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ASYMMETRIC DECOMPOSITIONS

OF VECTORS IN JB∗-ALGEBRAS

AKHLAQ A. SIDDIQUI

Abstract. By investigating the extent to which variation in the coefficients
of a convex combination of unitaries in a unital JB∗-algebra permits that
combination to be expressed as convex combination of fewer unitaries of the
same algebra, we generalise various results of R. V. Kadison and G. K. Peder-
sen. In the sequel, we shall give a couple of characterisations of JB∗-algebras
of tsr 1.

Introduction

The class of JB∗-algebras was introduced by Kaplansky in 1976 (see [7]). In
[4, 5], we presented a theory of unitary isotopes of JB∗-algebras and by apply-
ing this theory some interesting results on convex combinations of unitaries were
obtained. With these results now to hand, we in this article generalise results on
asymmetric decompositions of elements in C∗-algebras from [2] for JB∗-algebras.
We investigate the extent to which variation in the coefficient of a convex combina-
tion of unitaries in a unital JB∗-algebra permits that combination to be expressed
as convex combination of fewer unitaries of the same algebra. In the sequel, we
shall give a couple of characterisations of JB∗-algebras of tsr 1 [6].

Jordan algebras and their homotopes

We begin by recalling (from [1], for instance) that a commutative (not neces-

sarily associative) algebra (J , ◦) is called a Jordan algebra if for all x, y ∈ J ,

x2 ◦ (x ◦ y) = (x2 ◦ y) ◦ x .

Let J be a Jordan algebra and x ∈ J . The x-homotope of J , denoted by J[x],
is the Jordan algebra consisting of the same elements and linear algebra structure
as J but a different product, denoted by “ ·x”, defined by

a ·x b = {axb}
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for all a, b in J[x]. {pqr} will always denote the Jordan triple product of p, q, r

defined in the Jordan algebra J as below: {pqr} = (p◦q)◦r−(p◦r)◦q+(q◦r)◦p.
An element x of a Jordan algebra J with unit e is said to be invertible if there

exists x−1 ∈ J , called the inverse of x, such that x ◦ x−1 = e and x2 ◦ x−1 = x.
The set of all invertible elements of J will be denoted by Jinv. In this case, x acts
as the unit for the homotope J[x−1] of J .

If J is a unital Jordan algebra and x ∈ Jinv then by x-isotope of J , denoted
by J [x], we mean the x−1-homotope J[x−1] of J . The following lemma gives the
invariance of the set of invertible elements in a unital Jordan algebra on passage
to any of its isotopes:

Lemma 1. For any invertible element a in unital Jordan algebra J , Jinv = J
[a]
inv.

Proof. See from [4]. �

A Jordan algebra J with product ◦ is called a Banach Jordan algebra if there
is a norm ‖ ·‖ on J such that (J , ‖ ·‖) is a Banach space and ‖a◦ b‖ ≤ ‖a‖ ‖b‖. If,
in addition, J has a unit e with ‖e‖ = 1 then J is called a unital Banach Jordan
algebra. Throughout the sequel, we will only be considering unital Banach Jordan
algebras.

Lemma 2. Let J be a Banach Jordan algebra with unit e. If x ∈ J and ‖x‖ < 1
then e − x is invertible and (e − x)−1 =

∑
∞

n=0 xn.

Proof. See from [4]. �

JB∗-algebras and their unitary isotopes

We are interested in a special class of Banach Jordan algebras, called JB∗-
-algebras. These include all C∗-algebras as a proper subclass (see [7, 8]):

A complex Banach Jordan algebra J with involution ∗ (see [3], for instance) is

called a JB∗-algebras if ‖{xx∗x}‖ = ‖x‖3 for all x ∈ J . A JB∗-algebra J is said

to be of tsr 1 if Jinv is norm dense in J (for some interesting properties of such
algebras see [6]).

Let J be a JB∗-algebra. u ∈ J is called unitary if u∗ = u−1, the inverse of u.
The set of all unitary elements of J will be denoted by U(J ). If u is a unitary
element of JB∗-algebra J then the isotope J [u] is called a unitary isotope of J .

Theorem 3. Let u be a unitary element of the JB∗-algebra J . Then the isotope

J [u] is a JB∗-algebra having u as its unit with respect to the original norm and

the involution ∗u defined as x∗u = {ux∗u}.

Proof. See Theorem 2.4 of [4]. �

Convex combinations of unitaries

In [4], we presented several applications of the theory of unitary isotopes of
JB∗-algebras ; these include a new proof of the famous Russo-Dye theorem for
JB∗-algebras and various results on means and convex combinations of unitaries.
Here, we need for the sequel to recall some results from [4]:
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Lemma 4. For any JB∗-algebra J , Jinv ∩ (J )1 ⊆ 1
2 (U(J ) +U(J )). Here, (J )1

stands for the closed unit ball of J .

