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ON 4-DIMENSIONAL LOCALLY CONFORMALLY

FLAT ALMOST KÄHLER MANIFOLDS

WIES LAW KRÓLIKOWSKIAbstrat. Using the fundamental notions of the quaternionic analysis we show
that there are no 4-dimensional almost Kähler manifolds which are locally confor-
mally flat with a metric of a special form.

I. Basic notions and the aim of the paper

Let M2n be a real C∞-manifold of dimension 2n endowed with an almost com-
plex structure J and a Riemannian metric g. If the metric g is invariant by the
almost complex structure J , i.e.

g(JX, JY ) = g(X, Y )

for any vector fields X and Y on M2n, then (M2n, J, g) is called almost Hermitian

manifold.

Define the fundamental 2-form Ω by

Ω(X, Y ) := g(X, JY ) .

An almost Hermitian manifold (M2n, J, g, Ω) is said to be almost Kähler if Ω is a
closed form, i.e.

dΩ = 0 .

Suppose that

n = 2 .

The aim of the paper is to prove the following:
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Theorem I. If (M4, J, g, Ω) is a 4-dimensional almost Kähler manifold which is

locally conformally flat, i.e. in a neighbourhood of every point p0∈M4 there exists

a system of local coordinates (Up0
; w, x, y, z) such that the metric g is expressed by

g = g0(p)[dw2 + dx2 + dy2 + dz2], p∈Up0
,

where g0(p) is a real positive C∞-function defined around p0, then g0 is a modulus

of some quaternionic function left (right) regular in the sense of Fueter [1] uniquely

determined by J and Ω.

II. Proof of Theorem

Let us denote by the same letters the matrices of g, J and Ω with respect to
the coordinate basis. These matrices satisfy the equality:

g·J = Ω .

The metric g, by the assumption, is proportional to the identity, so it has the
form

g = g0·I = g0·







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






.

An almost complex structure J satisfies the condition:

J2 = −I .

Since Ω is skew-symmetric then J is a skew-symmetric and orthogonal 4×4-matrix.
It is easy to check that J is of the form

(1) a)







0 a b c

−a 0 c −b

−b −c 0 a

−c b −a 0






or b)







0 a b c

−a 0 −c b

−b c 0 −a

−c −b a 0







with
a2 + b2 + c2 = 1 .

Suppose that J is of the form (1a). Then the matrix Ω looks as follows:

Ω = go·







0 a −b c

−a 0 c b

b −c 0 a

−c −b −a 0






:=







0 A −B C

−A 0 C B

B −C 0 A

−C −B −A 0






.

Since
( A

g0

)2

+
( B

g0

)2

+
( C

g0

)2

= a2 + b2 + c2 = 1
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then we get

(2) A2 + B2 + C2 = g2
0 .

By the assumption
dΩ = 0 .

Using the following formula (see e.g. [4], p.36):

dΩ(X, Y, Z) =
1

3
{XΩ(Y, Z) + Y Ω(Z, X) + ZΩ(X, Y )

− Ω([X, Y ], Z) − Ω([Z, X ], Y ) − Ω([Y, Z], X)} ,

the condition dΩ = 0 can be written in the form:

0 = 3dΩ(∂x, ∂y, ∂z) = Ax + By + Cz ,

0 = 3dΩ(∂x, ∂y, ∂w) = Bx − Ay + Cw ,

0 = 3dΩ(∂x, ∂z, ∂w) = Cx − Az − Bw ,

0 = 3dΩ(∂y, ∂z, ∂w) = Cy − Bz + Aw .

Then the components A, B and C of Ω satisfy the following system of first order
partial differential equations:

(3)

Ax + By + Cz = 0 ,

Bx − Ay + Cw = 0 ,

Cx − Az − Bw = 0 ,

Cy − Bz + Aw = 0

and the condition (2).
The above system (3), although overdetermined, does have solutions. We will

show that the system (3) has a nice interpretation in the quaternionic analysis.

III. Fueter’s regular functions

Denote by H the field of quaternions. H is a 4-dimensional division algebra
over R with basis {1, i, j, k} and the quaternionic units i, j, k satisfy:

i2 = j2 = k2 = ijk = −1 ,

ij = −ji = k .

A typical element q of H can be written as

q = w + ix + jy + kz , w, x, y, z ∈R .

The conjugate of q is defined by

q := w − ix − jy − kz
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and the modulus ‖q‖ by

‖q‖2 = q·q = q·q = w2 + x2 + y2 + z2 .

