PERIODIC SOLUTIONS FOR SYSTEMS WITH NONSMOOTH AND PARTIALLY COERCIVE POTENTIAL

MICHAEL E. FILIPPAKIS

Abstract

In this paper we consider nonlinear periodic systems driven by the one-dimensional p-Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg [3] due to Kandilakis-Kourogenis-Papageorgiou [13].

1. Introduction

The purpose of this paper is to prove an existence and a multiplicity result for nonlinear periodic systems driven by the one-dimensional p-Laplacian with nonsmooth Laplacian.

Recently there has been an increasing interest for problems involving the onedimensional p-Laplacian and various solvability techniques were used. We mention the works of Dang-Oppenheimer [6], Del Pino-Manasevich-Murua [7], FabryFayyad [8], Gasinski-Papageorgiou [9], Guo [10], Manasevich-Mawhin [16] and the references therein. From the above works Gasinski-Papageorgiou use a variational approach, while the others use degree theory combined with techniques from nonlinear analysis and the right hand side nonlinearity is continuous (i.e. the corresponding potential function is C^{1}). Also we should mention that in DangOppenheimer, Guo and Manasevich-Mawhin the right hand side nonlinearity also depends on x^{\prime} and consequently their hypotheses are stronger. Here the potential function $j(t, x)$ is only measurable in $t \in T$ and locally Lipschitz in $x \in \mathbb{R}^{\mathbb{N}}$ (not necessarily C^{1}). We assume that $j(t, \cdot)$ is only partially coercive, i.e. $j(t, x) \rightarrow+\infty$ as $\|x\| \rightarrow \infty$ uniformly for almost all $t \in E \subseteq T$, with $|E|>0$ (here by $|\cdot|$ we denote the Lebesque measure on \mathbb{R}). This way we extend the very recent work of Tang-Wu [18] where $p=2$ (semilinear problem) and the potential function $j(t, \cdot)$ is

[^0]C^{1} (smooth problem). Initially semilinear problems with fully coercive potential, were studied by Berger-Schechter [2] and Mawhin-Willem [17].

Our approach is variational and it is based on the nonsmooth Critical Point Theory as this was formulated by Chang [4] and extended recently by KourogenisPapageorgiou [14]. The multiplicity result that we prove is based on a recent nonsmooth extension of the result of Brezis-Nirenberg [3] due to Kandilakis-Kourogenis-Papageorgiou [13].

2. Mathematical background

Let X be a Banach space, X^{*} its topological dual. By $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the pair $\left(X, X^{*}\right)$. Given a locally Lipschitz function $\varphi: X \rightarrow \mathbb{R}$, the generalized directional derivative of φ at $x \in X$ in the direction $h \in X$, is defined by

$$
\varphi^{0}(x ; h) \stackrel{d f}{=} \limsup _{\substack{x^{\prime} \rightarrow x \\ \lambda \downarrow 0}} \frac{\varphi\left(x^{\prime}+\lambda h\right)-\varphi\left(x^{\prime}\right)}{\lambda}
$$

The function $h \rightarrow \varphi^{0}(x ; h)$ is sublinear, continuous and so it is the support function of a nonempty, w^{*}-compact, convex set $\partial \varphi(x) \subseteq X^{*}$ defined by

$$
\partial \varphi(x) \stackrel{d f}{=}\left\{x^{*} \in X^{*}:\left\langle x^{*}, h\right\rangle \leq \varphi^{0}(x ; h) \text { for all } h \in X\right\} .
$$

The multifunction $x \rightarrow \partial \varphi(x)$ is known as the generalized (or Clarke) subdifferential of φ. If φ is continuous convex (hence locally Lipschitz), then the generalized subdifferential and the subdifferential in the sense of convex analysis coincide. Also if $\varphi \in C^{1}(X)$ (hence it is locally Lipschitz), then $\partial \varphi=\left\{\varphi^{\prime}(x)\right\}$.