Lemma 5. Let J be a JB∗-algebra with identity element e. Let x ∈ (J )1 be such

that dist(x,U(J )) ≤ 2α with α < 1
2 . Then

x ∈ αU(J ) + (1 − α)U(J ) .

Let J be a unital JB∗-algebra and let x ∈ J . We define two numbers uc(x) and

um(x) by

uc(x) = min
{

n : x =

n∑

j=1

αjuj with uj ∈ U(J ) , αj ≥ 0,

n∑

j=1

αj = 1
}

,

um(x) = min{n : x =
1

n

n∑

j=1

uj , uj ∈ U(J )} .

If x has no decomposition as a convex combination of elements of U(J ), we define

uc(x) to be ∞ .

Lemma 6. Each convex combination of unitaries in a unital JB∗-algebra J is

the mean of the same number of unitaries in the algebra. Hence um(x) = uc(x) .

In the sequel, the number um(x) = uc(x) will be called the unitary rank of x

and denoted by u(x).

Asymmetric decompositions

We now prove JB∗-algebra analogue of various results on asymmetric decom-
positions of elements in C∗-algebras from [2]. We investigate the extent to which
variation in the coefficients of a convex combination of unitaries in a unital JB∗-
-algebra permits that combination to be expressed as convex combination of fewer
unitaries of the same algebra. As a generalisation of [2, Proposition 18] we shall
give two characterisations of JB∗-algebras of tsr 1.

Definition 7. Let J be a unital JB∗-algebra. For every positive integer n, we
define con U(J ) as the set given by

con U(J ) =
{ n∑

i=1

αiui : ui ∈ U(J ), αi ≥ 0,

n∑

i=1

αi = 1
}

.

Hence

con U(J ) = {x ∈ J : u(x) ≤ n} .

Lemma 8. Let J be a unital JB∗-algebra and let x ∈ J be such that

(i) ‖x‖ ≤ 1 − ǫ for some ǫ ∈ (0, (n + 1)−1) .
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Let x have the distance to con U(J ) less than ǫ2

1−ǫ
. Then there exist unitaries

ui ∈ U(J ), i = 1, . . . , n + 1, such that

x =

n∑

i=1

αiui + ǫun+1

where αk ≥ 0 and
∑n

i=1 αi + ǫ = 1 .

Proof. Since dist(x, con U(J )) < ǫ2(1−ǫ)−1, there exist (by definition of con U(J ))
unitaries v1, . . . , vn in J such that

(ii)
∥
∥
∥x −

n∑

j=1

βjvj

∥
∥
∥ < ǫ2(1 − ǫ)−1

for some βk ≥ 0 with
∑n

j=1 βj = 1. Without loss of generality we can assume that

βj = 1
n

for all j (by Lemma 6). Let w be defined by

w = β−1
(

x − (1 − ǫ)

n−1∑

j=1

βjvj

)

(iii)

where β is given by

β = ǫ + (1 − ǫ)βn .(iv)

Then 0 < β ≤ 1 since βn + ǫ(1 − βn) ≤ 1.
Now, we observe that

‖w‖ =
∥
∥
∥β−1

(

x − (1 − ǫ)

n−1∑

j=1

βjvj

)∥
∥
∥

= β−1]
∥
∥
∥x − ǫx + ǫx − (1 − ǫ)

n∑

j=1

βjvj + (1 − ǫ)βnvn

∥
∥
∥

= β−1
∥
∥
∥(1 − ǫ)(x −

n∑

j=1

βjvj) + (1 − ǫ)βnvn + ǫx‖

≤ β−1((1 − ǫ)‖x −

n∑

j=1

βjvj‖ + (1 − ǫ)βn‖vn‖ + ǫ‖x‖)

< β−1(ǫ2 + (1 − ǫ)βn + ǫ(1 − ǫ)) = 1
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by (i)–(iv). That is, ‖w‖ < 1. Hence, as n−1 = βn, we have that

‖w − vn‖ ≤ ‖w − β−1(1 − ǫ)βnvn‖ + ‖β−1(1 − ǫ)βnvn − vn‖

≤ β−1
(

(1 − ǫ)
∥
∥
∥x −

n∑

j=1

βjvj

∥
∥
∥ + ǫ‖x‖

)

+ (1 − β−1(1 − ǫ)βn)‖vn‖ (by (iii))

≤ β−1
(
ǫ2 + ǫ(1 − ǫ)

)
+ 1 − β−1(1 − ǫ)βn (by (i) and (ii))

= β−1
(
ǫ + 1 − (1 − ǫ)

)
= 2ǫβ−1

≤ 2n(ǫ−1 + n − 1)−1 (by (iv)) < 1

since ǫ < (n + 1)−1 by (i).
Now, since ‖w−vn‖ ≤ 2ǫβ−1 < 1 and since vn is a unitary, we get from Lemma

5 the existence of two unitaries un, un+1 in J such that

w = (1 − ǫβ−1)un + ǫβ−1un+1 .

