ON 4-DIMENSIONAL LOCALLY CONFORMALLY FLAT ALMOST KÄHLER MANIFOLDS

WIESŁAW KRÓLIKOWSKI

Abstract

Using the fundamental notions of the quaternionic analysis we show that there are no 4-dimensional almost Kähler manifolds which are locally conformally flat with a metric of a special form.

I. Basic notions and the aim of the paper

Let $M^{2 n}$ be a real C^{∞}-manifold of dimension $2 n$ endowed with an almost complex structure J and a Riemannian metric g. If the metric g is invariant by the almost complex structure J, i.e.

$$
g(J X, J Y)=g(X, Y)
$$

for any vector fields X and Y on $M^{2 n}$, then $\left(M^{2 n}, J, g\right)$ is called almost Hermitian manifold.

Define the fundamental 2-form Ω by

$$
\Omega(X, Y):=g(X, J Y)
$$

An almost Hermitian manifold $\left(M^{2 n}, J, g, \Omega\right)$ is said to be almost Kähler if Ω is a closed form, i.e.

$$
d \Omega=0 .
$$

Suppose that

$$
n=2 .
$$

The aim of the paper is to prove the following:

[^0]Theorem I. If $\left(M^{4}, J, g, \Omega\right)$ is a 4-dimensional almost Kähler manifold which is locally conformally flat, i.e. in a neighbourhood of every point $p_{0} \in M^{4}$ there exists a system of local coordinates $\left(U_{p_{0}} ; w, x, y, z\right)$ such that the metric g is expressed by

$$
g=g_{0}(p)\left[d w^{2}+d x^{2}+d y^{2}+d z^{2}\right], \quad p \in U_{p_{0}}
$$

where $g_{0}(p)$ is a real positive C^{∞}-function defined around p_{0}, then g_{0} is a modulus of some quaternionic function left (right) regular in the sense of Fueter [1] uniquely determined by J and Ω.

II. Proof of Theorem

Let us denote by the same letters the matrices of g, J and Ω with respect to the coordinate basis. These matrices satisfy the equality:

$$
g \cdot J=\Omega .
$$

The metric g, by the assumption, is proportional to the identity, so it has the form

$$
g=g_{0} \cdot I=g_{0} \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

An almost complex structure J satisfies the condition:

$$
J^{2}=-I
$$

Since Ω is skew-symmetric then J is a skew-symmetric and orthogonal 4×4-matrix.
It is easy to check that J is of the form
a) $\left(\begin{array}{cccc}0 & a & b & c \\ -a & 0 & c & -b \\ -b & -c & 0 & a \\ -c & b & -a & 0\end{array}\right)$
or
b) $\left(\begin{array}{cccc}0 & a & b & c \\ -a & 0 & -c & b \\ -b & c & 0 & -a \\ -c & -b & a & 0\end{array}\right)$
with

$$
a^{2}+b^{2}+c^{2}=1
$$

Suppose that J is of the form ($1 a$). Then the matrix Ω looks as follows:

$$
\Omega=g_{o} \cdot\left(\begin{array}{cccc}
0 & a & -b & c \\
-a & 0 & c & b \\
b & -c & 0 & a \\
-c & -b & -a & 0
\end{array}\right):=\left(\begin{array}{cccc}
0 & A & -B & C \\
-A & 0 & C & B \\
B & -C & 0 & A \\
-C & -B & -A & 0
\end{array}\right) .
$$

Since

$$
\left(\frac{A}{g_{0}}\right)^{2}+\left(\frac{B}{g_{0}}\right)^{2}+\left(\frac{C}{g_{0}}\right)^{2}=a^{2}+b^{2}+c^{2}=1
$$

then we get

$$
\begin{equation*}
A^{2}+B^{2}+C^{2}=g_{0}^{2} \tag{2}
\end{equation*}
$$

By the assumption

$$
d \Omega=0
$$

Using the following formula (see e.g. [4], p.36):

$$
\begin{aligned}
d \Omega(X, Y, Z)= & \frac{1}{3}\{X \Omega(Y, Z)+Y \Omega(Z, X)+Z \Omega(X, Y) \\
& -\Omega([X, Y], Z)-\Omega([Z, X], Y)-\Omega([Y, Z], X)\}
\end{aligned}
$$

