THE NATURAL AFFINORS ON SOME FIBER PRODUCT PRESERVING GAUGE BUNDLE FUNCTORS OF VECTOR BUNDLES

JAN KUREK AND WŁODZIMIERZ M. MIKULSKI
Dedicated to Professor Ivan Kolář on the occasion of his 70th bithday with respect and gratitude

Abstract

We classify all natural affinors on vertical fiber product preserving gauge bundle functors F on vector bundles. We explain this result for some more known such F. We present some applications. We remark a similar classification of all natural affinors on the gauge bundle functor F^{*} dual to F as above. We study also a similar problem for some (not all) not vertical fiber product preserving gauge bundle functors on vector bundles.

Introduction

Let m, n be fixed positive integers.
The category of vector bundles with m-dimensional bases and vector bundle maps with embeddings as base maps will be denoted by $\mathcal{V} \mathcal{B}_{m}$.

The category of vector bundles with m-dimensional bases and n-dimensional fibers and vector bundle embeddings will be denoted by $\mathcal{V} \mathcal{B}_{m, n}$.

Let $F: \mathcal{V B}_{m} \rightarrow \mathcal{F M}$ be a covariant functor. Let $B_{\mathcal{F M}}: \mathcal{F M} \rightarrow \mathcal{M} f$ and $B_{\mathcal{V B}_{m}}: \mathcal{V B}_{m} \rightarrow \mathcal{M} f$ be the base functors.

A gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$ is a functor F as above satisfying:
(i) (Base preservation) $B_{\mathcal{F} \mathcal{M}} \circ F=B_{\mathcal{V B}_{m}}$. Hence the induced projections form a functor transformation $\pi: F \rightarrow B_{\mathcal{V} \mathcal{B}_{m}}$.
(ii) (Localization) For every inclusion of an open vector subbundle $i_{E \mid U}: E \mid U \rightarrow$ $E, F(E \mid U)$ is the restriction $\pi^{-1}(U)$ of $\pi: F E \rightarrow B_{\mathcal{V} \mathcal{B}_{m}}(E)$ to U and $F i_{E \mid U}$ is the inclusion $\pi^{-1}(U) \rightarrow F E$.
(iii) (Regularity) F transforms smoothly parametrized systems of $\mathcal{V} \mathcal{B}_{m}$-morphisms into smoothly parametrized families of $\mathcal{F} \mathcal{M}$-morphisms.

[^0]A gauge bundle functor $F: \mathcal{V B}_{m} \rightarrow \mathcal{F} \mathcal{M}$ is of finite order r if from $j_{x}^{r} f=j_{x}^{r} g$ it follows $F_{x} f=F_{x} g$ for any $\mathcal{V} \mathcal{B}_{m}$-objects $E_{1} \rightarrow M, E_{2} \rightarrow M$, any $\mathcal{V} \mathcal{B}_{m}$-maps $f, g: E_{1} \rightarrow E_{2}$ and any $x \in M_{1}$.

A gauge bundle functor F on $\mathcal{V} \mathcal{B}_{m}$ is fiber product preserving if for any fiber product projections

$$
E_{1} \stackrel{\mathrm{pr}_{1}}{\rightleftarrows} E_{1} \times_{M} E_{2} \xrightarrow{\mathrm{pr}_{2}} E_{2}
$$

in the category $\mathcal{V} \mathcal{B}_{m}$,

$$
F E_{1} \stackrel{F \mathrm{pr}_{1}}{\rightleftarrows} F\left(E_{1} \times_{M} E_{2}\right) \xrightarrow{F \mathrm{pr}_{2}} F E_{2}
$$

are fiber product projections in the category $\mathcal{F M}$. In other words we have $F\left(E_{1} \times_{M} E_{2}\right)=F\left(E_{1}\right) \times_{M} F\left(E_{2}\right)$.

A gauge bundle functor F on $\mathcal{V B}_{m}$ is called vertical if for any $\mathcal{V} \mathcal{B}_{m}$-objects $E \rightarrow M$ and $E_{1} \rightarrow M$ with the same basis, any $x \in M$ and any $\mathcal{V} \mathcal{B}_{m}$-map $f: E \rightarrow E_{1}$ covering the identity of M the fiber restriction $F_{x} f: F_{x} E \rightarrow F_{x} E_{1}$ depends only on $f_{x}: E_{x} \rightarrow\left(E_{1}\right)_{x}$.

From now on we are interested in vertical fiber product preserving gauge bundle functors on $\mathcal{V} \mathcal{B}_{m}$.

