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ON THE FIRST EIGENVALUE OF SPACELIKE

HYPERSURFACES IN LORENTZIAN SPACE

WU BING-YE

Abstract. In this paper we obtain a lower bound for the first Dirichlet
eigenvalue of complete spacelike hypersurfaces in Lorentzian space in terms
of mean curvature and the square length of the second fundamental form.
This estimate is sharp for totally umbilical hyperbolic spaces in Lorentzian
space. We also get a sufficient condition for spacelike hypersurface to have
zero first eigenvalue.

1. Introduction

Let Mn be a complete noncompact Riemannian manifold and Ω ⊂ Mn a domain
with compact closure and nonempty boundary ∂Ω. The Dirichlet eigenvalue λ1(Ω)
of Ω is defined by

λ1(Ω) = inf
(∫

Ω |∇f |2dM∫
Ω

f2dM
: f ∈ L2

1,0(Ω)\{0}
)

,

where dM is the volume element on Mn and L2
1,0(Ω) the completion of C∞

0 with
respect to the norm

‖ ϕ ‖2
Ω=

∫

Ω

ϕ2dM +

∫

Ω

|ϕ|2dM .

If Ω1 ⊂ Ω2 are bounded domains, then λ1(Ω1) ≥ λ1(Ω2) ≥ 0. Thus one may define
the first Dirichlet eigenvalue of Mn as the following limit

λ1(M) = lim
r→∞

λ1(B(p, r)) ≥ 0 ,

where B(p, r) is the geodesic ball of Mn with radius r centered at p. It is clear
that the definition of λ1(M) does not depend on the center point p. According
to Schoen and Yau [6] it is an important question to find conditions which will
imply λ1(M) > 0. The best well-known result toward the question is due to
Mckean [4]. He showed that if Mn is an n-dimensional, complete noncompact,
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simply connected Riemannian manifold with sectional curvature KM ≤ −a2 < 0,
then

λ1(M) ≥
(n − 1)2a2

4
.

Mckean’s estimate is sharp in the sense that for hyperbolic space Hn(−a2) with
constant curvature −a2, we have λ1(H

n(−a2)) = 1
4 (n − 1)2a2.

There is a version of Mckean’s theorem for submanifolds of the hyperbolic space
with bounded mean curvature due to Cheung and Leung [1]. They proved that for
an n-dimensional complete noncompact immersed submanifold Mn in Hn+p(−1)
with bounded mean curvature H ≤ c < n − 1, one has

λ1(M) ≥
(n − 1 − c)2

4
,

and the estimate is sharp for totally geodesic Hn(−1) in Hn+p(−1).
Besides the above mentioned results, recently Pacellibessa and Montenegro[5]

discussed similar problem in a little more general situations. Our motivation
comes from the fact that the hyperbolic space, as the totally umbilical spacelike
hypersurface in Lorentzian space, has positive first eigenvalue. This suggests that
we look at spacelike hypersurfaces in Lorentzian space. First let us recall the fact
that complete spacelike hypersurfaces in Lorentzian (n + 1)-space Ln+1 are all
noncompact, as one can verify that the projection Π : Mn → Rn

a defined by any
unit timelike vector a is a diffeomorphism(for details see §3). We shall prove the
following

Theorem 1. Let Mn be a complete spacelike hypersurface in Lorentzian (n + 1)-
space Ln+1. Suppose that both

A = inf

(
1

n
S + (n − 2)H2 − 2H

√
n − 1

n
(S − nH2) − n|∇H |

)
(1.1)

and

B = sup

(
H +

√
n − 1

n
(S − nH2)

)
(1.2)

are positive constants, then

(1.3) λ1(M) ≥
A2

4B2
,

where H and S denote the mean curvature and square length of second fundamental
form of Mn in Ln+1,respectively.

Remark. (1.3) is sharp in the sense that for the hyperbolic space in Ln+1, it
becomes an equality.

On the other hand, it is also interesting to ask that for what geometries a
noncompact manifold Mn has zero first eigenvalue. Cheng and Yau [2] showed
that λ1(M) = 0 if Mn has polynomial volume growth. In this paper we shall
prove the following
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Theorem 2. Let Mn be a complete spacelike hypersurface in Ln+1 whose Gauss
map is bounded. Then λ1(M) = 0.