Hence, by (iii),

x = βw + (1 − ǫ)

n−1∑

j=1

βjvj = (1 − ǫ)

n−1∑

j=1

βjvj + (β − ǫ)un + ǫun+1 .

But β − ǫ = (1 − ǫ)βn. Therefore, x = (1 − ǫ)
∑n−1

j=1 βjvj + (1 − ǫ)βnun + ǫun+1.
Thus

x =
n∑

i=1

αiui + ǫun+1 with αi = (1 − ǫ)βi

for i = 1, . . . , n and ui = vi for i = 1, . . . , n − 1. Clearly, each αk ≥ 0 and
∑n

i=1 αi + ǫ = (1 − ǫ)
∑n

i=1 βi + ǫ = 1. �

Definition 9. For any unital JB∗-algebra J , we define con+ U(J ) as the set of
elements x in J with the property that for each real number ǫ > 0 there is a

convex decomposition
∑n+1

i=1 αiui of x with ui ∈ U(J ) and αn+1 < ǫ.

Lemma 10. Let J be a unital JB∗-algebra, (J )◦1 and con U(J ) denote the open

unit ball and norm closure of the set con U(J ) in J , respectively. Then

(J )◦1 ∩ con U(J ) = (J )◦1 ∩ con+ U(J ) .

Proof. If x ∈ (J )◦1 ∩ con+ U(J ), then for arbitrary but fixed ǫ > 0, there exist

u1, . . . , un+1 in U(J ) and non-negative real numbers α1, . . . , αn+1 with
∑n+1

i=1 αi =

1 such that αn+1 < ǫ
2 and x =

∑n+1
i=1 αiui. We observe

‖x −

n−1∑

i=1

αiui − (αn + αn+1)un‖ = ‖ − αn+1un + αn+1un+1‖ ≤ 2αn+1 < ǫ .

But ǫ is an arbitrary positive real number. It follows that x ∈ (J )◦1 ∩ con U(J ).
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Conversely, let x ∈ (J )◦1 ∩ con U(J ). Let ǫ > 0. Reducing ǫ if necessary we
may assume that ǫ < 1

n+1 and ‖x‖ < 1 − ǫ. Now, since dist(x, con U(J )) =

0 < ǫ2

1−ǫ
, the previous Lemma 8 is applicable so that x ∈ con+ U(J ). Hence,

x ∈ (J )◦1 ∩ con+ U(J ). �

Now, by using above Lemma 10 we get the following characterisations of JB∗-
-algebras that are the norm closures of their invertible elements:

Theorem 11. Let J be a unital JB∗-algebra. The following statements are equi-

valent :

(i) J is of tsr 1;
(ii) 1

2 U(J ) + 1
2 U(J ) is norm dense in (J )1;

(iii) (J )◦1 ⊆ co2+ U(J ).

Proof. (i)⇒(ii): Let x ∈ (J )1. By (i), there exists a sequence (xn) in Jinv which
converges uniformly to x. Putting αn = (max{1, ‖xn‖})

−1 we see that

‖x − αnxn‖ ≤ ‖x − xn‖ + ‖xn − αnxn‖

where we note that

‖xn − αnxn‖ = (1 − αn)‖xn‖ → 0 as n → ∞

since αn → 1 as ‖xn‖ → ‖x‖ ≤ 1 when n → ∞. Therefore,

(I) ‖x − αnxn‖ → 0 as n → ∞ .

Further, we note that for each n, αnxn ∈ (J )1 ∩ Jinv because xn ∈ Jinv and

‖αnxn‖ =

{

‖xn‖ < 1 if αn = 1 ;

‖ ‖xn‖
−1xn‖ = 1 otherwise .

Since each αnxn ∈ Jinv ∩ (J )1, it follows from Lemma 4 that

αnxn ∈
(1

2
U(J ) +

1

2
U(J )

)

.

This together with (I) gives the norm density of 1
2 U(J ) + 1

2 U(J ) in (J )1 .

(ii)⇒(iii): By the hypothesis, co2 U(J ) = (J )1 so that

(J )◦1 = (J )◦1 ∩ (J )1 = (J )◦1 ∩ co2 U(J ) .

And, by Lemma 10 ,

(J )◦1 ∩ co2 U(J ) = (J )◦1 ∩ co2+ U(J ) .

Thus

(J )◦1 ⊆ co2+ U(J ) .

(iii)⇒(i): It is sufficient to show that (J )◦1 ⊆ J̄inv. Choose any positive ǫ ≤ 1
3 .