We will need the following relation (which is easy to check)

q1·q2 = q2·q1 .

A function F : H→H of the quaternionic variable q can be written as

F = Fo + iF1 + jF2 + kF3 .

Fo is called the real part of F and iF1 + jF2 + kF3 - the imaginary part of F .

In [1] Fueter introduced the following operators:

∂left :=
1

4

( ∂

∂w
+ i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

,

∂right :=
1

4

( ∂

∂w
+

∂

∂x
i +

∂

∂y
j +

∂

∂z
k
)

,

analogous to ∂
∂z

= 1
2

(

∂
∂x

+ i ∂
∂y

)

in the complex analysis, to generalize the Cauchy-

-Riemann equations.
A quaternionic function F is said to be left regular (respectively, right regular)

(in the sense of Fueter) if it is differentiable in the real variable sense and

(4) ∂left·F = 0 (resp. ∂right·F = 0) .

Note that the condition (4) is equivalent to the following system of equations:

∂wFo − ∂xF1 − ∂yF2 − ∂zF3 = 0 ,

∂wF1 + ∂xFo + ∂yF3 − ∂zF2 = 0 ,

∂wF2 − ∂xF3 + ∂yFo + ∂zF1 = 0 ,

∂wF3 + ∂xF2 − ∂yF1 + ∂zFo = 0 .

There are many examples of left and right regular functions in the sense of
Fueter. Many papers have been devoted studying the properties of those functions
(e.g. [3]). One has found the quaternionic generalizations of the Cauchy theorem,
the Cauchy integral formula, Taylor series in terms of special polynomials etc.

Now we need an important result of [5]. It can be described as follows.
Let ν be an unordered set of n integers {i1, . . ., in} with 1≤ir≤3; ν is determined

by three integers n1, n2 and n3 with n1 + n2 + n3 = n, where n1 is the number of
1’s in ν, n2 - the number of 2’s and n3 - the number of 3’s.

There are 1
2
(n+1)(n+2) such sets ν and we denote the set of all of them by σn.
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Let eir
and xir

denote i, j, k and x, y, z according as ir is 1, 2 or 3, respectively.
Then one defines the following polynomials

Pν(q) :=
1

n!

∑

(wei1 − xi1 )·. . .·(wein
− xin

),

where the sum is taken over all n!·n1!·n2!·n3! different orderings of n1 1’s, n2 2’s
and n3 3’s; when n = 0, so ν = ∅, we take P∅(q) = 1.

For example we present the explicit forms of the polynomials Pν of the first and
second degrees. Thus we have

P1 = wi − x ,

P2 = wj − y ,

P3 = wk − z ,

P11 =
1

2
(x2 − w2) − xwi ,

P12 = xy − wyi − wxj ,

P13 = xz − wzi − wxk ,

P22 =
1

2
(y2 − w2) − ywj ,

P23 = yz − wzj − wyk ,

P33 =
1

2
(z2 − w2) − zwk .

In [5] Sudbery proved the following

Proposition. Suppose F is left regular in a neighbourhood of the origin 0∈H.

Then there is a ball B = B(0, r) with center 0 in which F (q) is represented by a

uniformly convergent series

F (q) =

∞
∑

n=0

∑

ν∈σn

Pν(q)aν , aν ∈H .

IV. The end of the proof

Let us denote
FABC(q) := Ai + Bj + Ck ,

where we have identified q ∈H with (w, x, y, z)∈R4. Then (3) is nothing but the
condition that FABC is left regular in the sense of Fueter. Then, by (2), we have

‖FABC‖ = g0. �
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V. Conclusions

Let F satisfy the assumptions of Proposition. Then

F (q) = a0 +

3
∑

i=1

Pi·ai +
∑

i≤j

Pij ·aij +
∑

i≤j≤k

Pijk·aijk + . . .

and

F (q) = ao +

3
∑

i=1

ai·Pi +
∑

i≤j

aij ·Pij +
∑

i≤j≤k

aijk·Pijk + . . . .

Multiplying the above expressions we get

(5)

‖F (q)‖2 = ‖ao‖2 +

3
∑

i=1

(Piaiao + aoaiPi)

+
∑

i≤j

(Pijaijao + aoaijPij) +
∑

i,j

PiaiajPj

+
∑

i≤j≤k

(Pijkaijkao + aoaijkPijk)

+

3
∑

m=1

∑

i≤j

(PmamaijPij + PijaijamPm) + . . . .

