ASYMMETRIC DECOMPOSITIONS OF VECTORS IN $J B^{*}$-ALGEBRAS

AKHLAQ A. SIDDIQUI

Abstract

By investigating the extent to which variation in the coefficients of a convex combination of unitaries in a unital $J B^{*}$-algebra permits that combination to be expressed as convex combination of fewer unitaries of the same algebra, we generalise various results of R. V. Kadison and G. K. Pedersen. In the sequel, we shall give a couple of characterisations of $J B^{*}$-algebras of $t s r 1$.

Introduction

The class of $J B^{*}$-algebras was introduced by Kaplansky in 1976 (see [7]). In $[4,5]$, we presented a theory of unitary isotopes of $J B^{*}$-algebras and by applying this theory some interesting results on convex combinations of unitaries were obtained. With these results now to hand, we in this article generalise results on asymmetric decompositions of elements in C^{*}-algebras from [2] for $J B^{*}$-algebras. We investigate the extent to which variation in the coefficient of a convex combination of unitaries in a unital $J B^{*}$-algebra permits that combination to be expressed as convex combination of fewer unitaries of the same algebra. In the sequel, we shall give a couple of characterisations of $J B^{*}$-algebras of $t s r 1$ [6].

Jordan algebras and their homotopes

We begin by recalling (from [1], for instance) that a commutative (not necessarily associative) algebra (\mathcal{J}, \circ) is called a Jordan algebra if for all $x, y \in \mathcal{J}$,

$$
x^{2} \circ(x \circ y)=\left(x^{2} \circ y\right) \circ x .
$$

Let \mathcal{J} be a Jordan algebra and $x \in \mathcal{J}$. The x-homotope of \mathcal{J}, denoted by $\mathcal{J}_{[x]}$, is the Jordan algebra consisting of the same elements and linear algebra structure as \mathcal{J} but a different product, denoted by " $\cdot x$ ", defined by

$$
a \cdot x b=\{a x b\}
$$

[^0]for all a, b in $\mathcal{J}_{[x]}$. $\{p q r\}$ will always denote the Jordan triple product of p, q, r defined in the Jordan algebra \mathcal{J} as below: $\{p q r\}=(p \circ q) \circ r-(p \circ r) \circ q+(q \circ r) \circ p$.

An element x of a Jordan algebra \mathcal{J} with unit e is said to be invertible if there exists $x^{-1} \in \mathcal{J}$, called the inverse of x, such that $x \circ x^{-1}=e$ and $x^{2} \circ x^{-1}=x$. The set of all invertible elements of \mathcal{J} will be denoted by $\mathcal{J}_{\text {inv }}$. In this case, x acts as the unit for the homotope $\mathcal{J}_{\left[x^{-1}\right]}$ of \mathcal{J}.

If \mathcal{J} is a unital Jordan algebra and $x \in \mathcal{J}_{\text {inv }}$ then by x-isotope of \mathcal{J}, denoted by $\mathcal{J}^{[x]}$, we mean the x^{-1}-homotope $\mathcal{J}_{\left[x^{-1}\right]}$ of \mathcal{J}. The following lemma gives the invariance of the set of invertible elements in a unital Jordan algebra on passage to any of its isotopes:

Lemma 1. For any invertible element a in unital Jordan algebra $\mathcal{J}, \mathcal{J}_{\text {inv }}=\mathcal{J}_{\mathrm{inv}}^{[a]}$.
Proof. See from [4].
A Jordan algebra \mathcal{J} with product \circ is called a Banach Jordan algebra if there is a norm $\|\cdot\|$ on \mathcal{J} such that $(\mathcal{J},\|\cdot\|)$ is a Banach space and $\|a \circ b\| \leq\|a\|\|b\|$. If, in addition, \mathcal{J} has a unit e with $\|e\|=1$ then \mathcal{J} is called a unital Banach Jordan algebra. Throughout the sequel, we will only be considering unital Banach Jordan algebras.