The most known example of vertical fiber product preserving gauge bundle functor F on $\mathcal{V} \mathcal{B}_{m}$ is the so-called vertical r-jet prolongation functor $J_{v}^{r}: \mathcal{V} \mathcal{B}_{m} \rightarrow$ $\mathcal{F M}$, where for a $\mathcal{V} \mathcal{B}_{m}$-object $p: E \rightarrow M$ we have a vector bundle $J_{v}^{r} E=\left\{j_{x}^{r} \gamma \mid \gamma\right.$ is a local map $\left.M \rightarrow E_{x}, x \in M\right\}$ and for a $\mathcal{V} \mathcal{B}_{m}$-map $f: E_{1} \rightarrow E_{2}$ covering $\underline{f}: M_{1} \rightarrow M_{2}$ we have a vector bundle map $J_{v}^{r} f: J_{v}^{r} E_{1} \rightarrow J_{v}^{r} E_{2}$, where $J_{v}^{r} f\left(j_{x}^{r} \gamma\right)=$ $j_{\underline{f}(x)}^{r}\left(f \circ \gamma \circ \underline{f}^{-1}\right)$ for $j_{x}^{r} \gamma \in J_{v}^{r} E_{1}$.

Another example is the vertical Weil functor V^{A} on $\mathcal{V} \mathcal{B}_{m}$ corresponding to a Weil algebra A, where for a $\mathcal{V} \mathcal{B}_{m}$-object $p: E \rightarrow M$ we have $V^{A} E=\cup_{x \in M} T^{A}\left(E_{x}\right)$ and for a $V \mathcal{B}_{m}$-map $f: E_{1} \rightarrow E_{2}$ we have $V^{A} f=\cup_{x \in M_{1}} T^{A}\left(f_{x}\right): V^{A} E_{1} \rightarrow V^{A} E_{2}$. The functor V^{A} is equivalent to $E \otimes A$.

The fiber product $F_{1} \times_{\text {V敢 }_{m}} F_{2}: \mathcal{V} \mathcal{B}_{m} \rightarrow \mathcal{F} \mathcal{M}$ of vertical fiber product preserving gauge bundle functors $F_{1}, F_{2}: \mathcal{V} \mathcal{B}_{m} \rightarrow \mathcal{F} \mathcal{M}$ is again a vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$.

In [8], we proved that every fiber product preserving gauge bundle functor F on $\mathcal{V} \mathcal{B}_{m}$ has values in $\mathcal{V} \mathcal{B}_{m}$. (More precisely, the fiber sum map $+: E \times_{M} E \rightarrow E$, the fiber scalar multiplication $\lambda_{t}: E \rightarrow E$ for $t \in \mathbf{R}$ and the zero map $0: E \rightarrow E$ are $\mathcal{V} \mathcal{B}_{m}$-map and we can apply F. We obtain $F(+): F E \times_{M} F E \rightarrow F E$, $F\left(\lambda_{t}\right): F E \rightarrow F E$ and $F(0): F E \rightarrow F E$. Then $\left(F(+), F\left(\lambda_{t}\right), F 0\right)$ is a vector bundle structure on $F E$.) Then we can compose such functors. The composition of vertical fiber product preserving gauge bundle functors on $\mathcal{V} \mathcal{B}_{m}$ is again a vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$.

If F is a vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$, then $\left(F^{*}\right)^{*}: \mathcal{V} \mathcal{B}_{m} \rightarrow \mathcal{F} \mathcal{M},\left(F^{*}\right)^{*}(E)=\left(F E^{*}\right)^{*},\left(F^{*}\right)^{*}(f)=\left(F f^{*}\right)^{*}$ is a vertical fiber product preserving gauge bundle functor on $\mathcal{V B}_{m}$ (E^{*} denote the dual vector bundle of E).

In [8], we classified all fiber product preserving gauge bundle functors F on $\mathcal{V} \mathcal{B}_{m}$ of finite order r in terms of triples (V, H, t), where V is a finite-dimensional vector space over $\mathbf{R}, H: G_{m}^{r} \rightarrow \mathrm{GL}(V)$ is a smooth group homomorphism from $G_{m}^{r}=i n v J_{0}^{r}\left(\mathbf{R}^{m}, \mathbf{R}^{m}\right)_{0}$ into $\mathrm{GL}(V)$ and $t: \mathcal{D}_{m}^{r} \rightarrow \mathrm{gl}(V)$ is a G_{m}^{r}-equivariant unity preserving associative algebra homomorphism from $\mathcal{D}_{m}^{r}=J_{0}^{r}\left(\mathbf{R}^{m}, \mathbf{R}\right)$ into $\operatorname{gl}(V)$. Moreover, we proved that all fiber product preserving gauge bundle functors F on $\mathcal{V} \mathcal{B}_{m}$ are of finite order. Analyzing the construction on (V, H, t) one can easily seen that the triple (V, H, t) corresponding to a vertical F in question has trivial $t: \mathcal{D}_{m}^{r} \rightarrow \operatorname{gl}(V), t\left(j_{x}^{r} \gamma\right)=\gamma(0)$ id, $j_{0}^{r} \gamma \in \mathcal{D}_{m}^{r}$. Then by Fact 5 and Theorem 2 in [8] it follows that all vertical fiber product preserving gauge bundle functors on $\mathcal{V} \mathcal{B}_{m}$ can be constructed (up to $\mathcal{V} \mathcal{B}_{m}$-equivalence) as follows.