the condition $d \Omega=0$ can be written in the form:

$$
\begin{aligned}
& 0=3 d \Omega\left(\partial_{x}, \partial_{y}, \partial_{z}\right)=A_{x}+B_{y}+C_{z} \\
& 0=3 d \Omega\left(\partial_{x}, \partial_{y}, \partial_{w}\right)=B_{x}-A_{y}+C_{w} \\
& 0=3 d \Omega\left(\partial_{x}, \partial_{z}, \partial_{w}\right)=C_{x}-A_{z}-B_{w} \\
& 0=3 d \Omega\left(\partial_{y}, \partial_{z}, \partial_{w}\right)=C_{y}-B_{z}+A_{w}
\end{aligned}
$$

Then the components A, B and C of Ω satisfy the following system of first order partial differential equations:

$$
\begin{align*}
A_{x}+B_{y}+C_{z} & =0 \\
B_{x}-A_{y}+C_{w} & =0 \\
C_{x}-A_{z}-B_{w} & =0 \tag{3}\\
C_{y}-B_{z}+A_{w} & =0
\end{align*}
$$

and the condition (2).
The above system (3), although overdetermined, does have solutions. We will show that the system (3) has a nice interpretation in the quaternionic analysis.

III. Fueter's Regular functions

Denote by \mathbf{H} the field of quaternions. \mathbf{H} is a 4 -dimensional division algebra over \mathbf{R} with basis $\{1, i, j, k\}$ and the quaternionic units i, j, k satisfy:

$$
\begin{aligned}
& i^{2}=j^{2}=k^{2}=i j k=-1 \\
& i j=-j i=k
\end{aligned}
$$

A typical element q of \mathbf{H} can be written as

$$
q=w+i x+j y+k z, \quad w, x, y, z \in \mathbf{R}
$$

The conjugate of q is defined by

$$
\bar{q}:=w-i x-j y-k z
$$

and the modulus $\|q\|$ by

$$
\|q\|^{2}=q \cdot \bar{q}=\bar{q} \cdot q=w^{2}+x^{2}+y^{2}+z^{2} .
$$

We will need the following relation (which is easy to check)

$$
\overline{q_{1} \cdot q_{2}}=\overline{q_{2}} \cdot \overline{q_{1}} .
$$

A function $F: \mathbf{H} \rightarrow \mathbf{H}$ of the quaternionic variable q can be written as

$$
F=F_{o}+i F_{1}+j F_{2}+k F_{3} .
$$

F_{o} is called the real part of F and $i F_{1}+j F_{2}+k F_{3}$ - the imaginary part of F.
In [1] Fueter introduced the following operators:

$$
\begin{aligned}
\bar{\partial}_{\text {left }} & :=\frac{1}{4}\left(\frac{\partial}{\partial w}+i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}\right), \\
\bar{\partial}_{\text {right }} & :=\frac{1}{4}\left(\frac{\partial}{\partial w}+\frac{\partial}{\partial x} i+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} k\right),
\end{aligned}
$$

analogous to $\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$ in the complex analysis, to generalize the Cauchy--Riemann equations.

A quaternionic function F is said to be left regular (respectively, right regular) (in the sense of Fueter) if it is differentiable in the real variable sense and

$$
\begin{equation*}
\bar{\partial}_{\text {left }} \cdot F=0 \quad\left(\text { resp. } \bar{\partial}_{\text {right }} \cdot F=0\right) \tag{4}
\end{equation*}
$$

Note that the condition (4) is equivalent to the following system of equations:

$$
\begin{aligned}
& \partial_{w} F_{o}-\partial_{x} F_{1}-\partial_{y} F_{2}-\partial_{z} F_{3}=0, \\
& \partial_{w} F_{1}+\partial_{x} F_{o}+\partial_{y} F_{3}-\partial_{z} F_{2}=0, \\
& \partial_{w} F_{2}-\partial_{x} F_{3}+\partial_{y} F_{o}+\partial_{z} F_{1}=0, \\
& \partial_{w} F_{3}+\partial_{x} F_{2}-\partial_{y} F_{1}+\partial_{z} F_{o}=0 .
\end{aligned}
$$

There are many examples of left and right regular functions in the sense of Fueter. Many papers have been devoted studying the properties of those functions (e.g. [3]). One has found the quaternionic generalizations of the Cauchy theorem, the Cauchy integral formula, Taylor series in terms of special polynomials etc.