Lemma 2. Let \mathcal{J} be a Banach Jordan algebra with unit e. If $x \in \mathcal{J}$ and $\|x\|<1$ then $e-x$ is invertible and $(e-x)^{-1}=\sum_{n=0}^{\infty} x^{n}$.
Proof. See from [4].

$$
J B^{*} \text {-ALGEBRAS AND THEIR UNITARY ISOTOPES }
$$

We are interested in a special class of Banach Jordan algebras, called $J B^{*}$ --algebras. These include all C^{*}-algebras as a proper subclass (see [7, 8]):

A complex Banach Jordan algebra \mathcal{J} with involution * (see [3], for instance) is called a JB**-algebras if $\left\|\left\{x x^{*} x\right\}\right\|=\|x\|^{3}$ for all $x \in \mathcal{J}$. A JB**-algebra \mathcal{J} is said to be of tsr 1 if $\mathcal{J}_{\text {inv }}$ is norm dense in \mathcal{J} (for some interesting properties of such algebras see [6]).

Let \mathcal{J} be a $J B^{*}$-algebra. $u \in \mathcal{J}$ is called unitary if $u^{*}=u^{-1}$, the inverse of u. The set of all unitary elements of \mathcal{J} will be denoted by $\mathcal{U}(\mathcal{J})$. If u is a unitary element of $J B^{*}$-algebra \mathcal{J} then the isotope $\mathcal{J}^{[u]}$ is called a unitary isotope of \mathcal{J}.
Theorem 3. Let u be a unitary element of the $J B^{*}$-algebra \mathcal{J}. Then the isotope $\mathcal{J}^{[u]}$ is a $J B^{*}$-algebra having u as its unit with respect to the original norm and the involution $*_{u}$ defined as $x^{*_{u}}=\left\{u x^{*} u\right\}$.

Proof. See Theorem 2.4 of [4].

Convex combinations of unitaries

In [4], we presented several applications of the theory of unitary isotopes of $J B^{*}$-algebras; these include a new proof of the famous Russo-Dye theorem for $J B^{*}$-algebras and various results on means and convex combinations of unitaries. Here, we need for the sequel to recall some results from [4]:

Lemma 4. For any $J B^{*}$-algebra \mathcal{J}, $\mathcal{J}_{\text {inv }} \cap(\mathcal{J})_{1} \subseteq \frac{1}{2}(\mathcal{U}(\mathcal{J})+\mathcal{U}(\mathcal{J}))$. Here, $(\mathcal{J})_{1}$ stands for the closed unit ball of \mathcal{J}.

Lemma 5. Let \mathcal{J} be a $J B^{*}$-algebra with identity element e. Let $x \in(\mathcal{J})_{1}$ be such that $\operatorname{dist}(x, \mathcal{U}(\mathcal{J})) \leq 2 \alpha$ with $\alpha<\frac{1}{2}$. Then

$$
x \in \alpha \mathcal{U}(\mathcal{J})+(1-\alpha) \mathcal{U}(\mathcal{J})
$$

Let \mathcal{J} be a unital $J B^{*}$-algebra and let $x \in \mathcal{J}$. We define two numbers $u_{c}(x)$ and $u_{m}(x)$ by

$$
\begin{aligned}
& u_{c}(x)=\min \left\{n: x=\sum_{j=1}^{n} \alpha_{j} u_{j} \text { with } u_{j} \in \mathcal{U}(\mathcal{J}), \alpha_{j} \geq 0, \sum_{j=1}^{n} \alpha_{j}=1\right\} \\
& u_{m}(x)=\min \left\{n: x=\frac{1}{n} \sum_{j=1}^{n} u_{j}, u_{j} \in \mathcal{U}(\mathcal{J})\right\}
\end{aligned}
$$

If x has no decomposition as a convex combination of elements of $\mathcal{U}(\mathcal{J})$, we define $u_{c}(x)$ to be ∞.

Lemma 6. Each convex combination of unitaries in a unital JB*-algebra \mathcal{J} is the mean of the same number of unitaries in the algebra. Hence $u_{m}(x)=u_{c}(x)$.