A point $x \in X$ is a critical point of the locally Lipschitz function $\varphi: X \rightarrow \mathbb{R}$, if $0 \in \partial \varphi(x)$. A local extremum of φ is a critical point. The well-known PalaisSmale condition (PS-condition for short), in the present nonsmooth setting takes the following form:
"A locally Lipschitz function $\varphi: X \rightarrow \mathbb{R}$ satisfies the nonsmooth PS-condition, if every sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ such that $\left|\varphi\left(x_{n}\right)\right| \leq$ M_{1} for some $M_{1}>0$, all $n \geq 1$ and $m\left(x_{n}\right)=\inf \left[\left\|x^{*}\right\|: x^{*} \in\right.$ $\left.\partial \varphi\left(x_{n}\right)\right] \rightarrow 0$ as $n \rightarrow \infty$, has a strongly convergent subsequence."

3. Existence theorem

The nonlinear, nonsmooth periodic system under consideration is the following:

$$
\begin{cases}\left(\left\|x^{\prime}(t)\right\|^{p-2} x^{\prime}(t)\right)^{\prime} \in \partial j(x(t)) & \text { a.e. on } T=[0, b] \tag{3.1}\\ x(0)=x(b), x^{\prime}(0)=x^{\prime}(b), & 2 \leq p<\infty\end{cases}
$$

Here by $\partial j(t, x)$ we denote the Clarke subdifferential of the locally Lipschitz potential function $j(t, \cdot)$. Our hypotheses on $j(t, x)$ are the following:
$H(j)_{1}: j: T \times \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ is a function such that $j=j_{1}+j_{2}$ and for $i=1,2 ;$
(i) for all $x \in \mathbb{R}^{\mathbb{N}}, t \rightarrow j_{i}(t, x)$ is measurable;
(ii) for almost all $t \in T, x \rightarrow j_{i}(t, x)$ is locally Lipschitz;
(iii) for every $M>0$, there exists $\alpha_{M} \in L^{1}(T)$ such that
$\sup [|j(t, x)|,\|u\|:\|x\| \leq M, u \in \partial j(t, x)] \leq \alpha_{M}(t) \quad$ a.e. on T;
(iv) $j_{1}(t, x) \rightarrow+\infty$ as $\|x\| \rightarrow \infty$ uniformly for almost all $t \in E,|E|>0$ and there exists $\xi \in L^{1}(T)$ such that for almost all $t \in T$ and all $x \in \mathbb{R}^{\mathbb{N}} \xi(t) \leq j_{1}(t, x) ;$
(v) there exists $\theta \in L^{1}(T)$ such that for almost all $t \in T$, all $x \in \mathbb{R}^{\mathbb{N}}$ and all $u \in \partial j_{2}(t, x),\|u\| \leq \theta(t)$ and $\int_{0}^{b} j_{2}(t, x) d t \geq-c_{0}$ for all $x \in \mathbb{R}^{\mathbb{N}}$ with $c_{0}>0$.
In the proof of our existence theorem we shall need the following auxiliary result due to Tang-Wu [18] (see Lemma 3) relating uniform coercivity and subaddivity.
Lemma 3.1. If $j: T \times \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ is a function such that for all $x \in \mathbb{R}^{\mathbb{N}}, t \rightarrow$ $j(t, x)$ is measurable, for almost all $t \in T x \rightarrow j(t, x)$ is continuous, for every $M>0$ there exists $\alpha_{M} \in L^{1}(T)$ such that for almost all $t \in T$ and all $\|x\| \leq M$, $|j(t, x)| \leq \alpha_{M}(t)$ and $j(t, x) \rightarrow+\infty$ as $\|x\| \rightarrow \infty$ uniformly for almost all $t \in E$, $|E|>0$, then there exist $g \in C\left(\mathbb{R}^{\mathbb{N}}\right)_{+}$subadditive function such that $g(x) \rightarrow+\infty$ as $\|x\| \rightarrow \infty$ and $g(x) \leq\|x\|+4$ and $\eta \in L^{1}(T)$ for which we have for almost all $t \in E$ and all $x \in \mathbb{R}^{\mathbb{N}} j(t, x) \geq g(x)+\eta(t)$.