Now we need an important result of [5]. It can be described as follows.
Let ν be an unordered set of n integers $\left\{i_{1}, \ldots, i_{n}\right\}$ with $1 \leq i_{r} \leq 3 ; \nu$ is determined by three integers n_{1}, n_{2} and n_{3} with $n_{1}+n_{2}+n_{3}=n$, where n_{1} is the number of 1 's in ν, n_{2} - the number of 2 's and n_{3} - the number of 3 's.

There are $\frac{1}{2}(n+1)(n+2)$ such sets ν and we denote the set of all of them by σ_{n}.

Let $e_{i_{r}}$ and $x_{i_{r}}$ denote i, j, k and x, y, z according as i_{r} is 1,2 or 3 , respectively. Then one defines the following polynomials

$$
P_{\nu}(q):=\frac{1}{n!} \sum\left(w e_{i_{1}}-x_{i_{1}}\right) \cdot \ldots \cdot\left(w e_{i_{n}}-x_{i_{n}}\right)
$$

where the sum is taken over all $n!\cdot n_{1}!\cdot n_{2}!\cdot n_{3}$! different orderings of $n_{1} 1$'s, $n_{2} 2$'s and $n_{3} 3$'s; when $n=0$, so $\nu=\emptyset$, we take $P_{\emptyset}(q)=1$.

For example we present the explicit forms of the polynomials P_{ν} of the first and second degrees. Thus we have

$$
\begin{aligned}
P_{1} & =w i-x \\
P_{2} & =w j-y \\
P_{3} & =w k-z \\
P_{11} & =\frac{1}{2}\left(x^{2}-w^{2}\right)-x w i \\
P_{12} & =x y-w y i-w x j \\
P_{13} & =x z-w z i-w x k \\
P_{22} & =\frac{1}{2}\left(y^{2}-w^{2}\right)-y w j \\
P_{23} & =y z-w z j-w y k \\
P_{33} & =\frac{1}{2}\left(z^{2}-w^{2}\right)-z w k
\end{aligned}
$$

In [5] Sudbery proved the following
Proposition. Suppose F is left regular in a neighbourhood of the origin $0 \in \mathbf{H}$. Then there is a ball $B=B(0, r)$ with center 0 in which $F(q)$ is represented by a uniformly convergent series

$$
F(q)=\sum_{n=0}^{\infty} \sum_{\nu \in \sigma_{n}} P_{\nu}(q) a_{\nu}, \quad a_{\nu} \in \mathbf{H}
$$

IV. The end of the proof

Let us denote

$$
F_{A B C}(q):=A i+B j+C k
$$

where we have identified $q \in \mathbf{H}$ with $(w, x, y, z) \in \mathbf{R}^{4}$. Then (3) is nothing but the condition that $F_{A B C}$ is left regular in the sense of Fueter. Then, by (2), we have

$$
\left\|F_{A B C}\right\|=g_{0}
$$

Let F satisfy the assumptions of Proposition. Then

$$
F(q)=a_{0}+\sum_{i=1}^{3} P_{i} \cdot a_{i}+\sum_{i \leq j} P_{i j} \cdot a_{i j}+\sum_{i \leq j \leq k} P_{i j k} \cdot a_{i j k}+\ldots
$$

and

$$
\overline{F(q)}=\overline{a_{o}}+\sum_{i=1}^{3} \overline{a_{i}} \cdot \overline{P_{i}}+\sum_{i \leq j} \overline{a_{i j}} \cdot \overline{P_{i j}}+\sum_{i \leq j \leq k} \overline{a_{i j k}} \cdot \overline{P_{i j k}}+\ldots
$$