In the sequel, the number $u_{m}(x)=u_{c}(x)$ will be called the unitary rank of x and denoted by $u(x)$.

Asymmetric Decompositions

We now prove $J B^{*}$-algebra analogue of various results on asymmetric decompositions of elements in C^{*}-algebras from [2]. We investigate the extent to which variation in the coefficients of a convex combination of unitaries in a unital $J B^{*}$ --algebra permits that combination to be expressed as convex combination of fewer unitaries of the same algebra. As a generalisation of [2, Proposition 18] we shall give two characterisations of $J B^{*}$-algebras of $t s r 1$.

Definition 7. Let \mathcal{J} be a unital $J B^{*}$-algebra. For every positive integer n, we define $\operatorname{co}_{n} \mathcal{U}(\mathcal{J})$ as the set given by

$$
\operatorname{co}_{n} \mathcal{U}(\mathcal{J})=\left\{\sum_{i=1}^{n} \alpha_{i} u_{i}: u_{i} \in \mathcal{U}(\mathcal{J}), \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i}=1\right\}
$$

Hence

$$
c_{n} \mathcal{U}(\mathcal{J})=\{x \in \mathcal{J}: u(x) \leq n\}
$$

Lemma 8. Let \mathcal{J} be a unital $J B^{*}$-algebra and let $x \in \mathcal{J}$ be such that

$$
\begin{equation*}
\|x\| \leq 1-\epsilon \quad \text { for some } \quad \epsilon \in\left(0,(n+1)^{-1}\right) \tag{i}
\end{equation*}
$$

Let x have the distance to $\operatorname{co}_{n} \mathcal{U}(\mathcal{J})$ less than $\frac{\epsilon^{2}}{1-\epsilon}$. Then there exist unitaries $u_{i} \in \mathcal{U}(\mathcal{J}), i=1, \ldots, n+1$, such that

$$
x=\sum_{i=1}^{n} \alpha_{i} u_{i}+\epsilon u_{n+1}
$$

where $\alpha_{k} \geq 0$ and $\sum_{i=1}^{n} \alpha_{i}+\epsilon=1$.
Proof. Since $\operatorname{dist}\left(x, \operatorname{co}_{n} \mathcal{U}(\mathcal{J})\right)<\epsilon^{2}(1-\epsilon)^{-1}$, there exist (by definition of $\operatorname{co}_{n} \mathcal{U}(\mathcal{J})$) unitaries v_{1}, \ldots, v_{n} in \mathcal{J} such that

$$
\begin{equation*}
\left\|x-\sum_{j=1}^{n} \beta_{j} v_{j}\right\|<\epsilon^{2}(1-\epsilon)^{-1} \tag{ii}
\end{equation*}
$$

for some $\beta_{k} \geq 0$ with $\sum_{j=1}^{n} \beta_{j}=1$. Without loss of generality we can assume that $\beta_{j}=\frac{1}{n}$ for all j (by Lemma 6). Let w be defined by

$$
\begin{equation*}
w=\beta^{-1}\left(x-(1-\epsilon) \sum_{j=1}^{n-1} \beta_{j} v_{j}\right) \tag{iii}
\end{equation*}
$$

where β is given by

$$
\begin{equation*}
\beta=\epsilon+(1-\epsilon) \beta_{n} . \tag{iv}
\end{equation*}
$$