Let $V: \mathcal{M} f_{m} \rightarrow \mathcal{V} \mathcal{B}$ be a vector natural bundle. For any $\mathcal{V} \mathcal{B}_{m}$-object p : $E \rightarrow M$ we put $F^{V} E=E \otimes_{M} V M$ and for any $\mathcal{V} \mathcal{B}_{m}$-map $f: E_{1} \rightarrow E_{2}$ covering $\underline{f}: M_{1} \rightarrow E_{2}$ we put $F^{V} f=f \otimes_{\underline{f}} V \underline{f}: F^{V} E_{1} \rightarrow F^{V} E_{2}$. The correspondence $\bar{F}^{V}: \mathcal{V} \mathcal{B}_{m} \rightarrow \mathcal{F M}$ is a vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$. (For example, if $V: \mathcal{M} f_{m} \rightarrow \mathcal{V} \mathcal{B}$ is the natural vector bundle corresponding to the standard G_{m}^{r}-space \mathcal{D}_{m}^{r}, then F^{V} is equivalent with J_{v}^{r}. If $V: \mathcal{M} f_{m} \rightarrow \mathcal{V} \mathcal{B}$ is the trivial vector natural bundle with the standard fiber A, then F^{V} is equivalent to V^{A}.)

Let F be a gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$. A $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor B on F is a system of $\mathcal{V} \mathcal{B}_{m, n}$-invariant affinors $B: T F E \rightarrow T F E$ on $F E$ for any $\mathcal{V} \mathcal{B}_{m, n}$-object E. The invariance means that $B \circ T F f=T F f \circ B$ for any $\mathcal{V} \mathcal{B}_{m, n}$-map f.

In the present paper we describe all $\mathcal{V} \mathcal{B}_{m, n}$-natural affinors B on vertical fiber product preserving gauge bundle functors F on $\mathcal{V} \mathcal{B}_{m}$. We prove that $B: T F E \rightarrow$ $T F E$ is of the form

$$
B=\lambda \operatorname{Id}+\operatorname{Mod}(A)
$$

for a real number λ and a fiber bilinear $\mathcal{V} \mathcal{B}_{m, n}$-natural transformation $A: T M \times_{M}$ $F E \rightarrow F E$, where $\operatorname{Mod}(A)$ is the $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor corresponding to A (see Example 2) and Id is the identity affinor.

In Section 3, we explain this main result for some more known vertical fiber product preserving gauge bundle functors F on $\mathcal{V} \mathcal{B}_{m}$. Thus for J_{v}^{r} we reobtain the result from [15] saying that the vector space of all $\mathcal{V} \mathcal{B}_{m, n}$-natural affinors on J_{v}^{r} is 2-dimensional.

In Section 4, we remark a similar classification of $\mathcal{V B}_{m, n}$-natural affinors on a gauge bundle functor F^{*} dual to a vertical fiber product preserving gauge bundle functor F on $\mathcal{V} \mathcal{B}_{m}$.

In Section 5, we remark a similar classification of $\mathcal{V B}_{m, n}$-natural affinors for some (not all) not vertical fiber product preserving gauge bundle functors F on $\mathcal{V} \mathcal{B}_{m}$ (as the r-jet prolongation gauge bundle functor J^{r} on $\mathcal{V} \mathcal{B}_{m}$ and the vector r-tangent gauge bundle functor $T^{(r) \mathrm{fl}}$ on $\left.\mathcal{V} \mathcal{B}_{m}\right)$. Thus a similar result as the main result for not necessarily vertical F is very very probably.

Natural affinors can be used to study torsions of connections, see [5]. That is
why they have been classified in many papers, [1] - [4], [6], [8] - [16], e.t.c.
The trivial vector bundle $\mathbf{R}^{m} \times \mathbf{R}^{n}$ over \mathbf{R}^{m} with standard fiber \mathbf{R}^{n} will be denoted by $\mathbf{R}^{m, n}$. The coordinates on \mathbf{R}^{m} will be denoted by x^{1}, \ldots, x^{m}. The fiber coordinates on $\mathbf{R}^{m, n}$ will be denoted by y^{1}, \ldots, y^{n}.

All manifolds are assumed to be finite dimensional and smooth. Maps are assumed to be smooth, i.e. of class \mathcal{C}^{∞}.

1. The main result

Let F be a fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$. We are going to present examples of $\mathcal{V} \mathcal{B}_{m, n}$-natural affinors on F.