Example 1. Let

g0(w, x, y, z) =
1

1 + r
, r2 = w2 + x2 + y2 + z2 ,

then

g2
0 =

1

(1 + r)2
= 1 − 2r + 3r2 − 4r3 + . . . + (−1)n(n + 1)rn + . . . .(6)

Comparing the right sides of (5) and (6) we see that

a0 6= 0 ,

−2r =

3
∑

i=1

(Piaia0 + a0aiPi)

but the second equality is impossible.
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Example 2. Take

g0(w, x, y, z) =
1√

1 + r2
, r2 = w2 + x2 + y2 + z2 ,

then

g2
0 =

1

1 + r2
= 1 − r3 + r6 − r9 + . . . + (−1)kr3k + . . . .(7)

Comparing the right sides of (5) and (7) we get

a0 6= 0 , ai = 0 , aij = 0

and

−r3 =
∑

i≤j≤k

(Pijkaijka0 + a0aijkPijk)

but the last equality is impossible.

Example 3. Let

g0(w, x, y, z) =
1√

1 − r2
, r2 = w2 + x2 + y2 + z2 ,

then

g2
0 =

1

1 − r2
= 1 + r2 +

4

3
r3 + . . .(8)

Comparing the right sides of (5) and (8) we have

a0 6= 0 , ai = 0

and

r2 =
∑

i≤j

(Pijaija0 + a0aijPij) .(9)

Set
dij := aija0 := d0

ij + d1
ij i + d2

ijj + d3
ijk

(i, j, k denote the quaternionic units) and rewrite (9) in the form

w2 + x2 + y2 + z2 = 2
∑

i≤j

Re (Pijdij)
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then we get

w2 + x2 + y2 + z2 = 2Re {[ 1
2
(x2 − w2) − xwi]d11

+ 2Re {[ 1
2
(y2 − w2) − ywj]d22

+ 2Re {[ 1
2
(z2 − w2) − zwk]d33 + . . .

= (x2 − w2)d0
11 + (y2 − w2)d0

22 + (z2 − w2)d0
33 .

Comparing the terms in x2, y2 and z2 we get

d0
11 = d0

22 = d0
33 = 1

but then

w2 = −3w2

and this is impossible.

Example 4. Let

g0(w, x, y, z) =
1

(1 − r2)2
, r2 = w2 + x2 + y2 + z2 ,

then

g2
0 =

1

(1 − r2)4
= 1 + 4r2 + . . . .(10)

Comparing the right sides of (5) and (10) we obtain

a0 6= 0 , ai = 0

and

4r2 =
∑

i≤j

(Pijaija0 + a0aijPij) .

Analogously, like in the Example 3, we have

2w2 + 2x2 + 2y2 + 2z2 =
∑

i≤j

Re (Pijdij) .

This time, comparing the terms in x2, y2 and z2, we get

a0 6= 0 , ai = 0 ,

d0
11 = d0

22 = d0
33 = 4

but then

−6w2 = 2w2 .

This is again impossible.
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VI. General conclusion

There is no 4-dimensional almost Kähler manifold (M4, J, g, Ω) which is locally
conformally flat with the metric

g = g0(p)[dw2 + dx2 + dy2 + dz2] ,

where g0 is expressed by the formulae (6), (7), (8) and (10). In particular the
Poincaré model, i.e. the unit ball B4 in R4 with the metric

g :=
4

(1 − r2)2
[dw2 + dx2 + dy2 + dz2] , r2 := w2 + x2 + y2 + z2 ,

is not an almost Kähler manifold.

Remark. If J is of the form (1b) then the proof of Theorem is similar. One has
to replace the left regular quaternionic function with the right one (see [3], p.10).

References

[1] Fueter, R., Die Funktionentheorie der Differentialgleichungen △u = 0 und △△u = 0 mit

vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307–330.

[2] Goldberg, S. I., Integrability of almost Kähler manifolds, Proc. Amer. Math. Soc. 21 (1969),
96–100.

[3] Królikowski, W., On Fueter-Hurwitz regular mappings, Diss. Math. 353 (1996).

[4] Kobayashi, S., Nomizu, K., Foundations of differential geometry, I – II, Interscience, 1963.

[5] Sudbery, A., Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–225.Motylowa 4/27, 91-360  L�od�z, Poland