Remark 3.2. Here by $|E|$ we denote the Lebesgue measure of $|E|$.
Theorem 3.3. If hypotheses $H(j)_{1}$ hold, then problem (3.1) has a solution $x \in$ $C^{1}\left(T, \mathbb{R}^{\mathbb{N}}\right)$.

Proof. Let $\varphi: W_{\text {per }}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right) \rightarrow \mathbb{R}$ be the energy functional defined by

$$
\varphi(x)=\frac{1}{p}\left\|x^{\prime}\right\|_{p}^{p}+\int_{0}^{b} j(t, x(t)) d t=\frac{1}{p}\left\|x^{\prime}\right\|_{p}^{p}+\int_{0}^{b} j_{1}(t, x(t)) d t+\int_{0}^{b} j_{2}(t, x(t)) d t
$$

We know (see for example Chang [4] or Hu-Papageorgiou [12]) that φ is locally Lipschitz. By virtue of Lemma 3.1, we can find $E \subseteq T$, with $|E|>0$ such that for almost all $t \in E$ and all $x \in \mathbb{R}^{\mathbb{N}}$ we have

$$
j_{1}(t, x) \geq g(x)+\eta(t)
$$

with $g \in C\left(\mathbb{R}^{\mathbb{N}}\right)_{+}$subadditive, coercive and $\eta \in L^{1}(T)$. We have

$$
\begin{aligned}
\int_{0}^{b} j_{1}(t, x(t)) d t & =\int_{E} j_{1}(t, x(t)) d t+\int_{T \backslash E} j_{1}(t, x(t)) d t \\
& \geq \int_{E} g(x(t)) d t+\int_{E} \eta(t) d t+\int_{T \backslash E} \xi(t) d t
\end{aligned}
$$

Consider the following direct sum decomposition

$$
W_{\mathrm{per}}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)=\mathbb{R}^{\mathbb{N}} \oplus V
$$

with $V=\left\{v \in W_{\text {per }}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right): \int_{0}^{b} v(t)=0\right\}$. So if $x \in W_{\mathrm{per}}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)$, we can write in a unique way $x=\bar{x}+\widehat{x}$, with $\bar{x} \in \mathbb{R}^{\mathbb{N}}$ and $\widehat{x} \in V$. Exploiting the subadditivity
of g, we have

$$
\begin{array}{rll}
g(\bar{x})=g(x(t)-\widehat{x}(t)) \leq g(x(t))+g(-\widehat{x}(t)) & \text { for all } & t \in T, \\
& \Rightarrow g(\bar{x})-g(-\widehat{x}(t)) \leq g(x(t)) & \text { for all }
\end{array} \quad t \in T .
$$

Moreover, because of Lemma 3.1 we have

$$
g(-\widehat{x}(t)) \leq\|\widehat{x}(t)\|+4 \leq\|\widehat{x}\|_{\infty}+4
$$

We have

$$
\begin{aligned}
\int_{E} g(x(t)) d t & \geq \int_{E} g(\bar{x}) d t-\int_{E} g(-\widehat{x}(t)) d t \\
& =g(\bar{x})|E|-\left(\|\widehat{x}\|_{\infty}+4\right)|E|
\end{aligned}
$$

But from the Poincare-Wirtinger inequality (see Mawhin-Willem [17], p.8) we know that

$$
\|\widehat{x}\|_{\infty} \leq b^{\frac{1}{q}}\left\|\widehat{x}^{\prime}\right\|_{p}=b^{\frac{1}{q}}\left\|x^{\prime}\right\|_{p}
$$