Example 1 (The identity affinor). For any $\mathcal{V} \mathcal{B}_{m, n}$-object E we have the identity map Id :TFE $\rightarrow T F E$. The family Id is a $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor on $F E$.
Example 2. Suppose we have a family A of fiber bilinear maps $A: T M \times F E \rightarrow$ $F E$ covering the identity of M for any $\mathcal{V} \mathcal{B}_{m, n}$-object $E \rightarrow M$ such that $F f \circ A=$ $A \circ\left(T \underline{f} \times_{\underline{f}} F f\right)$ for any $\mathcal{V} \mathcal{B}_{m, n}$-map $f: E_{1} \rightarrow E_{2}$ covering $\underline{f}: M_{1} \rightarrow M_{2}$, i.e. we have a fiber bilinear $\mathcal{V} \mathcal{B}_{m, n}$-natural transformation $A: T M \times_{M} F E \rightarrow F E$, where $T M$ is the tangent bundle of M and $F E$ is the vector bundle as is explained in Introduction. For any $\mathcal{V} \mathcal{B}_{m, n}$-object $p: E \rightarrow M$ we define $\operatorname{Mod}(A): T F E \rightarrow T F E$ by

$$
\operatorname{Mod}(A)(v)=\frac{d}{d t}(y+t A(T \pi(v), y)) \in T_{y} F Y, \quad v \in T_{y} F E, y \in F E
$$

where $\pi: F E \rightarrow M$ is the bundle projection. Then $\operatorname{Mod}(A)$ is a $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor on F. We call $\operatorname{Mod}(A)$ the $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor on F corresponding to A (the modification of A).

For example, in the case of $F=J_{v}^{r}$ we have a fiber bilinear $\mathcal{V B}_{m, n}$-natural transformation $A_{v}^{r}: T M \times J_{v}^{r} E \rightarrow J_{v}^{r} E, A_{v}^{r}\left(w, j_{x}^{r} \sigma\right)=j_{x}^{r}(w \sigma), w \in T_{x} M, x \in M$, $\sigma: M \rightarrow E_{x}, w \sigma \in E_{x}$ is the differential of σ with respect to w and $w \sigma: M \rightarrow E_{x}$ is the constant map.

The main result of the present paper is the following classification theorem.
Theorem 1. Let F be a vertical fiber product preserving gauge bundle functor on $\mathcal{V B}_{m}$. Any $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor B on F is the form

$$
B=\lambda \operatorname{Id}+\operatorname{Mod}(A)
$$

for some real number λ and some fiber bilinear $\mathcal{V} \mathcal{B}_{m, n}$-natural transformation A : $T M \times_{M} F E \rightarrow F E$.

Thus for $F=J_{v}^{r}$ we reobtain the result from [15] saying that any $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor on J_{v}^{r} is a linear combination with real coefficients of the identity affinor and $\operatorname{Mod}\left(A_{v}^{r}\right)$ (see Corollary 5 bellow).

We end this section by the following observation.

Let F be of the form F^{V} for some natural vector bundle $V: \mathcal{M} f_{m} \rightarrow \mathcal{V B}$ (see Introduction). Let $C: T M \times_{M} V M \rightarrow V M$ be an $\mathcal{M} f_{m}$-natural fiber bilinear transformation. Then we have a $\mathcal{V} \mathcal{B}_{m, n}$-natural fiber bilinear transformation A^{C} : $T M \times{ }_{M} F^{V} E \rightarrow F^{V} E$,

$$
A^{C}(v, e \otimes y)=e \otimes C(v, y)
$$

$y \in V_{x} M, e \in E_{x}, v \in T_{x} M, x \in M$.
Proposition 1. Let $V: \mathcal{M} f_{m} \rightarrow \mathcal{V B}$ be a natural vector bundle. Any $\mathcal{V} \mathcal{B}_{m, n^{-}}$ natural fiber bilinear transformation $A: T M \times{ }_{M} F^{V} E \rightarrow F V^{E}$ is of the form A^{C} for some $\mathcal{M} f_{m}$-natural fiber bilinear transformation $C: T M \times_{M} V M \rightarrow V M$.

Proof of Proposition 1. By the $\mathcal{V} \mathcal{B}_{m, n}$-invariance, A is determined by the $\mathcal{M} f_{m}$-natural fiber bilinear transformation

$$
T M \times_{M} V M \ni(v, y) \rightarrow\left\langle A\left(v, e_{1}\left(\pi^{T}(v)\right) \otimes y\right), e_{1}^{*}\left(\pi^{T}(v)\right)\right\rangle \in V M
$$

where e_{1}, \ldots, e_{n} is the usual basis of sections of the trivial vector bundle $M \times$ \mathbf{R}^{n} and $e_{1}^{*}, \ldots, e_{n}^{*}$ is the dual basis, and $\pi^{T}: T M \rightarrow M$ is the tangent bundle projection.