Under the hypothesis, each x ∈ (J )◦1 has the form α1u1 + α2u2 + α3u3 with
u1, u2, u3 ∈ U(J ), α1, α2, α3 ≥ 0 such that α3 < ǫ

(
≤ 1

3

)
and α1 + α2 + α3 = 1.

Without any loss of generality, we assume that α1 ≤ α2.
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Case 1. If α1 = 0, then α2 +α3 = 1 together with α3 ≤ 1
3 gives that α2 > 1

3 ≥ α3,

hence ‖α−1
2 α3u3‖ = α−1

2 α3 < 1. Then, by Lemma 2 and Theorem 3, u2 +α−1
2 α3u3

is invertible in the isotope J [u2]. Therefore, by Lemma 1, u2 + α−1
2 α3u3 ∈ Jinv

and hence x ∈ Jinv, in this case.

Case 2. If α1 > 0, then we put δ = min{ǫ, 1
2α1} and let y = (α1 − δ)u1 + (α2 +

α3 + δ)u2. Then

‖x − y‖ = ‖α1u1 + α2u2 + α3u3 − ((α1 − δ)u1 + (α2 + α3 + δ)u2)‖(II)

‖δu1 − (α3 + δ)u2 + α3u3‖ ≤ 2(α3 + δ) < 4ǫ

since α3 < ǫ.
Now, we observe that α1 > 0 together with the non-negativity of α3, positivity

of ǫ, the construction of δ and the assumption α1 ≤ α2 gives that α1−δ
α2+α3+δ

< 1.

So that ‖ α1−δ
α2+α3+δ

u1‖ = α1−δ
α2+α3+δ

< 1. We deduce (as we did in the Case 1), by
Lemmas 1, 2 and Theorem 3, that

u2 +
α1 − δ

α2 + α3 + δ
u1 ∈ Jinv .

Hence, y ∈ Jinv. This together with (II) implies that x ∈ ¯Jinv. �

Remark 12. Generally, it is not possible to replace co2+ U(J ) by co2 U(J ) in
the statement (iii) of above Theorem 11. This follows from the fact that any C∗-
algebra can be considered as a JB∗-algebra and the illustration given with the
C∗-algebra of convergent complex sequences, by Kadison and Pedersen in [2].

Theorem 13. Let J be a unital JB∗-algebra and let x ∈ J be such that u(x) =
n ≥ 3. Suppose that x =

∑n

i=1 αiui, where u1, . . . , un ∈ U(J ) and α1, . . . , αn are

non-negative real numbers with sum equal to 1. Then

(i) αi ≤ αj + αk, (for j 6= k);

(ii) 1
n−1 ≤ αj + αk, (for j 6= k);

(iii) αj ≤ 2
n+1 , ∀j.

Proof. We may assume that α1 ≤ α2 ≤ · · · ≤ αn. If αn > α1 + α2, then

‖α−1
n (α1u1 + α2u2‖ ≤ α−1

n (‖α1u1‖ + ‖α2u2‖) < 1 .

So, by Lemmas 1, 2 and Theorem 3 (similarly as in the proof of previous Theorem
11), we see that un + α−1

n (α1u1 + α2u2) ∈ Jinv and hence

(α1 + α2 + αn)−1(α1u1 + α2u2 + αnun) ∈ Jinv

such that

‖(α1 + α2 + αn)−1(α1u1 + α2u2 + αnun)‖ ≤ 1 .

Therefore, by Lemma 4,

(α1 + α2 + αn)−1(α1u1 + α2u2 + αnun) =
1

2
(v1 + v2)
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for some v1, v2 ∈ U(J ). Hence

α1u1 + α2u2 + αnun =
1

2
(α1 + α2 + αn)(v1 + v2)

provides a convex decomposition of x in terms of n − 1 unitaries in U(J ). This
contradicts the hypothesis that u(x) = n. This gives (i) as

αi ≤ αn ≤ α1 + α2 ≤ αj + αk for all j 6= k .

Now, for j 6= k, we get from (i) that

1 =
n∑

i=1

αi ≤

(n−1) pairs

︷ ︸︸ ︷

(α1 + α2) + (α1 + α2) + · · · + (α1 + α2)

= (n − 1)(α1 + α2) ≤ (n − 1)(αj + αk)

since α1 ≤ α2 ≤ · · · ≤ αn. This gives (ii).
Finally, we see from (i) that

(n − 1)αn ≤

(n−1) pairs

︷ ︸︸ ︷

(α1 + α2) + (α2 + α3) + · · · + (αn−2 + αn−1) + (αn−1 + α1)

= 2(α1 + · · · + αn−1) = 2(1 − αn) .

This gives that αn ≤ 2
n+1 . Thus αj ≤ αn ≤ 2

n+1 for all j. �
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