ARCHIVUM MATHEMATICUM (BRNO)

Tomus 42 (2006), 239 – 246

ON THREE EQUIVALENCES CONCERNING PONOMAREV-SYSTEMS

YING GE

ABSTRACT. Let $\{\mathcal{P}_n\}$ be a sequence of covers of a space X such that $\{st(x,\mathcal{P}_n)\}$ is a network at x in X for each $x \in X$. For each $n \in \mathbb{N}$, let $\mathcal{P}_n = \{P_\beta : \beta \in \Lambda_n\}$ and Λ_n be endowed the discrete topology. Put $M = \{b = (\beta_n) \in \Pi_{n \in \mathbb{N}} \Lambda_n : \{P_{\beta_n}\}$ forms a network at some point x_b in $X\}$ and $f: M \longrightarrow X$ by choosing $f(b) = x_b$ for each $b \in M$. In this paper, we prove that f is a sequentially-quotient (resp. sequence-covering, compact-covering) mapping if and only if each \mathcal{P}_n is a cs^* -cover (resp. fcs-cover, cfp-cover) of X. As a consequence of this result, we prove that f is a sequentially-quotient, s-mapping if and only if it is a sequence-covering, s-mapping, where "s" can not be omitted.

1. Introduction

A space is called a Baire's zero-dimensional space if it is a Tychonoff-product space of countable many discrete spaces. In [9], Ponomarev proved that each first countable space can be characterized as an open image of a subspace of a Baire's zero-dimensional space. More precisely, he obtained the following result.

Theorem 1.1. Let X be a space with the topology $\tau = \{P_{\beta} : \beta \in \Lambda\}$. For each $n \in \mathbb{N}$, put $\Lambda_n = \Lambda$ and endow Λ_n the discrete topology. Put $Z = \prod_{n \in \mathbb{N}} \Lambda_n$, which is a Baire's zero-dimensional space, and put $M = \{b = (\beta_n) \in Z : \{P_{\beta_n}\} \text{ forms a neighbourhood base at some point } x_b \text{ in } X\}$. Define $f : M \longrightarrow X$ by choosing $f(b) = x_b$ for each $b \in M$. Then

- (1) f is a mapping.
- (2) f is continuous and onto.
- (3) If X is first countable, then f is an open mapping.

Recently, while generalizing the Ponomarev's methods, Lin ([6]) introduced *Ponomarev-systems* $(f, M, X, \{\mathcal{P}_n\})$ as in the following definition.

²⁰⁰⁰ Mathematics Subject Classification: 54E35, 54E40.

 $Key\ words\ and\ phrases$: Ponomarev-system, point-star network, cs^* -(resp. fcs-, cfp-)cover, sequentially-quotient (resp. sequence-covering, compact-covering) mapping.

This project was supported by NSFC(No.10571151).

Received June 7, 2005, revised February 2006.

Definition 1.2.

- (1) Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X, where $\mathcal{P}_x \subset (\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\}$. \mathcal{P} is called a network of X ([8]), if for each $x \in U$ with U open in X, there exists $P \in \mathcal{P}_x$ such that $x \in P \subset U$, where \mathcal{P}_x is called a network at x in X.
- (2) Let $\{\mathcal{P}_n\}$ be a sequence of covers of a space X. $\{\mathcal{P}_n\}$ is called a point-star network of X ([7]), if $\{st(x,\mathcal{P}_n)\}$ is a network at x in X for each $x \in X$, where $st(x,\mathcal{P}) = \bigcup \{P \in \mathcal{P} : x \in P\}$.
- (3) Let $\{\mathcal{P}_n\}$ be a point-star network of a space X. For each $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P_\beta : \beta \in \Lambda_n\}$ and endow Λ_n the discrete topology. Put $M = \{b = (\beta_n) \in \Pi_{n \in \mathbb{N}} \Lambda_n : \{P_{\beta_n}\} \text{ forms a network at some point } x_b \text{ in } X\}$, then M, which is a subspace of the product space $\Pi_{n \in \mathbb{N}} \Lambda_n$, is a metric space and x_b is unique for each $b \in M$. Define $f : M \longrightarrow X$ by choosing $f(b) = x_b$, then f is a continuous and onto mapping. $(f, M, X, \{\mathcal{P}_n\})$ is called a *Ponomarev*-system ([7, 10]).