2. Proof of Theorem 1

We fix a basis in the vector space $F_{0} \mathbf{R}^{m, n}$.
Step 1. Consider

$$
T \pi \circ B:\left(T F \mathbf{R}^{m, n}\right)_{0} \tilde{=} \mathbf{R}^{m} \times F_{0} \mathbf{R}^{m, n} \times F_{0} \mathbf{R}^{m, n} \rightarrow T_{0} \mathbf{R}^{m}
$$

where $\pi: F E \rightarrow M$ is the bundle projection. Using the invariance of B with respect to the fiber homotheties we deduce that $T \pi \circ B(a, u, v)=T \pi \circ B(a, t u, t v)$ for any $u, v \in F_{0} \mathbf{R}^{m, n}, a \in \mathbf{R}^{m}, t \neq 0$. Then $T \pi \circ B(a, u, v)=T \pi \circ B(a, 0,0)$ for u, v, a as above. Then using the invariance of B with respect to $C \times \mathrm{id}_{\mathbf{R}^{n}}$ for linear isomorphisms C of \mathbf{R}^{n} we deduce that $T \pi \circ B(a, 0,0)=\lambda a$ for some real number λ. Then replacing B by $B-\lambda \mathrm{Id}$ we have $T \pi \circ B(a, u, v)=0$ for any a, u, v as above. Then B is of vertical type.

Step 2. Consider

$$
\operatorname{pr}_{2} \circ B:\left(T F \mathbf{R}^{m, n}\right)_{0} \tilde{=} \mathbf{R}^{m} \times F_{0} \mathbf{R}^{m, n} \times F_{0} \mathbf{R}^{m, n} \rightarrow F_{0} \mathbf{R}^{m, n}
$$

where $\left(V F \mathbf{R}^{m, n}\right)_{0} \cong F_{0} \mathbf{R}^{m, n} \times F_{0} \mathbf{R}^{m, n} \rightarrow F_{0} \mathbf{R}^{m, n}$ is the projection onto the second (essential) factor. Using the invariance of B with respect to the fiber homotheties we deduce that $\operatorname{pr}_{2} \circ B(a, t u, t v)=t \mathrm{pr}_{2} \circ B(a, u, v)$ for a, u, v as in Step 1. Then $\mathrm{pr}_{2} \circ B(a, u, v)$ is a system of linear combinations of the coefficients of u and v with coefficients being smooth maps in a because of the homogeneous function theorem. On the other hand, since B is an affinor, $\mathrm{pr}_{2} \circ B(a, u, v)$ is a
system of linear combinations of the coefficients of a and v with coefficients being smooth functions in u. Then

$$
\begin{equation*}
\operatorname{pr}_{2} \circ B(a, u, v)=G(a, u)+H(v) \tag{*}
\end{equation*}
$$

for some bilinear map G and some linear map H.
Let $\Phi: \mathbf{R}^{m, n} \rightarrow \mathbf{R}^{m, n}$ be a $\mathcal{V} \mathcal{B}_{m, n}$-map such that $\Phi(x, v)=\left(x, e^{x^{1}} v\right),(x, y) \in$ $\mathbf{R}^{m, n}$. Then Φ sends $\frac{\partial}{\partial x^{1}}$ into $\frac{\partial}{\partial x^{1}}+L$, where L is the Liouville vector field on $\mathbf{R}^{m, n}$. Then using the invariance of B with respect to Φ we obtain

$$
F \Phi\left(G\left(e_{1}, F \Phi^{-1}(v)\right)\right)=G\left(e_{1}, v\right)+H(v),
$$

where $e_{1}=(1,0, \ldots, 0) \in \mathbf{R}^{m}$. Since F is vertical, $F_{0} \Phi=$ id. Hence $H(v)=0$, and

$$
p r_{2} \circ B(a, u, v)=G(a, u)
$$

Then by the $\mathcal{V} \mathcal{B}_{m, n}$-invariance of B we obtain the equivariant condition

$$
F_{0} f(G(a, u))=G\left(T_{0} \underline{f}(a), F_{0} f(u)\right)
$$

for any a, u as above and any $\mathcal{V} \mathcal{B}_{m, n}$-map $f: \mathbf{R}^{m, n} \rightarrow \mathbf{R}^{m, n}$ preserving $0 \in \mathbf{R}^{m}$. Hence there is a $\mathcal{V} \mathcal{B}_{m, n}$-natural fiber bilinear transformation $A: T M \times_{M} F E \rightarrow$ $F E$ corresponding to G. It is easy to see that $B=\operatorname{Mod}(A)$.