Then $0<\beta \leq 1$ since $\beta_{n}+\epsilon\left(1-\beta_{n}\right) \leq 1$.
Now, we observe that

$$
\begin{aligned}
\|w\| & =\left\|\beta^{-1}\left(x-(1-\epsilon) \sum_{j=1}^{n-1} \beta_{j} v_{j}\right)\right\| \\
& \left.=\beta^{-1}\right]\left\|x-\epsilon x+\epsilon x-(1-\epsilon) \sum_{j=1}^{n} \beta_{j} v_{j}+(1-\epsilon) \beta_{n} v_{n}\right\| \\
& =\beta^{-1}\left\|(1-\epsilon)\left(x-\sum_{j=1}^{n} \beta_{j} v_{j}\right)+(1-\epsilon) \beta_{n} v_{n}+\epsilon x\right\| \\
& \leq \beta^{-1}\left((1-\epsilon)\left\|x-\sum_{j=1}^{n} \beta_{j} v_{j}\right\|+(1-\epsilon) \beta_{n}\left\|v_{n}\right\|+\epsilon\|x\|\right) \\
& <\beta^{-1}\left(\epsilon^{2}+(1-\epsilon) \beta_{n}+\epsilon(1-\epsilon)\right)=1
\end{aligned}
$$

by (i)-(iv). That is, $\|w\|<1$. Hence, as $n^{-1}=\beta_{n}$, we have that

$$
\begin{aligned}
\left\|w-v_{n}\right\| & \leq\left\|w-\beta^{-1}(1-\epsilon) \beta_{n} v_{n}\right\|+\left\|\beta^{-1}(1-\epsilon) \beta_{n} v_{n}-v_{n}\right\| \\
& \leq \beta^{-1}\left((1-\epsilon)\left\|x-\sum_{j=1}^{n} \beta_{j} v_{j}\right\|+\epsilon\|x\|\right)+\left(1-\beta^{-1}(1-\epsilon) \beta_{n}\right)\left\|v_{n}\right\| \quad \text { (by (iii)) } \\
& \leq \beta^{-1}\left(\epsilon^{2}+\epsilon(1-\epsilon)\right)+1-\beta^{-1}(1-\epsilon) \beta_{n} \quad(\text { by (i) and (ii) }) \\
& =\beta^{-1}(\epsilon+1-(1-\epsilon))=2 \epsilon \beta^{-1} \\
& \leq 2 n\left(\epsilon^{-1}+n-1\right)^{-1} \quad(\text { by }(\text { iv }))<1
\end{aligned}
$$

since $\epsilon<(n+1)^{-1}$ by (i).
Now, since $\left\|w-v_{n}\right\| \leq 2 \epsilon \beta^{-1}<1$ and since v_{n} is a unitary, we get from Lemma 5 the existence of two unitaries u_{n}, u_{n+1} in \mathcal{J} such that

$$
w=\left(1-\epsilon \beta^{-1}\right) u_{n}+\epsilon \beta^{-1} u_{n+1} .
$$

Hence, by (iii),

$$
x=\beta w+(1-\epsilon) \sum_{j=1}^{n-1} \beta_{j} v_{j}=(1-\epsilon) \sum_{j=1}^{n-1} \beta_{j} v_{j}+(\beta-\epsilon) u_{n}+\epsilon u_{n+1} .
$$

But $\beta-\epsilon=(1-\epsilon) \beta_{n}$. Therefore, $x=(1-\epsilon) \sum_{j=1}^{n-1} \beta_{j} v_{j}+(1-\epsilon) \beta_{n} u_{n}+\epsilon u_{n+1}$. Thus

$$
x=\sum_{i=1}^{n} \alpha_{i} u_{i}+\epsilon u_{n+1} \quad \text { with } \quad \alpha_{i}=(1-\epsilon) \beta_{i}
$$

for $i=1, \ldots, n$ and $u_{i}=v_{i}$ for $i=1, \ldots, n-1$. Clearly, each $\alpha_{k} \geq 0$ and $\sum_{i=1}^{n} \alpha_{i}+\epsilon=(1-\epsilon) \sum_{i=1}^{n} \beta_{i}+\epsilon=1$.