In a *Ponomarev*-system $(f, M, X, \{\mathcal{P}_n\})$, the following results have been obtained

Theorem 1.3 ([6, 7, 10]). Let $(f, M, X, \{P_n\})$ be a Ponomarev-system. Then the following hold.

- (1) If each \mathcal{P}_n is a point-finite (resp. point-countable) cover of X, then f is a compact mapping (resp. s-mapping).
- (2) If each \mathcal{P}_n is a cs*-cover (resp. cfp-cover) of X, then f is a sequentially-quotient (resp. compact-covering) mapping.

Take Theorem 1.3 into account, the following question naturally arises.

Question 1.4. Can implications (1) and (2) in Theorem 1.3 be reversed?

In this paper, we investigate the *Ponomarev*-system $(f, M, X, \{\mathcal{P}_n\})$ to answer Question 1.4 affirmatively. We also prove that, in a *Ponomarev*-system $(f, M, X, \{\mathcal{P}_n\})$, f is a sequence-covering mapping if and only if each \mathcal{P}_n is an fcs-cover. As a consequence of these results, f is a sequentially-quotient, s-mapping if and only if it is a sequence-covering, s-mapping, where "s" can not be omitted.

Throughout this paper, all spaces are assumed to be regular and T_1 , and all mappings are continuous and onto. $\mathbb N$ denotes the set of all natural numbers, $\{x_n\}$ denotes a sequence, where the n-th term is x_n . Let X be a space and let A be a subset of X. We call that a sequence $\{x_n\}$ converging to x in X is eventually in A if $\{x_n:n>k\}\bigcup\{x\}\subset A$ for some $k\in\mathbb N$. Let $\mathcal P$ be a family of subsets of X and let $x\in X$. $\bigcup\mathcal P$, $st(x,\mathcal P)$ and $(\mathcal P)_x$ denote the union $\bigcup\{P:P\in\mathcal P\}$, the union $\bigcup\{P\in\mathcal P:x\in P\}$ and the subfamily $\{P\in\mathcal P:x\in P\}$ of $\mathcal P$ respectively. For a sequence $\{\mathcal P_n:n\in\mathbb N\}$ of covers of a space X and a sequence $\{P_n:n\in\mathbb N\}$ of subsets of a space X, we abbreviate $\{\mathcal P_n:n\in\mathbb N\}$ and $\{P_n:n\in\mathbb N\}$ to $\{\mathcal P_n\}$ and $\{P_n\}$ respectively. A point $b=(\beta_n)_{n\in\mathbb N}$ of a Tychonoff-product space is abbreviated to (β_n) , and the n-th coordinate β_n of b is also denoted by $(b)_n$.

2. The main results

Definition 2.1. Let $f: X \longrightarrow Y$ be a mapping.

- (1) f is called a sequentially-quotient mapping ([1]) if for each convergent sequence S in Y, there exists a convergent sequence L in X such that f(L) is a subsequence of S.
- (2) f is called a sequence-covering mapping ([4]) if for each convergent sequence S converging to y in Y, there exists a compact subset K of X such that $f(K) = S \cup \{y\}$.
- (3) f is called a compact-covering mapping ([8]) if for each compact subset L of Y, there exists a compact subset K of X such that f(K) = L.
- **Remark 2.2.** (1) Compact-covering mapping \Longrightarrow sequence-covering mapping \Longrightarrow (if the domain is metric) sequentially-quotient mapping ([6]).
- (2) "sequence-covering mapping" in Definition 2.1 (2) was also called "pseudo-sequence-covering mapping" by Ikeda, Liu and Tanaka in [5].
- **Definition 2.3.** Let (X, d) be a metric space, and let $f: X \longrightarrow Y$ be a mapping. f is called a π -mapping ([9]), if for each $y \in Y$ and for each neighbourhood U of y in Y, $d(f^{-1}(y), X f^{-1}(U)) > 0$.
- **Remark 2.4.** (1) For a *Ponomarev*-system $(f, M, X, \{\mathcal{P}_n\}), f : M \longrightarrow X$ is a π -mapping ([7, 10]).
- (2) Recall a mapping $f: X \longrightarrow Y$ is a compact mapping (resp. s-mapping), if $f^{-1}(y)$ is a compact (resp. separable) subset of X for each $y \in Y$. It is clear that each compact mapping from a metric space is an s- and π -mapping.