So we obtain

$$
\int_{E} g(x(t)) d t \geq g(\bar{x})|E|-\left(b^{\frac{1}{q}}\left\|x^{\prime}\right\|_{p}+4\right)|E|
$$

Let $\Gamma(t)=\left\{(v, \lambda) \in \mathbb{R}^{\mathbb{N}} \times(0,1): v \in \partial j_{2}(t, \bar{x}+\lambda \widehat{x}(t)), j_{2}(t, \bar{x}+\widehat{x}(t))-j_{2}(t, \bar{x})\right.$ $\left.=(v, \widehat{x}(t))_{\mathbb{R}^{\mathbb{N}}}\right\}$. From the Mean Value Theorem (see for example Clarke [5],p.41), we know that for almost all $t \in T, \Gamma(t) \neq \emptyset$. By redefining $\Gamma(\cdot)$ on the exceptional Lebesgue-null set, we may assume without any loss of generality that $\Gamma(t) \neq \emptyset$ for all $t \in[0 \cdot b]$. We claim that for every direction $h \in \mathbb{R}^{\mathbb{N}}$ the function $(t, \lambda) \rightarrow$ $j_{2}^{0}(t, \bar{x}+\lambda \widehat{x}(t) ; h)$ is measurable. Indeed from the definition of the generalized derivative, we have

$$
\begin{aligned}
& j_{2}^{0}(t, \bar{x}+\lambda \widehat{x}(t))= \\
& \inf _{m \geq 1} \sup _{r, s \in Q \cap\left(-\frac{1}{m}, \frac{1}{m}\right)} \frac{j_{2}(t, \bar{x}+\lambda \widehat{x}(t)+r+s h)-j_{2}(t, \bar{x}+\lambda \widehat{x}(t)+r)}{s} .
\end{aligned}
$$

Since j_{2} is jointly measurable (see Hu-Papageorgiou [11], p.142), it follows that $(t, \lambda) \rightarrow j_{2}^{0}(t, \bar{x}+\lambda \widehat{x}(t) ; h)$ is measurable. Set $S(t, \lambda)=\partial j_{2}(t, \bar{x}+\lambda \widehat{x}(t))$ and let $\left\{h_{m}\right\}_{m \geq 1} \subseteq \mathbb{R}^{\mathbb{N}}$ be a countable dense set. Because $j_{2}^{0}(t, \bar{x}+\lambda \widehat{x}(t) ; \cdot)$ is continuous, we have

$$
\begin{aligned}
G r S= & \left\{(t, \lambda, u) \in T \times(0,1) \times \mathbb{R}^{\mathbb{N}}: u \in S(t, \lambda)\right\} \\
= & \bigcap_{m \geq 1}\left\{(t, \lambda, u) \in T \times(0,1) \times \mathbb{R}^{\mathbb{N}}:\left(u, h_{m}\right)_{\mathbb{R}^{\mathbb{N}}} \leq j_{2}^{0}\left(t, \bar{x}+\lambda \widehat{x}(t) ; h_{m}\right)\right\} \\
& \Rightarrow G r S \in \mathcal{L}(T) \times B((0,1)) \times B\left(\mathbb{R}^{\mathbb{N}}\right)
\end{aligned}
$$

with $\mathcal{L}(T)$ being the Lebesgue σ-field of T and $B((0,1))$ (resp. $B\left(\mathbb{R}^{\mathbb{N}}\right)$) the Borel σ-field of $(0,1)$ (resp. of $\left.\mathbb{R}^{\mathbb{N}}\right)$. So we can apply the Yankon-von Neumann-Aumann selection theorem (see Hu-Papageorgiou [11], p.158) to obtain measurable functions $v: T \rightarrow \mathbb{R}^{\mathbb{N}}$ and $\lambda: T \rightarrow(0,1)$ such that $(v(t), \lambda(t)) \in \Gamma(t)$ for all $t \in T$
and $j_{2}(t, \bar{x}+\widehat{x}(t))-j_{2}(t, \bar{x})=(v(t), \widehat{x}(t))_{\mathbb{R}^{\mathbb{N}}}, v(t) \in \partial j_{2}(t, \bar{x}+\lambda(t) \widehat{x}(t))$ a.e. on T. Using hypothesis $H(j)_{1}(v)$ and the Poicare-Wirtinger inequality, we obtain