Definition 9. For any unital $J B^{*}$-algebra \mathcal{J}, we define $\operatorname{co}_{n+} \mathcal{U}(\mathcal{J})$ as the set of elements x in \mathcal{J} with the property that for each real number $\epsilon>0$ there is a convex decomposition $\sum_{i=1}^{n+1} \alpha_{i} u_{i}$ of x with $u_{i} \in \mathcal{U}(\mathcal{J})$ and $\alpha_{n+1}<\epsilon$.
Lemma 10. Let \mathcal{J} be a unital $J B^{*}$-algebra, $(\mathcal{J})_{1}^{\circ}$ and $\overline{c o}_{n} \mathcal{U}(\mathcal{J})$ denote the open unit ball and norm closure of the set $\cos _{n} \mathcal{U}(\mathcal{J})$ in \mathcal{J}, respectively. Then

$$
(\mathcal{J})_{1}^{\circ} \cap \overline{c o}_{n} \mathcal{U}(\mathcal{J})=(\mathcal{J})_{1}^{\circ} \cap c o_{n+} \mathcal{U}(\mathcal{J}) .
$$

Proof. If $x \in(\mathcal{J})_{1}^{\circ} \cap c o_{n+} \mathcal{U}(\mathcal{J})$, then for arbitrary but fixed $\epsilon>0$, there exist u_{1}, \ldots, u_{n+1} in $\mathcal{U}(\mathcal{J})$ and non-negative real numbers $\alpha_{1}, \ldots, \alpha_{n+1}$ with $\sum_{i=1}^{n+1} \alpha_{i}=$ 1 such that $\alpha_{n+1}<\frac{\epsilon}{2}$ and $x=\sum_{i=1}^{n+1} \alpha_{i} u_{i}$. We observe

$$
\left\|x-\sum_{i=1}^{n-1} \alpha_{i} u_{i}-\left(\alpha_{n}+\alpha_{n+1}\right) u_{n}\right\|=\left\|-\alpha_{n+1} u_{n}+\alpha_{n+1} u_{n+1}\right\| \leq 2 \alpha_{n+1}<\epsilon
$$

But ϵ is an arbitrary positive real number. It follows that $x \in(\mathcal{J})_{1}^{\circ} \cap \overline{c o}_{n} \mathcal{U}(\mathcal{J})$.

Conversely, let $x \in(\mathcal{J})_{1}^{\circ} \cap \overline{c o}_{n} \mathcal{U}(\mathcal{J})$. Let $\epsilon>0$. Reducing ϵ if necessary we may assume that $\epsilon<\frac{1}{n+1}$ and $\|x\|<1-\epsilon$. Now, since $\operatorname{dist}\left(x, \operatorname{co}_{n} \mathcal{U}(\mathcal{J})\right)=$ $0<\frac{\epsilon^{2}}{1-\epsilon}$, the previous Lemma 8 is applicable so that $x \in c o_{n+} \mathcal{U}(\mathcal{J})$. Hence, $x \in(\mathcal{J})_{i}^{\circ} \cap c o_{n+} \mathcal{U}(\mathcal{J})$.

Now, by using above Lemma 10 we get the following characterisations of $J B^{*}$ --algebras that are the norm closures of their invertible elements:
Theorem 11. Let \mathcal{J} be a unital $J B^{*}$-algebra. The following statements are equivalent:
(i) \mathcal{J} is of tsr 1 ;
(ii) $\frac{1}{2} \mathcal{U}(\mathcal{J})+\frac{1}{2} \mathcal{U}(\mathcal{J})$ is norm dense in $(\mathcal{J})_{1}$;
(iii) $(\mathcal{J})_{i}^{\circ} \subseteq \operatorname{co}_{2+} \mathcal{U}(\mathcal{J})$.