2. Preliminaries

Let Ln+1 be the Lorentzian (n + 1)-space and Mn be a complete spacelike
hypersurface in Ln+1. We choose a local Lorentzian frames e1, e2, · · · , en+1 in
Ln+1 such that, restricted to Mn, e1, e2, · · · , en are tangent to Mn, and en+1 is
future-directed. We use the following convention on the ranges of indices:

1 ≤ A, B, · · · ≤ n + 1, 1 ≤ i, j, · · · ≤ n

Let ω1, ω2, · · · , ωn+1 be the dual frames of e1, e2, · · · , en+1 so that the Lorentzian
metric on Ln+1 is given by ds̃2 = ω2

1 + · · · + ω2
n − ω2

n+1 =
∑

A εAω2
A, where

ε1 = · · · = εn = 1 and εn+1 = −1. The structure equations of Ln+1 are given by

deA = −
∑

B

εAωABeB , ωAB + ωBA = 0 ,(2.1)

dωA = −
∑

B

εBωAB ∧ ωB ,(2.2)

dωAB = −
∑

C

εCωAC ∧ ωCB .(2.3)

When restricted on Mn, we have ωn+1 = 0, and the induced Riemannian metric
of Mn is written as ds2 =

∑
i(ωi)

2. Since 0 = dωn+1 = −
∑

i ωn+1,i ∧ ωi, by
Cartan’s lemma we may write

(2.4) ωn+1,i =
∑

j

hijωj , hij = hji .

We call h =
∑

i,j hijωi ⊗ ωj the second fundamental form of Mn. The mean
curvature and the square length of the second fundamental form of Mn is defined
by H = (1/n)

∑
i hii and S =

∑
i,j h2

ij , respectively. The covariant differentiation

of h is defined by ∇h =
∑

i,j,k hijkωi ⊗ ωj ⊗ ωk, where

(2.5)
∑

k

hijkωk = dhij −
∑

k

(hkjωki + hikωkj) ,

and it satisfies the following Codazzi equation:

(2.6) hijk = hikj .

In order to prove Theorem 1 we need a lemma due to Pacellibessa and Mon-
tenegro [5]. Let Ω ⊂ Mn be a domain with compact closure in Mn, and χ(Ω) be
the set of all smooth vector fields X on Ω with ‖ X ‖∞= supΩ |X | < ∞ and inf
divX > 0. Define c(Ω) by

c(Ω) = sup

(
inf divX

‖ X ‖∞
: X ∈ χ(Ω)

)
.

Remark. To show that χ(Ω) 6= ∅, consider the boundary value problem ∆f = 1
in Ω, and f = 0 on ∂Ω and set X = ∇f , then divX = 1 and ‖ X ‖∞< ∞.
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Lemma 3.
[5] Let Ω ⊂ Mn be a domain with compact closure (∂Ω 6= ∅) in Mn.

Then

λ1(Ω) ≥
c(Ω)2

4
> 0 .

3. The proof of theorems

In this section we shall complete the proof of Theorems 1 and 2. For complete
spacelike hypersurface Mn in Ln+1, the Gauss map is defined by en+1 : Mn →
Hn(−1) ⊂ Ln+1. Let us fix a future-directed unit timelike vector a ∈ Hn(−1) and
define the projection Π : Mn → Rn

a by

(3.1) Π(x) = x + 〈x, a〉a ,

where 〈, 〉 is the standard Lorentzian inner product on Ln+1 and Rn
a the totally

geodesic Euclidean n-space determined by a which is defined by

Rn
a = {x ∈ Ln+1 : 〈x, a〉 = 0} .(3.2)

It is clear from (3.1) that

dΠ(X) = X + 〈X, a〉a(3.3)

for any tangent vector field on Mn, and consequently,

(3.4) |dΠ(X)|2 = |X |2 + 〈X, a〉2 .

(3.4) means that the map Π : Mn → Rn
a increases the distance. If a map, from

a complete Riemannian manifold M1 into another Riemannian manifold M2 of
the same dimension, increases the distance, then it is a covering map and M2 is
complete [3,VIII, Lemma 8.1]. Hence Π is a covering map,but Rn

a being simply
connected this means that Π is in fact a diffeomorphism between Mn and Rn

a , and
thus Mn is noncompact.

Let us first prove Theorem 2.Assume that the Gauss map en+1 : Mn → Hn(−1)
is bounded, then there exists ρ > 0 such that

1 ≤ −〈a, en+1〉 ≤ ρ .(3.5)

Write

a = aT − 〈a, en+1〉en+1 ,(3.6)

where aT denotes the component of a which is tangent to Mn. Since a ∈ Hn(−1)
we have

(3.7) −1 = |aT |2 − 〈a, en+1〉
2 .