3. Applications

Let $T^{(p, q)}=\otimes^{q} T^{*} \otimes \otimes^{p} T: \mathcal{M} f_{m} \rightarrow \mathcal{V} \mathcal{M}$ be the natural vector bundle of tensor fields of type (p, q) over m-manifolds. Let $F^{(p, r)}=F^{T^{(p, r)}}: \mathcal{V} \mathcal{B}_{m} \rightarrow \mathcal{F} \mathcal{M}$, $F^{(p, r)} E=E \otimes_{M} T^{(p, r)} M, F^{(p, q)} f=f \otimes_{\underline{f}} T^{(p, q)} \underline{f}$ be the corresponding vertical fiber product preserving gauge bundle functor (see Introduction).

Suppose that $C: T M \times_{M} T^{(p, r)} M \rightarrow T^{(p, q)} M$ is a fiber bilinear $\mathcal{M} f_{m}$-natural transformation. Using the invariance of C with respect to base homotheties on $\mathbf{R}^{m, n}$ one can easily deduce that $C=0$. Thus we have the following corollary
Corollary 1. Any $\mathcal{V B}_{m, n}$-natural affinor on $F^{(p, q)}$ as above is a constant multiple of the identity affinor.

Similarly, any $\mathcal{M} f_{m}$-natural fiber bilinear transformation $C: T M \times_{M} M \rightarrow M$, where M is treated as the zero vector bundle over M, is zero. Thus we have
Corollary 2. Any $V \mathcal{B}_{m, n}$-natural affinor on the vertical Weil bundle V^{A} is a constant multiple of the identity affinor.

Let $T^{(r)}=\left(J^{r}(\cdot, \mathbf{R})_{0}\right)^{*}: \mathcal{M} f_{m} \rightarrow \mathcal{V B}$ be the linear r-tangent bundle functor. Let $F^{(r)}=F^{T^{(r)}}: \mathcal{V} \mathcal{B}_{m} \rightarrow \mathcal{F} \mathcal{M}$ be the corresponding vertical fiber product preserving gauge bundle functor.

Suppose that $C: T M \times_{M} T^{(r)} M \rightarrow T^{(r)} M$ is a $\mathcal{M} f_{m}$-natural fiber bilinear transformation. By the rank theorem, C is determined by the contraction $\left\langle C, j_{0}^{r} x^{1}\right\rangle: T_{0}^{(r)} \mathbf{R}^{m} \rightarrow \mathbf{R}$. Then using the invariance of C with respect to the base homotheties one can easily show that this contraction is zero. Then $C=0$. Thus we have

Corollary 3. Any $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor on $F^{(r)}$ as above is a constant multiple of the identity one.

Let $T^{r *}=J^{r}(\cdot, \mathbf{R})_{0}: \mathcal{M} f_{m} \rightarrow \mathcal{V B}$ be the r-cotangent bundle functor. Let $F^{r *}=F^{T^{r *}}: \mathcal{V} \mathcal{B}_{m} \rightarrow \mathcal{F} \mathcal{M}$ be the corresponding vertical fiber product preserving gauge bundle functor.

Suppose that $C: T M \times_{M} T^{r *} M \rightarrow T^{r *} M$ is a $\mathcal{M} f_{m}$-natural fiber bilinear transformation. By the rank theorem, C is determined by the evaluations $C\left(v, j_{0}^{r} x^{1}\right) \in T_{0}^{r *} \mathbf{R}^{m}$, where $v \in T_{0} \mathbf{R}^{m}$. Then using the invariance of C with respect to the base homotheties one can easily show that these evaluations are zero. Then $C=0$. Thus we have

Corollary 4. Any $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor on $F^{r *}$ as above is a constant multiple of the identity one.

Let $E^{r *}=J^{r}(\cdot, \mathbf{R}): \mathcal{M} f_{m} \rightarrow \mathcal{V} \mathcal{B}$ be the extended r-cotangent bundle functor. As we know the corresponding vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$ is equivalent to the vertical r-jet functor J_{v}^{r} (see Introduction).

Suppose that $C: T M \times_{M} E^{r *} M \rightarrow E^{r *} M$ is a $\mathcal{M} f_{m}$-natural fiber bilinear transformation. By the rank theorem, C is determined by the evaluations $C\left(\frac{\partial}{\partial x^{1}} 0, j_{0}^{r} 1\right) \in E_{0}^{r *} \mathbf{R}^{m}$ and $C\left(\frac{\partial}{\partial x^{1}} 0, j_{0}^{r} x^{1}\right) \in E_{0}^{r *} \mathbf{R}^{m}$. Then using the invariance of C with respect to the base homotheties one can easily show that the second evaluation is a constant multiple of $j_{0}^{r} 1$ and the first one is zero. Then the vector space of all C in question is of dimension less or equal to 1 . Thus we reobtain

Corollary 5 ([15]). Any $\mathcal{V B}_{m, n}$-natural affinor on J_{v}^{r} is a linear combination with real coefficients of the identity affinor and the affinor $\operatorname{Mod}\left(A_{v}^{r}\right)$.
Corollary 6. Let F be a vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$. Any $\mathcal{V} \mathcal{B}_{m, n}$-natural 1-form ω on F is zero.