Proof. $(\mathrm{i}) \Rightarrow\left(\right.$ ii): Let $x \in(\mathcal{J})_{1}$. By (i), there exists a sequence $\left(x_{n}\right)$ in $\mathcal{J}_{\text {inv }}$ which converges uniformly to x. Putting $\alpha_{n}=\left(\max \left\{1,\left\|x_{n}\right\|\right\}\right)^{-1}$ we see that

$$
\left\|x-\alpha_{n} x_{n}\right\| \leq\left\|x-x_{n}\right\|+\left\|x_{n}-\alpha_{n} x_{n}\right\|
$$

where we note that

$$
\left\|x_{n}-\alpha_{n} x_{n}\right\|=\left(1-\alpha_{n}\right)\left\|x_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

since $\alpha_{n} \rightarrow 1$ as $\left\|x_{n}\right\| \rightarrow\|x\| \leq 1$ when $n \rightarrow \infty$. Therefore,

$$
\begin{equation*}
\left\|x-\alpha_{n} x_{n}\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{I}
\end{equation*}
$$

Further, we note that for each $n, \alpha_{n} x_{n} \in(\mathcal{J})_{1} \cap \mathcal{J}_{\text {inv }}$ because $x_{n} \in \mathcal{J}_{\text {inv }}$ and

$$
\left\|\alpha_{n} x_{n}\right\|= \begin{cases}\left\|x_{n}\right\|<1 & \text { if } \quad \alpha_{n}=1 \\ \| \| x_{n}\left\|^{-1} x_{n}\right\|=1 & \text { otherwise }\end{cases}
$$

Since each $\alpha_{n} x_{n} \in \mathcal{J}_{\text {inv }} \cap(\mathcal{J})_{1}$, it follows from Lemma 4 that

$$
\alpha_{n} x_{n} \in\left(\frac{1}{2} \mathcal{U}(\mathcal{J})+\frac{1}{2} \mathcal{U}(\mathcal{J})\right) .
$$

This together with (I) gives the norm density of $\frac{1}{2} \mathcal{U}(\mathcal{J})+\frac{1}{2} \mathcal{U}(\mathcal{J})$ in $(\mathcal{J})_{1}$.
(ii) $\Rightarrow(\mathrm{iii})$: By the hypothesis, $\overline{c o}_{2} \mathcal{U}(\mathcal{J})=(\mathcal{J})_{1}$ so that

$$
(\mathcal{J})_{1}^{\circ}=(\mathcal{J})_{1}^{\circ} \cap(\mathcal{J})_{1}=(\mathcal{J})_{1}^{\circ} \cap \overline{c o}_{2} \mathcal{U}(\mathcal{J})
$$

And, by Lemma 10 ,

$$
(\mathcal{J})_{1}^{\circ} \cap \overline{c o}_{2} \mathcal{U}(\mathcal{J})=(\mathcal{J})_{1}^{\circ} \cap c o_{2+} \mathcal{U}(\mathcal{J})
$$

Thus

$$
(\mathcal{J})_{1}^{\circ} \subseteq c o_{2+} \mathcal{U}(\mathcal{J})
$$

(iii) \Rightarrow (i): It is sufficient to show that $(\mathcal{J})_{i}^{\circ} \subseteq \overline{\mathcal{J}}_{\text {inv }}$. Choose any positive $\epsilon \leq \frac{1}{3}$. Under the hypothesis, each $x \in(\mathcal{J})_{1}^{\circ}$ has the form $\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{3} u_{3}$ with $u_{1}, u_{2}, u_{3} \in \mathcal{U}(\mathcal{J}), \alpha_{1}, \alpha_{2}, \alpha_{3} \geq 0$ such that $\alpha_{3}<\epsilon\left(\leq \frac{1}{3}\right)$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$. Without any loss of generality, we assume that $\alpha_{1} \leq \alpha_{2}$.

Case 1. If $\alpha_{1}=0$, then $\alpha_{2}+\alpha_{3}=1$ together with $\alpha_{3} \leq \frac{1}{3}$ gives that $\alpha_{2}>\frac{1}{3} \geq \alpha_{3}$, hence $\left\|\alpha_{2}^{-1} \alpha_{3} u_{3}\right\|=\alpha_{2}^{-1} \alpha_{3}<1$. Then, by Lemma 2 and Theorem 3, $u_{2}+\alpha_{2}^{-1} \alpha_{3} u_{3}$ is invertible in the isotope $\mathcal{J}^{\left[u_{2}\right]}$. Therefore, by Lemma $1, u_{2}+\alpha_{2}^{-1} \alpha_{3} u_{3} \in \mathcal{J}_{\text {inv }}$ and hence $x \in \mathcal{J}_{\text {inv }}$, in this case.
Case 2. If $\alpha_{1}>0$, then we put $\delta=\min \left\{\epsilon, \frac{1}{2} \alpha_{1}\right\}$ and let $y=\left(\alpha_{1}-\delta\right) u_{1}+\left(\alpha_{2}+\right.$ $\left.\alpha_{3}+\delta\right) u_{2}$. Then