It follows from (3.4)–(3.7) that

(3.8) |X |2 ≤ |dΠ(X)|2 ≤ ρ2|X |2

for any tangent vector field on Mn. Let B(p, r) is the geodesic ball of Mn with

radius r centered at p ∈ Mn. We claim that Π
(
B(p, r)

)
⊂ B̃(p̃, ρr), where B̃(p̃, ρr)

denotes the geodesic ball of Rn
a with radius ρr centered at p̃ = Π(p). In fact, for
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any q̃ ∈ Π(B(p, r)) let q ∈ B(p, r) be the unique point such that Π(q) = q̃, and
γ : [a, b] → Mn is the minimal geodesic joining p and q, then from (3.8) we have

d̃(p̃, q̃) ≤ L(Π ◦ γ) =

∫ b

a

|dΠ
(
γ′(t)

)
| dt

≤ ρ

∫ b

a

|γ′(t)| dt = ρL(γ) = ρd(p, q) < ρr ,

where d̃ and d denote the distance in Rn
a and Mn, respectively. This prove our

claim.
Let dV denotes the n-dimensional volume element on Rn

a . Using (3.3) and (3.6)
it follows that

Π∗(dV )(X1, · · · , Xn) = det(dΠ(X1), · · · , dΠ(Xn), a) = det(X1, · · · , Xn, a)

= −〈a, en+1〉det(X1, · · · , Xn, en+1)

= −〈a, en+1〉dM(X1, · · · , Xn)

for any tangent vector fields X1, · · · , Xn of Mn. In other words,

(3.9) Π∗(dV ) = −〈a, en+1〉dM .

Since Π(B(p, r)) ⊂ B̃(p̃, ρr) and Π : Mn → Rn
a is a diffeomorphism, it follows

from (3.5), (3.8) and (3.9) that

ρnrnωn = vol(B̃(p̃, ρr)) ≥ vol
(
Π(B(p, r))

)
=

∫

Π(B(p,r))

dV

=

∫

B(p,r)

Π∗(dV ) =

∫

B(p,r)

−〈a, en+1〉dM ≥

∫

B(p,r)

dM = vol
(
B(p, r)

)
,(3.10)

where ωn denotes the volume of unit ball in Euclidean n-space. (3.10) means that
the order of the volume growth of Mn is not larger than n, thus by [2] we see that
λ1(M) = 0, and Theorem 2 is proved.

Next we want to prove Theorem 1. Using (2.1)–(2.6), a standard computation
shows that

(3.11) △〈a, en+1〉 = 〈a, n∇H〉 + S〈a, en+1〉 ,

where △ is the Laplace-Beltrami operator on Mn, and ∇H the gradient of mean
curvature. Let f = log(−〈a, en+1〉), then from (3.11) we have

(3.12) △f = S +
〈a, n∇H〉

〈a, en+1〉
−

|∇〈a, en+1〉|2

〈a, en+1〉2
.

It is clear from (3.7) that

(3.13) |〈a, n∇H〉| ≤ n|∇H | · |aT | ≤ n|∇H | · |〈a, en+1〉| .

In order to estimate the quantity |∇〈a, en+1〉|2, we need the following lemma which
can be easily verified by the method of Lagrange multipliers.
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Lemma 4. Let λ1, · · · , λn satisfy
∑

i λi = nH and
∑

i λ2
i = S, then

max
i

{λi} ≤ H +

√
n − 1

n
(S − nH2) .

We can assume that the local frames e1, · · · , en diagonalize the second funda-
mental form, i.e., we have hij = λiδij , thus by (3.7) and Lemma 4 we get

|∇〈a, en+1〉|
2 =

∑

i

(ei〈a, en+1〉)
2 =

∑

i

(λi〈a
T , ei〉)

2 ≤ max
i

{λ2
i }|a

T |2

≤

(
n − 1

n
S − (n − 2)H2 + 2H

√
n − 1

n
(S − nH2)

)
〈a, en+1〉

2 .(3.14)

Combining (3.12)–(3.14) we get

(3.15) ∆f ≥
1

n
S + (n − 2)H2 − 2H

√
n − 1

n
(S − nH2) − n|∇H | .

Now suppose that the numbers A, B defined by (1.1) and (1.2) are both positive
constants. For any domain Ω ⊂ Mn with compact closure and nonempty bound-
ary, let X = ∇f , then (3.14) and (3.15) implies that divX = △f ≥ A, ‖ X ‖∞≤ B
and consequently, X ∈ χ(Ω), and c(Ω) ≥ A/B. By Lemma 3, we have

(3.16) λ1(Ω) ≥
c(Ω)2

4
≥

A2

4B2
.

Since Ω ⊂ Mn is arbitrary, (3.16) implies (1.3), and so we are done.
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