Definition 2.5. Let \mathcal{P} be a cover of a space X.

- (1) \mathcal{P} is called a cs^* -cover of X ([6]) if for each convergent sequence S in X, there exists $P \in \mathcal{P}$ and a subsequence S' of S such that S' is eventually in P.
- (2) \mathcal{P} is called an fcs-cover of X ([3]) if for each sequence S converging to x in X, there exists a finite subfamily \mathcal{P}' of $(\mathcal{P})_x$ such that S is eventually in $\bigcup \mathcal{P}'$.
- (3) \mathcal{P} is called a cfp-cover of X ([7]) if for each compact subset K, there exists a finite family $\{K_n : n \leq m\}$ of closed subsets of K and $\{P_n : n \leq m\} \subset \mathcal{P}$ such that $K = \bigcup \{K_n : n \leq m\}$ and each $K_n \subset P_n$.
- **Lemma 2.6.** Let $(f, M, X, \{P_n\})$ be a Ponomarev-system and let $U = (\Pi_{n \in \mathbb{N}} \Gamma_n)$ $\bigcap M$, where $\Gamma_n \subset \Lambda_n$ for each $n \in \mathbb{N}$. Then $f(U) \subset \bigcup \{P_\beta : \beta \in \Gamma_k\}$ for each $k \in \mathbb{N}$.
- **Proof.** Let $b = (\beta_n) \in U$ and let $k \in \mathbb{N}$. Then $\{P_{\beta_n}\}$ forms a network at f(b) in X and $\beta_k \in \Gamma_k$. So $f(b) \in P_{\beta_k} \subset \bigcup \{P_\beta : \beta \in \Gamma_k\}$. This proves that $f(U) \subset \bigcup \{P_\beta : \beta \in \Gamma_k\}$.
- **Theorem 2.7.** Let $(f, M, X, \{P_n\})$ be a Ponomarev-system. Then the following hold.
- (1) f is a compact mapping (resp. s-mapping) if and only if \mathcal{P}_m is point-finite (resp. point-countable) cover of X for each $m \in \mathbb{N}$.
- (2) f is a sequentially-quotient mapping if and only if \mathcal{P}_m is a cs^* -cover of X for each $m \in \mathbb{N}$.

(3) f is a compact-covering mapping if and only if \mathcal{P}_m is a cfp-cover of X for each $m \in \mathbb{N}$.

Proof. By Theorem 1.3, we only need to prove necessities of (1), (2) and (3). Let $m \in \mathbb{N}$.