Multiplying the above expressions we get

$$
\begin{align*}
\|F(q)\|^{2}= & \left\|a_{o}\right\|^{2}+\sum_{i=1}^{3}\left(P_{i} a_{i} \overline{a_{o}}+a_{o} \overline{a_{i}} \overline{P_{i}}\right) \\
& +\sum_{i \leq j}\left(P_{i j} a_{i j} \overline{a_{o}}+a_{o} \overline{a_{i j}} \overline{P_{i j}}\right)+\sum_{i, j} P_{i} a_{i} \overline{a_{j}} \overline{P_{j}} \\
& +\sum_{i \leq j \leq k}\left(P_{i j k} a_{i j k} \overline{a_{o}}+a_{o} \overline{a_{i j k}} \overline{P_{i j k}}\right) \tag{5}\\
& +\sum_{m=1}^{3} \sum_{i \leq j}\left(P_{m} a_{m} \overline{a_{i j}} \overline{P_{i j}}+P_{i j} a_{i j} \overline{a_{m}} \overline{P_{m}}\right)+\ldots
\end{align*}
$$

Example 1. Let

$$
g_{0}(w, x, y, z)=\frac{1}{1+r}, \quad r^{2}=w^{2}+x^{2}+y^{2}+z^{2}
$$

then
(6) $\quad g_{0}^{2}=\frac{1}{(1+r)^{2}}=1-2 r+3 r^{2}-4 r^{3}+\ldots+(-1)^{n}(n+1) r^{n}+\ldots$.

Comparing the right sides of (5) and (6) we see that

$$
\begin{aligned}
a_{0} & \neq 0, \\
-2 r & =\sum_{i=1}^{3}\left(P_{i} a_{i} \overline{a_{0}}+a_{0} \overline{a_{i}} \overline{P_{i}}\right)
\end{aligned}
$$

but the second equality is impossible.

Example 2. Take

$$
g_{0}(w, x, y, z)=\frac{1}{\sqrt{1+r^{2}}}, \quad r^{2}=w^{2}+x^{2}+y^{2}+z^{2}
$$

then

$$
\begin{equation*}
g_{0}^{2}=\frac{1}{1+r^{2}}=1-r^{3}+r^{6}-r^{9}+\ldots+(-1)^{k} r^{3 k}+\ldots \tag{7}
\end{equation*}
$$

Comparing the right sides of (5) and (7) we get

$$
a_{0} \neq 0, \quad a_{i}=0, \quad a_{i j}=0
$$

and

$$
-r^{3}=\sum_{i \leq j \leq k}\left(P_{i j k} a_{i j k} \overline{a_{0}}+a_{0} \overline{a_{i j k}} \overline{P_{i j k}}\right)
$$

but the last equality is impossible.
Example 3. Let

$$
g_{0}(w, x, y, z)=\frac{1}{\sqrt{1-r^{2}}}, \quad r^{2}=w^{2}+x^{2}+y^{2}+z^{2}
$$

then

$$
\begin{equation*}
g_{0}^{2}=\frac{1}{1-r^{2}}=1+r^{2}+\frac{4}{3} r^{3}+\ldots \tag{8}
\end{equation*}
$$

Comparing the right sides of (5) and (8) we have

$$
a_{0} \neq 0, \quad a_{i}=0
$$

and

$$
\begin{equation*}
r^{2}=\sum_{i \leq j}\left(P_{i j} a_{i j} \overline{a_{0}}+a_{0} \overline{a_{i j}} \overline{P_{i j}}\right) . \tag{9}
\end{equation*}
$$

Set

$$
d_{i j}:=a_{i j} \overline{a_{0}}:=d_{i j}^{0}+d_{i j}^{1} \mathbf{i}+d_{i j}^{2} \mathbf{j}+d_{i j}^{3} \mathbf{k}
$$