$$
\begin{align*}
& \|x-y\|=\left\|\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{3} u_{3}-\left(\left(\alpha_{1}-\delta\right) u_{1}+\left(\alpha_{2}+\alpha_{3}+\delta\right) u_{2}\right)\right\| \tag{II}\\
& \left\|\delta u_{1}-\left(\alpha_{3}+\delta\right) u_{2}+\alpha_{3} u_{3}\right\| \leq 2\left(\alpha_{3}+\delta\right)<4 \epsilon
\end{align*}
$$

since $\alpha_{3}<\epsilon$.
Now, we observe that $\alpha_{1}>0$ together with the non-negativity of α_{3}, positivity of ϵ, the construction of δ and the assumption $\alpha_{1} \leq \alpha_{2}$ gives that $\frac{\alpha_{1}-\delta}{\alpha_{2}+\alpha_{3}+\delta}<1$. So that $\left\|\frac{\alpha_{1}-\delta}{\alpha_{2}+\alpha_{3}+\delta} u_{1}\right\|=\frac{\alpha_{1}-\delta}{\alpha_{2}+\alpha_{3}+\delta}<1$. We deduce (as we did in the Case 1), by Lemmas 1, 2 and Theorem 3, that

$$
u_{2}+\frac{\alpha_{1}-\delta}{\alpha_{2}+\alpha_{3}+\delta} u_{1} \in \mathcal{J}_{\mathrm{inv}}
$$

Hence, $y \in \mathcal{J}_{\text {inv }}$. This together with (II) implies that $x \in \overline{\mathcal{J i n v}_{\text {inv }}}$.
Remark 12. Generally, it is not possible to replace $\mathrm{co}_{2+} \mathcal{U}(\mathcal{J})$ by $\mathrm{co}_{2} \mathcal{U}(\mathcal{J})$ in the statement (iii) of above Theorem 11. This follows from the fact that any C^{*} algebra can be considered as a $J B^{*}$-algebra and the illustration given with the C^{*}-algebra of convergent complex sequences, by Kadison and Pedersen in [2].

Theorem 13. Let \mathcal{J} be a unital $J B^{*}$-algebra and let $x \in \mathcal{J}$ be such that $u(x)=$ $n \geq 3$. Suppose that $x=\sum_{i=1}^{n} \alpha_{i} u_{i}$, where $u_{1}, \ldots, u_{n} \in \mathcal{U}(\mathcal{J})$ and $\alpha_{1}, \ldots, \alpha_{n}$ are non-negative real numbers with sum equal to 1 . Then
(i) $\alpha_{i} \leq \alpha_{j}+\alpha_{k},($ for $j \neq k)$;
(ii) $\frac{1}{n-1} \leq \alpha_{j}+\alpha_{k},($ for $j \neq k)$;
(iii) $\alpha_{j} \leq \frac{2}{n+1}, \forall j$.