- (1) We only give a proof for the parenthetic part. If \mathcal{P}_m is not point-countable, then, for some $x \in X$, there exists an uncountable subset Γ_m of Λ_m such that $\Gamma_m = \{\beta \in \Lambda_m : x \in P_\beta\}$. For each $\beta \in \Gamma_m$, put $U_\beta = ((\Pi_{n < m} \Lambda_n) \times \{\beta\} \times (\Pi_{n > m} \Lambda_n)) \cap M$. Then $\{U_\beta : \beta \in \Gamma_m\}$ covers $f^{-1}(x)$. If not, there exists $c = (\gamma_n) \in f^{-1}(x)$ and $c \notin U_\beta$ for each $\beta \in \Gamma_m$, so $\gamma_m \notin \Gamma_m$. Thus $x \notin P_{\gamma_m}$ from construction of Γ_m . But $x = f(c) \in P_{\gamma_m}$ from Lemma 2.6. This is a contradiction. Thus $\{U_\beta : \beta \in \Gamma_m\}$ is an uncountable open cover of $f^{-1}(x)$, but it has not any proper subcover. So $f^{-1}(x)$ is not separable, hence f is not an s-mapping.
- (2) Let f be a sequentially-quotient mapping, and let $\{x_n\}$ be a sequence converging to x in X. Then there exists a sequence $\{b_k\}$ converging to b in M such that $f(b_k) = x_{n_k}$ for each $k \in \mathbb{N}$. Let $b = (\beta_n) \in (\Pi_{n \in \mathbb{N}} \Lambda_n) \cap M$. We claim that the subsequence $\{x_{n_k}\}$ of $\{x_n\}$ is eventually in P_{β_m} . In fact, put $U = ((\Pi_{n < m} \Lambda_n) \times \{\beta_m\} \times (\Pi_{n > m} \Lambda_n)) \cap M$, then U is an open neighbourhood of b in M. So sequence $\{b_k\}$ is eventually in U, hence sequence $\{x_{n_k}\}$ is eventually in f(U). $f(U) \subset P_{\beta_m}$ from Lemma 2.6, so $\{x_{n_k}\}$ is eventually in P_{β_m} . Note that $P_m \in \Lambda_m$, so $P_{\beta_m} \in \mathcal{P}_m$. This proves that P_m is a cs^* -cover of X.
- (3) Let f be a compact-covering mapping, and let C be a compact subset of X. Then there exists a compact subset K of M such that f(K) = C. For each $a \in K$, put $U_a = ((\prod_{n < m} \Lambda_n) \times \{(a)_m\} \times (\prod_{n > m} \Lambda_n)) \cap M$, where $(a)_m \in \Lambda_m$ is the m-th coordinate of a, then $U_a \cap K$ is an open (in subspace K) neighbourhood of a. So there exists an open (in subspace K) neighbourhood V_a of a such that $a \in V_a \subset Cl_K(V_a) \subset U_a \cap K$, where $Cl_K(V_a)$ is the closure of V_a in subspace K. Note that $\{V_a: a \in K\}$ is an open cover of subspace K and K is compact in M, so there exists a finite subset $\{a_1, a_2, \ldots, a_s\}$ of K such that $\{V_{a_i}: i=1,2,\ldots,s\}$ is a finite cover of K. Thus $\bigcup \{Cl_K(V_{a_i}): i=1,2,\ldots,s\} = K$, and so $\bigcup \{f(Cl_K(V_{a_i})): i=1,2,\ldots,s\} = f(\bigcup \{Cl_K(V_{a_i}): i=1,2,\ldots,s\} = f(K) = C$. For each $i=1,2,\ldots,s$, put $C_i=f(Cl_K(V_{a_i}))$. Since $Cl_K(V_{a_i})$ is compact in K, C_i is compact in C, so C_i is closed in C, and $C=\bigcup \{C_i: i=1,2,\ldots,s\}$. For each $i=1,2,\ldots,s$, $C_i=f(Cl_K(V_{a_i}))\subset f(U_{a_i}\cap K)\subset f(U_{a_i})$, and $C_i=1$. This proves that $C_i=1$ is a $C_i=1$ such that $C_i=1$ such that $C_i=1$ is a $C_i=1$ such that $C_i=1$ such that

By viewing the above theorem, we ask: in a *Ponomarev*-system $(f, M, X, \{\mathcal{P}_n\})$, what is the sufficient and necessary condition such that f is a sequence-covering mapping? We give an answer to this question.

Theorem 2.8. Let $(f, M, X, \{P_n\})$ be a Ponomarev-system. Then f is a sequence-covering mapping if and only if each P_n is an fcs-cover of X.

Proof. Sufficiency: Let each \mathcal{P}_n be an fcs-cover of X, and let $S = \{x_n\}$ be a sequence converging to x in X. For each $n \in \mathbb{N}$, since \mathcal{P}_n is an fcs-cover, there exists a finite subfamily \mathcal{F}_n of $(\mathcal{P}_n)_x$ such that S is eventually in $\bigcup \mathcal{F}_n$.