$$
\begin{aligned}
\int_{0}^{b} j_{2}(t, x(t)) d t & =\int_{0}^{b} j_{2}(t, \bar{x}+\widehat{x}(t)) \\
& \geq \int_{0}^{b} j_{2}(t, \bar{x}) d t-b^{\frac{1}{p}}\left\|x^{\prime}\right\|_{p}\|\theta\|_{1}
\end{aligned}
$$

Thus finally we have

$$
\varphi(x) \geq \frac{1}{p}\left\|x^{\prime}\right\|_{p}^{p}+g(\bar{x})|E|-\left(b^{\frac{1}{q}}\left\|x^{\prime}\right\|_{p}+4\right)|E|-\|\xi\|_{1}-c_{0}-b^{\frac{1}{q}}\left\|x^{\prime}\right\|_{p}\|\theta\|_{1} .
$$

From this inequality and the coercivity of g, it follows that φ is coercive. Exploiting the compact embedding of $W_{\mathrm{per}}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)$ into $C\left(T, \mathbb{R}^{\mathbb{N}}\right)$, we can easily check that φ is weakly lower semicontinuous. So by the Weierstrass theorem we can find $x \in W_{\text {per }}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)$ such that $\varphi(x)=\inf \varphi$. Then we have $0 \in \partial \varphi(x)$. Let A : $W_{\mathrm{per}}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right) \rightarrow W_{\mathrm{per}}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)^{*}$ be the nonlinear operator defined by

$$
\langle A(x), y\rangle=\int_{0}^{b}-\left\|x^{\prime}(t)\right\|^{p-2}\left(x^{\prime}(t), y^{\prime}(t)\right)_{\mathbb{R}^{\mathbb{N}}} d t
$$

We have $A(x)=u$ with $u \in S_{\partial j(\cdot, x(\cdot))}^{q}$. For every $\psi \in C_{0}^{\infty}\left((0, b), \mathbb{R}^{\mathbb{N}}\right)$ we have

$$
\int_{0}^{b}-\left\|x^{\prime}(t)\right\|^{p-2}\left(x^{\prime}(t), \psi^{\prime}(t)\right)_{\mathbb{R}^{\mathbb{N}}} d t=\int_{0}^{b}(u(t), \psi(t))_{\mathbb{R}^{\mathbb{N}}} d t
$$

Recalling that $\left(\left\|x^{\prime}(\cdot)\right\|^{p-2} x^{\prime}(\cdot)\right) \in W^{-1, q}\left(T, \mathbb{R}^{\mathbb{N}}\right)=W_{0}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)^{*}$ (see Adams [1], p.50), we have that

$$
\left\langle\left(\left\|x^{\prime}\right\|^{p-2} x^{\prime}\right)^{\prime}, \psi\right\rangle_{0}=\int_{0}^{b}(u(t), \psi(t))_{\mathbb{R}^{\mathbb{N}}} d t=\langle u, \psi\rangle_{0}
$$

where $\langle\cdot, \cdot\rangle_{0}$ denotes the duality brackets for the pair $\left(W_{\text {per }}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right), W^{-1, q}\left(T, \mathbb{R}^{\mathbb{N}}\right)\right)$. Since $C_{0}^{\infty}\left((0, b), \mathbb{R}^{\mathbb{N}}\right)$ is dense in $W_{\mathrm{per}}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)$ it follows that

$$
\begin{equation*}
\left(\left\|x^{\prime}(t)\right\|^{p-2} x^{\prime}(t)\right)^{\prime}=u(t) \in \partial j(t, x(t)) \quad \text { a.e. on } T . \tag{3.2}
\end{equation*}
$$