Proof. We may assume that $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}$. If $\alpha_{n}>\alpha_{1}+\alpha_{2}$, then

$$
\| \alpha_{n}^{-1}\left(\alpha_{1} u_{1}+\alpha_{2} u_{2} \| \leq \alpha_{n}^{-1}\left(\left\|\alpha_{1} u_{1}\right\|+\left\|\alpha_{2} u_{2}\right\|\right)<1 .\right.
$$

So, by Lemmas 1, 2 and Theorem 3 (similarly as in the proof of previous Theorem 11), we see that $u_{n}+\alpha_{n}^{-1}\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}\right) \in \mathcal{J}_{\text {inv }}$ and hence

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{n}\right)^{-1}\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{n} u_{n}\right) \in \mathcal{J}_{\text {inv }}
$$

such that

$$
\left\|\left(\alpha_{1}+\alpha_{2}+\alpha_{n}\right)^{-1}\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{n} u_{n}\right)\right\| \leq 1
$$

Therefore, by Lemma 4,

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{n}\right)^{-1}\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{n} u_{n}\right)=\frac{1}{2}\left(v_{1}+v_{2}\right)
$$

for some $v_{1}, v_{2} \in \mathcal{U}(\mathcal{J})$. Hence

$$
\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{n} u_{n}=\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{n}\right)\left(v_{1}+v_{2}\right)
$$

provides a convex decomposition of x in terms of $n-1$ unitaries in $\mathcal{U}(\mathcal{J})$. This contradicts the hypothesis that $u(x)=n$. This gives (i) as

$$
\alpha_{i} \leq \alpha_{n} \leq \alpha_{1}+\alpha_{2} \leq \alpha_{j}+\alpha_{k} \quad \text { for all } \quad j \neq k
$$

Now, for $j \neq k$, we get from (i) that

$$
\begin{aligned}
1=\sum_{i=1}^{n} \alpha_{i} & \leq \overbrace{\left(\alpha_{1}+\alpha_{2}\right)+\left(\alpha_{1}+\alpha_{2}\right)+\cdots+\left(\alpha_{1}+\alpha_{2}\right)}^{(n-1)} \\
& =(n-1)\left(\alpha_{1}+\alpha_{2}\right) \leq(n-1)\left(\alpha_{j}+\alpha_{k}\right)
\end{aligned}
$$

since $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}$. This gives (ii).
Finally, we see from (i) that

$$
\begin{aligned}
(n-1) \alpha_{n} & \leq \overbrace{\left(\alpha_{1}+\alpha_{2}\right)+\left(\alpha_{2}+\alpha_{3}\right)+\cdots+\left(\alpha_{n-2}+\alpha_{n-1}\right)+\left(\alpha_{n-1}+\alpha_{1}\right)}^{(n-1)} \\
& =2\left(\alpha_{1}+\cdots+\alpha_{n-1}\right)=2\left(1-\alpha_{n}\right) .
\end{aligned}
$$

This gives that $\alpha_{n} \leq \frac{2}{n+1}$. Thus $\alpha_{j} \leq \alpha_{n} \leq \frac{2}{n+1}$ for all j.
Acknowledgement. Author is indebted to Dr. Martin A. Youngson for his help and encouragement during this work.

References

[1] Jacobson, N., Structure and representations of Jordan algebras, AMS Providence, Rhode Island, 1968.
[2] Kadison, R. V. and Pedersen, G. K., Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
[3] Rudin, W., Functional analysis, McGraw-Hill, New York, 1973.
[4] Siddiqui, A. A., Positivity of invertibles in unitary isotopes of $J B^{*}$-algebras, Preprint.
[5] Siddiqui, A. A., Self-adjointness in unitary isotopes of JB*-algebras, Preprint.
[6] Siddiqui, A. A., JB*-algebras of tsr 1, Preprint.
[7] Wright, J. D. M., Jordan C^{*}-algebras, Mich. Math. J. 24 (1977), 291-302.
[8] Youngson, M. A., A Vidav theorem for Banach Jordan algebras, Math. Proc. Cambridge Philos. Soc. 84 (1978), 263-272.

Department of Mathematics, The University of Lahore
1Km Raiwind Road, Lahore, Pakistan
E-mail: saakhlaq@yahoo.com

[^0]: 2000 Mathematics Subject Classification: 17C65, 46H70, 46L70.
 Key words and phrases: C^{*}-algebras, Jordan algebras, $J B^{*}$-algebras, unitary isotopes.
 Received February 21, 2005

