}\left((p-1) c+p^{a-c}-1\right) .
$$

Reducing this equation modulo p^{c}, we immediately deduce that $e \geq c$. Thus,

$$
\begin{equation*}
\left(\frac{q^{b}-1}{q-1}\right)\left(\frac{q-1}{p^{c}}\right)\left(1+\frac{(p-1) c+p^{a-c}-1}{t}\right)=\left(p^{e-c} q^{f}-p^{a-c}\right), \tag{15}
\end{equation*}
$$

where each term enclosed by parentheses is an integer. Using the trivial estimates

$$
\frac{q^{b}-1}{q-1} \geq q^{b-1}, \quad \frac{q-1}{p^{c}} \geq t
$$

and

$$
1+\frac{(p-1) c+p^{a-c}-1}{t}>\frac{p^{a-c}}{t}
$$

we obtain that

$$
\begin{equation*}
p^{a-c}\left(q^{b-1}+1\right)<p^{e-c} q^{f} \tag{16}
\end{equation*}
$$

which clearly forces $f=b$.
Now put $D=\left(q^{b}-1\right) /(q-1)$; then $D \mid\left(q^{b}-1\right)$ and $D \mid\left(p^{e-c} q^{b}-p^{a-c}\right)$ (since $f=b$); thus,

$$
\begin{equation*}
p^{e-c} \equiv p^{a-c} \quad(\bmod D) \tag{17}
\end{equation*}
$$

Write $D=p^{d} D_{0}$, where $p \nmid D_{0}$. From the definition of D, it easy to see that d is also the largest nonnegative integer such that $p^{d} \mid b$; therefore,

$$
\begin{equation*}
d \leq \frac{\log b}{\log p} \tag{18}
\end{equation*}
$$

On the other hand, from (17), it follows that $d \leq e-c$; hence,

$$
p^{e-c-d} \equiv p^{a-c-d} \quad\left(\bmod D_{0}\right),
$$

which implies that $D_{0} \mid\left(p^{a-e}-1\right)$. Consequently,

$$
p^{a-e}>p^{a-e}-1 \geq D_{0}=p^{-d} D \geq p^{-d} q^{b-1}>p^{-d}\left(p^{a-e}\right)^{b-1}
$$

where in the last step we have used the bound $q>p^{a-e}$, which follows from (16) (with $f=b$). Thus,

$$
\begin{equation*}
d>(a-e)(b-2) \tag{19}
\end{equation*}
$$

Combining the estimates (18) and (19), and using the fact that $a-e \geq 1$, we see that $b \leq 2$. Moreover, if $b=2$, then since $p^{d} \mid b$ and p is odd, it follows that $d=0$, which is impossible in view of (19). Hence, $b=1$.

At this point, (15) takes the form

$$
\begin{equation*}
\left(\frac{q-1}{p^{c}}\right)\left(1+\frac{(p-1) c+p^{a-c}-1}{t}\right)=p^{e-c} q-p^{a-c} \tag{20}
\end{equation*}
$$

Since $t \leq p-1$, we have

$$
p^{e-c} q>\left(\frac{q-1}{p^{c}}\right)\left(\frac{p^{a-c}}{p-1}\right)=p^{a-2 c}\left(\frac{q-1}{p-1}\right)>p^{a-2 c}\left(\frac{q}{p}\right)=p^{a-2 c-1} q
$$

thus $a \leq e+c$.
We now write $q-1=p^{c} t \mu$ for some positive integer μ. Then from (20), it follows that

$$
\begin{equation*}
p^{a-c}(\mu+1)-p^{e} t \mu=p^{e-c}+\mu-t \mu-(p-1) c \mu \tag{21}
\end{equation*}
$$

First, let us distinguish a few special cases. If $t=2$ and $\mu=1$, we have

$$
2 p^{a-c}-2 p^{e}=p^{e-c}-1-(p-1) c
$$

If $a \leq e+c-1$, we see that

$$
p^{e-c}-1-(p-1) c \leq 2 p^{e-1}-2 p^{e} ;
$$

hence,

$$
2 p^{e-1}(p-1) \leq c(p-1)+1-p^{e-c} \leq e(p-1)
$$

which is not possible for any $e \geq 1$. Thus, $a=e+c$, and it follows that

$$
c=\frac{p^{e-c}-1}{p-1} .
$$

Taking $k=e-c$ (which is positive since c is an integer), we have

$$
q=2 p^{c}+1=2 p^{\left(p^{k}-1\right) /(p-1)}+1
$$

and

$$
a=e+c=k+2 c=k+2\left(p^{k}-1\right) /(p-1)
$$

hence, our integer $n=p^{a} q$ has the form stated in the theorem.

Next, we claim that $e \neq 1$. Indeed, if $e=1$, then $c=1$; as $c<a \leq e+c$, it follows that $a=2$. Substituting into (21), we obtain that

$$
p(\mu+1)-p t \mu=1+\mu-t \mu-(p-1) \mu
$$

or

$$
p(1+2 \mu-t \mu)=1+2 \mu-t \mu
$$

This last equality implies that $1+2 \mu-t \mu=0$, therefore $\mu=1$ and $t=3$, which is not possible since t is an even integer.