Also for every $y \in W_{\mathrm{per}}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)$, using Green's identity (integration by parts), we obtain

$$
\begin{aligned}
\langle A(x), y\rangle= & \left(\left\|x^{\prime}(b)\right\|^{p-2} x^{\prime}(b), y(b)\right)_{\mathbb{R}^{\mathbb{N}}}-\left(\left\|x^{\prime}(0)\right\|^{p-2} x^{\prime}(0), y(0)\right)_{\mathbb{R}^{\mathbb{N}}} \\
& -\int_{0}^{b}\left(\left(\left\|x^{\prime}(t)\right\|^{p-2} x^{\prime}(t)\right)^{\prime}, y(t)\right)_{\mathbb{R}^{\mathbb{N}}} d t \quad \text { for all } \quad y \in W_{\text {per }}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)_{\mathbb{R}^{\mathbb{N}}} d t
\end{aligned}
$$

Because $A(x)=u$, and using (3.2), we obtain

$$
\begin{aligned}
& \left(\left\|x^{\prime}(b)\right\|^{p-2} x^{\prime}(b), y(b)\right)_{\mathbb{R}^{\mathbb{N}}}=\left(\left\|x^{\prime}(0)\right\|^{p-2} x^{\prime}(0), y(0)\right)_{\mathbb{R}^{\mathbb{N}}} \quad \text { for all } \quad y \in W_{\mathrm{per}}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right), \\
& \quad \Rightarrow\left\|x^{\prime}(b)\right\|^{p-2} x^{\prime}(b)=\left\|x^{\prime}(0)\right\|^{p-2} x^{\prime}(0) \\
& \quad \Rightarrow x^{\prime}(0)=x^{\prime}(b) .
\end{aligned}
$$

Note that since $x \in W_{\text {per }}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)$, we have $\left(x(0)=x(b)\right.$. Finally since $\left\|x^{\prime}\right\|^{p-2} x^{\prime} \in$ $W_{\mathrm{per}}^{1, q}\left(T, \mathbb{R}^{\mathbb{N}}\right) \Rightarrow\left\|x^{\prime}(\cdot)\right\|^{p-2} x^{\prime}(\cdot) \in C_{\mathrm{per}}^{1}\left(T, \mathbb{R}^{\mathbb{N}}\right)$. Because the map $y \rightarrow\|y\|^{p-2} y$ is a homeomorphism of $\mathbb{R}^{\mathbb{N}}$, we infer that $x^{\prime} \in C_{\text {per }}\left(T, \mathbb{R}^{\mathbb{N}}\right)$, hence $x \in C_{\text {per }}^{1}\left(T, \mathbb{R}^{\mathbb{N}}\right)$ and it solves (3.1).

4. Multiplicity result

Next by strengthening our hypotheses on $j(t, \cdot)$ with a condition about its behavior near zero, we obtain a multiplicity result for problem (3.1). For this we will need the following nonsmooth version of the Local Linking theorem due to Brezis-Nirenberg [3]. This theorem was proved recently by Kandilakis-KourogenisPapageorgiou [13].

Theorem 4.1. If X is a reflexive Banach space such that $X=Y \oplus V$ with $\operatorname{dim} Y<+\infty, \varphi: x \rightarrow \mathbb{R}$ is a locally Lipschitz functional which satisfies the nonsmooth $P S$-condition, $\varphi(0)=0$ and
(a) there exists $r>0$ such that

$$
\varphi(y) \leq 0 \quad \text { for } \quad y \in Y,\|y\| \leq r \quad \text { and } \quad \varphi(v) \geq 0 \quad \text { for } \quad v \in V,\|v\| \leq r
$$