Proof. Let L be the Liouville vector field on the vector bundle $F E$. Then $\omega \otimes L$ is a $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor. Since it is not isomorphic, it is of the form $\omega \otimes L=\operatorname{Mod}(A)$ for some bilinear $\mathcal{V} \mathcal{B}_{m, n}$-natural transformation $A: T M \times_{M} F E \rightarrow F E$. Then A is of the form $A(v, y)=\lambda(v) y$ for some uniquely (and then $\mathcal{M} f_{m}$-natural) 1-form $\lambda: T M \rightarrow \mathbf{R}$ on M. But any such 1-form is zero. Then $A=0$. Then $\omega=0$.

Corollary 7. Let F be a vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$. There is no $\mathcal{V B}_{m, n}$-natural symplectic structure ω on F.

Proof. Suppose that such ω exists. Then $\omega(L, \cdot)$ is a $\mathcal{V} \mathcal{B}_{m, n}$-natural 1-form on F. Then $\omega(L, \cdot)=0$ because of Corollary 6 . Then ω is degenerate. Contradiction.

Quite similarly one can prove
Corollary 8. Let F be a vertical fiber product preserving gauge bundle functor on $\mathcal{V B}_{m}$. Then there is no $\mathcal{V} \mathcal{B}_{m, n}$-natural non-degenerate Riemannian tensor field g on F.

4. A DUAL VERSION OF THE MAIN RESULT

Let F be a vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$. Let F^{*} be the dual gauge bundle functor on $\mathcal{V} \mathcal{B}_{m, n}, F^{*} E=(F E)^{*}$ and $F^{*} f=$ $\left(F f^{-1}\right)^{*}$. Replacing in the proof of Theorem $1 F$ by F^{*} we obtain

Theorem 1'. Let F be a vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$. Let F^{*} be the dual gauge bundle functor. Any $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor B on F^{*} is of the form

$$
B=\lambda \operatorname{Id}+\operatorname{Mod}\left(A^{*}\right)
$$

for some $\lambda \in \mathbf{R}$ and some $\mathcal{V} \mathcal{B}_{m, n}$-natural fiber bilinear transformation $A: T M \times{ }_{M}$ $F M \rightarrow F M$, where $A^{*}: T M \times_{M} F^{*} E \rightarrow F^{*} E$ is the $\mathcal{V} \mathcal{B}_{m, n}$-natural fiber bilinear transformation given by $A^{*}(v, \cdot)=(A(v, \cdot))^{*}$ for any $v \in T M$.

5. The not necessarily vertical case

In our opinion, it is very probably that Theorem 1 holds for (not necessarily vertical) fiber product preserving gauge bundle functors on $\mathcal{V} \mathcal{B}_{m}$. For example, in [15] we proved.
Fact 1 ([15]). Any $\mathcal{V B}_{m, n}$-natural affinor on the r-jet prolongation functor J^{r}, which is a not vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$, is a constant multiple of the identity affinor.

The crucial property of J^{r} which we used to prove Fact 1 is that any $\mathcal{V} \mathcal{B}_{m, n^{-}}$ natural linear operator lifting linear vector fields from E to vector fields on $J^{r} E$ is a constant multiple of the flow operator.

Replacing in [15] J^{r} be an arbitrary fiber product preserving gauge bundle functor F on $\mathcal{V} \mathcal{B}_{m}$ we can obtain

Proposition 2. Let F be a (not necessarily vertical) fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$ such that any $\mathcal{V} \mathcal{B}_{m, n}$-natural linear operator lifting linear vector fields from E into vector fields on $F E$ is a constant multiple of the flow operator \mathcal{F}. Then any $\mathcal{V B}_{m, n}$-natural affinor B on F is a constant multiple of the identity affinor.

Proof. Clearly, $B \circ \mathcal{F}$ is a $\mathcal{V B}_{m, n}$-natural linear operator lifting linear vector fields to F. By the assumption, there is $\lambda \in \mathbf{R}$ such that $B \circ \mathcal{F}=\lambda \mathcal{F}$. Next we use the same proof as the one of Theorem 1 up to the formula $\left(^{*}\right)$. Obviously, after Step $1, B$ satisfies $B(\mathcal{F} X)=0$ for any linear vector field on $\mathbf{R}^{m, n}$. Putting in $\left(^{*}\right) X=a \frac{\partial}{\partial x^{1}}$ (i.e. $\left.(a, u, v)=(a, u, 0)\right)$ we get $G(a, u)=0$. Putting $X=L$, the Liouville vector field on $\mathbf{R}^{m, n}$ (i.e. $\left.(a, u, v)=(0, v, v)\right)$ we get $H(v)=0$.