For convenience, let S denote the value on either side of the equality (21). We note that the relation (20) implies that $p^{e-c} \mid(t+(p-1) c-1)$; thus,

$$
S \leq t+(p-1) c-1+\mu-t \mu-(p-1) c \mu=(1-\mu)(t+(p-1) c-1)
$$

In the case that $S \geq 0$, we immediately deduce that $\mu=1$, which implies that $S=0$. Then $2 p^{a-c}=p^{e} t$, and we conclude that $t=2($ and $a=e+c)$, which is a case we have already considered.

Suppose now that $S<0$. From (21) we derive that

$$
\frac{-S}{p^{e-c} \mu}=p^{c} t-p^{a-e}\left(1+\frac{1}{\mu}\right)=\frac{t+(p-1) c}{p^{e-c}}-\frac{1}{\mu}-\frac{1}{p^{e-c}}
$$

and since we already know that $a \leq e+c, t \leq p-1$ and $c \leq e$, it follows that

$$
p^{c}\left(t-1-\frac{1}{\mu}\right)<\frac{t+(p-1) c}{p^{e-c}} \leq \frac{(p-1)(c+1)}{p^{e-c}} \leq \frac{(p-1)(e+1)}{p^{e-c}}
$$

If $t \neq 2$ or $\mu \neq 1$ (which have already been considered), then $(t-1-1 / \mu) \geq 1 / 2$, and therefore

$$
e+1>\frac{p^{e}}{2(p-1)}
$$

This implies that $e \leq 2$ for $p=3$, and $e=1$ for $p \geq 5$. Since we have already ruled out the possibility $e=1$, this leaves only the case where $p=3$ and $e=2$. To handle this, we observe that $(t-1-1 / \mu) \geq 2 / 3$ if $\mu \geq 3$, and we obtain the bound

$$
e+1>\frac{2 p^{e}}{3(p-1)}
$$

which is not possible for $p=3$ and $e=2$. Thus, we left only with the case $p=3$ and $e=t=\mu=2$. Since $c \leq e, c<a \leq e+c$, and $q=4 \cdot 3^{c}+1$, it follows that $n \in\{117,351,999,2997\}$. It may be checked that, of these four integers, only 2997 lies in the set \mathcal{B}.

To complete the proof, it remains only to show that if

$$
q=2 p^{\left(p^{k}-1\right) /(p-1)}+1 \quad \text { and } \quad a=k+2\left(p^{k}-1\right) /(p-1)
$$

for some positive integer k, then $n=p^{a} q$ lies in the set \mathcal{B}. For such primes p, q, we have $t=2, c=\left(p^{k}-1\right) /(p-1), q=2 p^{c}+1$, and $a=k+2 c$; taking $e=a-c=k+\left(p^{k}-1\right) /(p-1)$, we immediately verify (20). Noting that $e<a$, it follows that $b(n)$ is a proper divisor of n.

As a complement to Theorem 2, we have:

Theorem 4. If n is even and $\omega(n)=2$, then $n \notin \mathcal{B}$.
Proof. Write $n=2^{a} q^{b}$, where q is an odd prime and a, b are positive integers, and suppose first that $a \geq 3$. For any divisor $d=2^{e} q^{f}$ of n, the congruence $\lambda(d) \equiv 0$ $(\bmod 4)$ holds whenever $e \geq 4$. On the other hand, if $e \leq 3$, then $\lambda(d)=\lambda\left(q^{f}\right)$ since $2 \mid(q-1)$. Reducing $b(n)$ modulo 4 , we have

$$
b(n) \equiv \sum_{j=0}^{3} \lambda\left(2^{j}\right)+\sum_{j=0}^{3} \sum_{k=1}^{b} \lambda\left(2^{j} q^{k}\right)=6+4 \sum_{k=1}^{b} \lambda\left(q^{k}\right) \equiv 2 \quad(\bmod 4)
$$

which implies that $2 \| b(n)$. If $n \in \mathcal{B}$, then $b(n)$ is a divisor of n, thus $b(n) \leq 2 q^{b}$. On the other hand,

$$
b(n) \geq 6+4 \sum_{k=1}^{b} \lambda\left(q^{k}\right)=2+4 \sum_{k=0}^{b} \varphi\left(q^{k}\right)=2+4 q^{b}
$$

which contradicts the preceding estimate. This shows that $n \notin \mathcal{B}$.
If $a=1$, then n is twice a prime power, thus $n \notin \mathcal{B}$.
Finally, suppose that $a=2$. Then

$$
\begin{aligned}
b(n)=\sum_{j=0}^{2} \lambda\left(2^{j}\right)+\sum_{j=0}^{2} \sum_{k=1}^{b} \lambda\left(2^{j} q^{k}\right) & =4+3 \sum_{k=1}^{b} \lambda\left(q^{k}\right) \\
& =1+3 \sum_{k=0}^{b} \varphi\left(q^{k}\right)=1+3 q^{b}
\end{aligned}
$$

which clearly cannot divide $n=4 q^{b}$.