(ii) φ is bounded below and $\inf \varphi<0$,
then φ has at least two nontrivial critical points.
Our hypotheses on the nonsmooth potential $j(t, x)$ are the following:
$H(j)_{2}: j: T \times \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ is a function which satisfies hypotheses $H(j)_{1}$ and
(vi) $\lim _{x \rightarrow 0} \frac{p j(t, x)}{\|x\|^{p}}=0$ uniformly for almost all $t \in T$ and there exists $r_{0}>0$ such that for almost all $t \in T$ and all $\|x\| \leq r_{0}$ we have $j(t, x) \leq 0$.

Theorem 4.2. If hypotheses $H(j)_{2}$ hold, then problem (3.1) has at least two nontrivial solutions in $C^{1}\left(T, \mathbb{R}^{\mathbb{N}}\right)$.

Proof. Let $\varphi: W_{\text {per }}^{1, p}\left(t, \mathbb{R}^{\mathbb{N}}\right) \rightarrow \mathbb{R}$ be the locally Lipschitz energy functional defined by

$$
\varphi(x)=\frac{1}{p}\left\|x^{\prime}\right\|_{p}^{p}+\int_{0}^{b} j(t, x(t)) d t
$$

From the proof of Theorem 3.3 we know that φ is coercive, hence it satisfies the nonsmooth PS-condition (see Kourogenis-Papageorgiou [15]). As before we consider the direct sum decomposition

$$
W_{\mathrm{per}}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right)=\mathbb{R}^{\mathbb{N}} \oplus V
$$

with $V=\left\{v \in W_{\text {per }}^{1, p}\left(T, \mathbb{R}^{\mathbb{N}}\right): \int_{0}^{b} v(t) d t=0\right\}$. By virtue of hypothesis $H(j)_{2}(v i)$ given $\varepsilon>0$, we can find $\delta>0$ such that for almost all $t \in T$ and all $\|x\| \leq \delta$ we have $-\frac{\varepsilon}{p}\|x\|^{p} \leq j(t, x)$. Let $v \in V$ with $\left\|v^{\prime}\right\|_{p} \leq \frac{\delta}{b^{\frac{1}{q}}}$. From the Poincare-Wirtinger
inequality we have that $\|v\|_{\infty} \leq b^{\frac{1}{q}}\left\|v^{\prime}\right\|_{p} \leq \delta$. So if $v \in V$ with $\left\|v^{\prime}\right\|_{p} \leq \frac{\delta}{b^{\frac{1}{q}}}=\delta_{1}$, we have $\|v\|_{\infty} \leq \delta$ and so

$$
\begin{aligned}
\varphi(v) & =\frac{1}{p}\left\|v^{\prime}\right\|_{p}^{p}+\int_{0}^{b} j(t, v(t)) d t \\
& \geq \frac{1}{p}\left\|v^{\prime}\right\|_{p}^{p}+\frac{\varepsilon}{p}\|v\|_{p}^{p} \\
& \geq \frac{1}{p}\left(1-\frac{\varepsilon}{\beta_{1}}\right)\left\|v^{\prime}\right\|_{p}^{p} \quad \text { for some } \quad \beta_{1}>0
\end{aligned}
$$

from the Poincare-Wirtinger inequality. Choose $\varepsilon \leq \beta_{1}$, to infer that for $\|v\| \leq \delta_{1}$ we have $\varphi(v) \geq 0$.

Also if $y \in \mathbb{R}^{\mathbb{N}}$ and $\|y\| \leq r_{0}$, then by hypothesis $H(j)_{2}$ (vi) we have that

$$
\varphi(y)=\int_{0}^{b} j(t, y) d t \leq 0
$$

Note that φ being coercive, it is bounded below. If $\inf \varphi<0$, then using $r=\min \left\{\delta_{1}, r_{0}\right\}>0$ we can apply Theorem 4.1 and obtain two nontrivial critical points of φ, which we can check are two distinct nontrivial solutions of (3.1) in $C^{1}\left(T, \mathbb{R}^{\mathbb{N}}\right)$.