In [7], we proved that the assumption of Proposition 1 is satisfied for the vector r-tangent gauge bundle functor $T^{(r) \text { fl }}$ on $\mathcal{V} \mathcal{B}_{m}$ defined as follows. Given a $\mathcal{V} \mathcal{B}_{m^{-}}$ object $p: E \rightarrow M, T^{(r) \text { fl }} E=\left(J_{\mathrm{fl}}^{r}(E, \mathbf{R})_{0}\right)^{*}$ is the vector bundle over M dual to $J_{\mathrm{fl}}^{r} E=\left\{j_{x}^{r} \gamma \mid \gamma: E \rightarrow \mathbf{R}\right.$ is fiber linear, $\left.\gamma_{x}=0, x \in M\right\}$. For every $\mathcal{V} \mathcal{B}_{m}$-map $f: E_{1} \rightarrow E_{2}$ covering $\underline{f}: M_{1} \rightarrow M_{2}, T^{(r) \mathrm{f}} f: T^{(r) \mathrm{ff}} E_{1} \rightarrow T^{(r) \mathrm{ff}} E_{2}$
is a vector bundle map covering \underline{f} such that $\left\langle T^{(r) \mathrm{f}} f(\omega), j_{\underline{f}(x)}^{r} \xi\right\rangle=\left\langle\omega, j_{x}^{r}(\xi \circ f)\right\rangle$, $\omega \in T_{x}^{(r) \mathrm{fl}} E_{1}, j_{\underline{f}(x)}^{r} \xi \in J_{\mathrm{fl}}^{r}\left(E_{2}, \mathbf{R}\right)_{0}, x \in M$. (The correspondence $T^{(r) \mathrm{f}}$ is a not vertical fiber product preserving gauge bundle functor on $\mathcal{V} \mathcal{B}_{m}$.) Thus we have
Fact 2. Any $\mathcal{V} \mathcal{B}_{m, n}$-natural affinor on $T^{(r)} \mathrm{fl}$ is a constant multiple of the identity affinor.

References

[1] Doupovec, M., Kolář, I., Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205-209.
[2] Gancarzewicz, J., Kolář, I., Natural affinors on the extended r-th order tangent bundles, Rend. Circ. Mat. Palermo (2) Suppl. 30 (1993), 95-100.
[3] Kolář, I. et al., Natural operations in differential geometry, Springer-Verlag, Berlin 1993.
[4] Kolář, I., Mikulski, W. M., Contact elements on fibered manifolds, Czechoslovak Math. J. 53(128) (2003), 1017-1030.
[5] Kolář, I., Modugno M., Torsions of connections on some natural bundles, Differential Geom. Appl. 2 (1992), 1-16.
[6] Kurek, J., Natural affinors on higher order cotangent bundles, Arch. Math. (Brno) 28 (1992), 175-180.
[7] Kurek, J., Mikulski, W. M., Some natural operators in linear vector fields, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 87-95.
[8] Mikulski, W. M., On the fiber product preserving gauge bundle functors on vector bundles, Ann. Polon. Math. 82.3 (2003), 251-264.
[9] Mikulski, W. M., Natural affinors on r-jet prolongation of the tangent bundles, Arch. Math. (Brno) 34(2) (1998), 321-328.
[10] Mikulski, W. M., Natural affinors on $\left(J^{r} T^{*}\right)^{*}$, Arch. Math. (Brno) 36 (2000), 261-267.
[11] Mikulski, W. M., The natural affinors on $\otimes^{k} T^{(r)}$, Note Mat. 19(2) (1999), 269-274.
[12] Mikulski, W. M., The natural affinors on generalized higher order tangent bundles, Rend. Mat. Appl. (7) 21 (2001), 339-349.
[13] Mikulski, W. M., Natural affinors on $\left(J^{r, s, q}\left(\cdot, \mathbf{R}^{1,1}\right)_{0}\right)^{*}$, Comment. Math. Univ. Carolin. $42(4)(2001), 655-663$.
[14] Mikulski, W. M., The natural affinors on $\left(J^{r} T^{*, a}\right)^{*}$, Acta Univ. Palack. Olomuc. Fac. Rerum Natur., Math. 40 (2001), 179-184.
[15] Mikulski, W. M., The natural affinors on the r-jet prolongations of a vector bundle, Demonstratio Math. XXXVII (3) (2004), 709-717.
[16] Tomáś, J., Natural operators transforming projectable vector fields to product preserving bundles, Rend. Circ. Mat. Palermo (2) Suppl. 59 (1999), 181-187.

Institute of Mathematics, Maria Curie-Sk£odowska University
Lublin, Pl. Marii Curie-Sklodowskiej 1, Poland
E-mail: kurek@golem.umcs.lublin.pl
Institute of Mathematics, Jagellonian University
Kraków, Reymonta 4, Poland
E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: 58A05, 58A20.
 Key words and phrases: gauge bundle functors, natural operators, natural transformations, natural affinors, jets.

 Received September 29, 2004.