3. Comments

In Theorem 2, the condition $k=1$ is equivalent to $a=3$ and $q=2 p+1$; that is, q is a Sophie Germain prime. Under the classical Hardy-Littlewood conjectures (see $[3,4]$), the number of such primes $q \leq y$ should be asymptotic to $y /(\log y)^{2}$ as $y \rightarrow \infty$; thus, we expect \mathcal{B} to contain roughly $x^{1 / 4} /(\log x)^{2}$ odd integers n of the form $n=p^{3} q$. When $k \geq 2$, then

$$
\frac{1}{\log q} \ll \frac{1}{p^{k-1} \log p}
$$

and since the series

$$
\sum_{\substack{p \geq 3 \\ k \geq 2}} \frac{1}{p^{k-1} \log p}
$$

converges, classical heuristics suggest that there should be only finitely many numbers $n \in \mathcal{B}$ with $\omega(n)=2$ and $k>1$. Unconditionally, we can only say that the number of such odd integers $n \in \mathcal{B}$ with $n \leq x$ is $O\left((\log x) /\left(\log _{2} x\right)\right)$.

We do not have any conjecture about the correct order of magnitude of $\# \mathcal{B}(x)$ as $x \rightarrow \infty$. In fact, we cannot even show that \mathcal{B} is an infinite set, although computer searches produce an abundance of examples.

Let $p_{1}, p_{2}, \ldots, p_{k}$ be distinct primes such that $\left(p_{1}-1\right)\left|\left(p_{2}-1\right)\right| \ldots \mid\left(p_{k}-1\right)$. Taking $n=p_{1} \ldots p_{k}$, we see that

$$
\begin{equation*}
b(n)=\sum_{d \mid n} \lambda(d)=1+\left(p_{1}-1\right)+2\left(p_{2}-1\right)+\cdots+2^{k-1}\left(p_{k}-1\right) . \tag{22}
\end{equation*}
$$

Indeed, this formula is clear if $k=1$. For $k>1$, put $m=p_{1} \ldots p_{k-1}$, and note that the divisibility conditions among the primes imply that $\lambda(m) \mid\left(p_{k}-1\right)$. Therefore,

$$
\begin{aligned}
b(n) & =\sum_{d \mid n} \lambda(d)=\sum_{d \mid m} \lambda(d)+\sum_{d \mid m} \operatorname{lcm}\left[p_{k}-1, \lambda(d)\right] \\
& =\sum_{d \mid m} \lambda(d)+\left(p_{k}-1\right) \tau(m)=b(m)+2^{k-1}\left(p_{k}-1\right)
\end{aligned}
$$

and an immediate induction completes the proof of formula (22). If $p>5$ is a prime congruent to 1 modulo 4 such that $q=2 p-1$ is also prime, then $p_{1}=5$, $p_{2}=p$ and $p_{3}=q$ fulfill the stated divisibility conditions; thus, with $n=5 p q$, we have

$$
b(n)=\sum_{d \mid n} \lambda(d)=1+(5-1)+2(p-1)+4(q-1)=10 p-5=5 q
$$

which is a divisor of n. The Hardy-Littlewood conjectures also predict that if x is sufficiently large, there exist roughly $x^{1 / 2} /(\log x)^{2}$ of such positive integers $n \leq x$, which suggests that the inequality $\# \mathcal{B}(x) \gg x^{1 / 2} /(\log x)^{2}$ holds.

Finally, we note that $b(2 n)=2 b(n)$ whenever n is odd, therefore $2 n \in \mathcal{B}$ whenever n is an odd element of \mathcal{B}.

References

[1] Bang, A. S., Taltheoretiske Undersøgelser, Tidsskrift Mat. 4 (5) (1886), 70-80, 130-137.
[2] De Koninck, J. M. and Luca, F., Positive integers divisible by the sum of their prime factors, Mathematika, to appear.
[3] Dickson, L. E., A new extension of Dirichlet's theorem on prime numbers, Messenger of Math. 33 (1904), 155-161.
[4] Hardy, G. H. and Littlewood, J. E., Some problems on partitio numerorum III. On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70.
[5] Ivić, A., The Riemann-Zeta Function, Theory and Applications, Dover Publications, Mineola, New York, 2003.
[6] Luca, F. and Pomerance, C., On the number of divisors of the Euler function, Publ. Math. Debrecen, to appear.
[7] Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.

Department of Mathematics, University of Missouri
Columbia, MO 65211, USA
E-mail: bbanks@math.missouri.edu
Instituto de Matemáticas, Universidad Nacional Autónoma de México
C.P. 58089, Morelia, Michoacán, MÉxico

E-mail: fluca@matmor.unam.mx

[^0]: 2000 Mathematics Subject Classification. 11N37.
 Key words and phrases. Euler function, Carmichael function.
 Received August 23, 2004.