If $\inf \varphi=0$, then by virtue of hypothesis $H(j)_{2}(v i)$ for all $y \in \mathbb{R}^{\mathbb{N}}$ with $b^{\frac{1}{p}}\|y\|_{\mathbb{R}^{\mathbb{N}}} \leq \delta_{1}$ we have $\inf \varphi=\varphi(y)=0$ and so we conclude that φ has an infinity of critical points, therefore problem (3.1) has an infinity of solutions in $C^{1}\left(T, \mathbb{R}^{\mathbb{N}}\right)$.

The nonsmooth locally Lipschitz potential function

$$
j(t, x)=\left\{\begin{array}{lll}
-\|x\|^{p} \ln \left(1+\|x\|^{p}\right) & \text { if } & \|x\| \leq 1 \\
\chi_{E}(t) \ln \|x\|+\chi_{E^{c}}(t) \sin \pi\|x\|-\ln 2 & \text { if } & \|x\| \geq 1
\end{array}\right.
$$

with $|E|>0$, satisfies hypotheses $H(j)_{2}$.

References

[1] Adams, R., Sobolev Spaces, Pure and Applied Mathematics 65, Academic Press, New York/London 1975.
[2] Berger, M. Schechter, M., On the solvability of semilinear gradient operator equations, Adv. Math. 25 (1977), 97-132.
[3] Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939-963.
[4] Chang, K. C., Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129.
[5] Clarke, F., Optimization and Nonsmooth Analysis, Wiley, New York 1983.
[6] Dang, H., Oppenheimer, S., Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl. 198, (1996) 35-48.
[7] del Pino, M., Manasevich, R., Murua, A., Existence and multiplicity of solutions with prescribed period for a second order quasilinear $O D E$, Nonlinear Anal. 18, (1992) 79-92.
[8] Fabry, C., Fayyad, D., Periodic solutions of second order differential equations with a pLaplacian and asymetric nonlinearities, Rend. Istit. Mat. Univ. Trieste 24 (1992), 207-227.
[9] Gasinski, L., Papageorgiou, N. S., A multiplicity result for nonlinear second order periodic equations with nonsmooth potential, Bull. Belg. Math. Soc. Simon Stevin 9 (2002a), 245-258.
[10] Guo, Z., Boundary value problems for a class of quasilinear ordinary differential equations, Differential Integral Equations 6 (1993), 705-719.
[11] Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands 1997.
[12] Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis. Volume II: Applications, Kluwer, Dordrecht, The Netherlands 2000.
[13] Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.
[14] Kourogenis, N., Papageorgiou, N. S., Nonsmooth critical point theory and nonlinear elliptic equations at resonance, J. Austral. Math. Soc. Ser. A 69 (2000), 245-271.
[15] Kourogenis, N., Papageorgiou, N. S., A weak nonsmooth Palais-Smale condition and coercivity, Rend. Circ. Mat. Palermo 49 (2000), 521-526.
[16] Manasevich, R., Mawhin, J., Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations 145 (1998), 367-393.
[17] Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Vol. 74 of Applied Mathematics Sciences, Springer-Verlag, New York 1989.
[18] Tang, C. L., Wu, X. P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2001), 386-397.

Department of Mathematics
School of Applied Mathematics and Natural Sciences
National Technical University, Zografou Campus
Athens 15780, Greece
E-mail: mfilip@math.ntua.gr

[^0]: 2000 Mathematics Subject Classification: 34A60.
 Key words and phrases: locally linking Lipschitz function, generalized subdifferential, nonsmooth critical point theory, nonsmooth Palais-Smale condition, p-Laplacian, periodic system.

 The author was supported by a grant of the National Scholarship Foundation of Greece (I.K.Y.).

 Received January 14, 2005.