($\mathbf{i}, \mathbf{j}, \mathbf{k}$ denote the quaternionic units) and rewrite (9) in the form

$$
w^{2}+x^{2}+y^{2}+z^{2}=2 \sum_{i \leq j} \operatorname{Re}\left(P_{i j} d_{i j}\right)
$$

then we get

$$
\begin{aligned}
w^{2}+x^{2}+y^{2}+z^{2}= & 2 \operatorname{Re}\left\{\left[\frac{1}{2}\left(x^{2}-w^{2}\right)-x w \mathbf{i}\right] d_{11}\right. \\
& +2 \operatorname{Re}\left\{\left[\frac{1}{2}\left(y^{2}-w^{2}\right)-y w \mathbf{j}\right] d_{22}\right. \\
& +2 \operatorname{Re}\left\{\left[\frac{1}{2}\left(z^{2}-w^{2}\right)-z w \mathbf{k}\right] d_{33}+\ldots\right. \\
= & \left(x^{2}-w^{2}\right) d_{11}^{0}+\left(y^{2}-w^{2}\right) d_{22}^{0}+\left(z^{2}-w^{2}\right) d_{33}^{0}
\end{aligned}
$$

Comparing the terms in x^{2}, y^{2} and z^{2} we get

$$
d_{11}^{0}=d_{22}^{0}=d_{33}^{0}=1
$$

but then

$$
w^{2}=-3 w^{2}
$$

and this is impossible.
Example 4. Let

$$
g_{0}(w, x, y, z)=\frac{1}{\left(1-r^{2}\right)^{2}}, \quad r^{2}=w^{2}+x^{2}+y^{2}+z^{2}
$$

then

$$
\begin{equation*}
g_{0}^{2}=\frac{1}{\left(1-r^{2}\right)^{4}}=1+4 r^{2}+\ldots \tag{10}
\end{equation*}
$$

Comparing the right sides of (5) and (10) we obtain

$$
a_{0} \neq 0, \quad a_{i}=0
$$

and

$$
4 r^{2}=\sum_{i \leq j}\left(P_{i j} a_{i j} \overline{a_{0}}+a_{0} \overline{a_{i j}} \overline{P_{i j}}\right)
$$

Analogously, like in the Example 3, we have

$$
2 w^{2}+2 x^{2}+2 y^{2}+2 z^{2}=\sum_{i \leq j} R e\left(P_{i j} d_{i j}\right) .
$$

This time, comparing the terms in x^{2}, y^{2} and z^{2}, we get

$$
\begin{array}{r}
a_{0} \neq 0, \quad a_{i}=0, \\
d_{11}^{0}=d_{22}^{0}=d_{33}^{0}=4
\end{array}
$$

but then

$$
-6 w^{2}=2 w^{2}
$$

This is again impossible.

VI. General conclusion

There is no 4 -dimensional almost Kähler manifold (M^{4}, J, g, Ω) which is locally conformally flat with the metric

$$
g=g_{0}(p)\left[d w^{2}+d x^{2}+d y^{2}+d z^{2}\right]
$$

where g_{0} is expressed by the formulae (6), (7), (8) and (10). In particular the Poincaré model, i.e. the unit ball B^{4} in \mathbf{R}^{4} with the metric

$$
g:=\frac{4}{\left(1-r^{2}\right)^{2}}\left[d w^{2}+d x^{2}+d y^{2}+d z^{2}\right], \quad r^{2}:=w^{2}+x^{2}+y^{2}+z^{2}
$$

is not an almost Kähler manifold.
Remark. If J is of the form (1b) then the proof of Theorem is similar. One has to replace the left regular quaternionic function with the right one (see [3], p.10).

References

[1] Fueter, R., Die Funktionentheorie der Differentialgleichungen $\triangle u=0$ und $\triangle \triangle u=0$ mit vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307-330.
[2] Goldberg, S. I., Integrability of almost Kähler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96-100.
[3] Królikowski, W., On Fueter-Hurwitz regular mappings, Diss. Math. 353 (1996).
[4] Kobayashi, S., Nomizu, K., Foundations of differential geometry, I - II, Interscience, 1963.
[5] Sudbery, A., Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199-225.
Motylowa 4/27, 91-360 Łódź, Poland

[^0]: 2000 Mathematics Subject Classification: 15A63, 15A66, 30G35, 30G99, 32A30, 53C10 $53 \mathrm{C} 40,53 \mathrm{C} 55$.

 Key words and phrases: almost Kähler manifold, quaternionic analysis, regular function in the sense of Fueter.

 Received December 7, 2004.