Note that $S - \bigcup \mathcal{F}_n$ is finite. There exists a finite subfamily \mathcal{G}_n of \mathcal{P}_n such that $S - \bigcup \mathcal{F}_n \subset \bigcup \mathcal{G}_n$. Put $\mathcal{F}_n \bigcup \mathcal{G}_n = \{P_{\beta_n} : \beta_n \in \Gamma_n\}$, where Γ_n is a finite subset of Λ_n . For each $\beta_n \in \Gamma_n$, if $P_{\beta_n} \in \mathcal{F}_n$, put $S_{\beta_n} = (S \cap P_{\beta_n}) \bigcup \{x\}$, otherwise, put $S_{\beta_n} = (S - \bigcup \mathcal{F}_n) \cap P_{\beta_n}$. It is easy to see that $S = \bigcup_{\beta_n \in \Gamma_n} S_{\beta_n}$ and $\{S_{\beta_n} : \beta_n \in \Gamma_n\}$ is a family of compact subsets of X.

Put $K = \{(\beta_n) \in \Pi_{n \in \mathbb{N}} \Gamma_n : \bigcap_{n \in \mathbb{N}} S_{\beta_n} \neq \emptyset\}$. Then

Claim 1: $K \subset M$ and $f(K) \subset S$.

Let $b = (\beta_n) \in K$, then $\bigcap_{n \in \mathbb{N}} S_{\beta_n} \neq \emptyset$. Pick $y \in \bigcap_{n \in \mathbb{N}} S_{\beta_n}$, then $y \in \bigcap_{n \in \mathbb{N}} P_{\beta_n}$. Note that $\{P_{\beta_n} : n \in \mathbb{N}\}$ forms a network at y in X if and only if $y \in \bigcap_{n \in \mathbb{N}} P_{\beta_n}$. So $b \in M$ and $f(b) = y \in S$. This proves That $K \subset M$ and $f(K) \subset S$.

Claim 2: $S \subset f(K)$.

Let $y \in S$. For each $n \in \mathbb{N}$, pick $\beta_n \in \Gamma_n$ such that $y \in S_{\beta_n}$. Put $b = (\beta_n)$, then $b \in K$ and f(b) = y. This proves that $S \subset f(K)$.

Claim 3: K is a compact subset of M.

Since $K \subset M$ and $\Pi_{n \in \mathbb{N}} \Gamma_n$ is a compact subset of $\Pi_{n \in \mathbb{N}} \Lambda_n$. We only need to prove that K is a closed subset of $\Pi_{n \in \mathbb{N}} \Gamma_n$. It is clear that $K \subset \Pi_{n \in \mathbb{N}} \Gamma_n$. Let $b = (\beta_n) \in \Pi_{n \in \mathbb{N}} \Gamma_n - K$. Then $\bigcap_{n \in \mathbb{N}} S_{\beta_n} = \emptyset$. There exists $n_0 \in \mathbb{N}$ such that $\bigcap_{n \leq n_0} S_{\beta_n} = \emptyset$. Put $W = \{(\gamma_n) \in \Pi_{n \in \mathbb{N}} \Gamma_n : \gamma_n = \beta_n \text{ for } n \leq n_0\}$. Then W is open in $\Pi_{n \in \mathbb{N}} \Gamma_n$ and $b \in W$. It is easy to see that $W \cap K = \emptyset$. So K is a closed subset of $\Pi_{n \in \mathbb{N}} \Gamma_n$.

By the above three claims, f is a sequence-covering mapping.

Necessity: Let f be a sequence-covering mapping and let $m \in \mathbb{N}$. Whenever $\{x_n\}$ is a sequence converging to x in X, there exists a compact subset K of M such that $f(K) = \{x_n : n \in \mathbb{N}\} \bigcup \{x\}$. Since $f^{-1}(x) \cap K$ is a compact subset of M, there exists a finite subset $\{a_i : i = 1, 2, ..., s\}$ of $f^{-1}(x) \cap K$ and a finite open cover $\{U_i: i=1,2,\ldots,s\}$ of $f^{-1}(x)\cap K$, where for each $i=1,2,\ldots,s$, $U_i = ((\Pi_{n < m} \Lambda_n) \times \{(a_i)_m\} \times (\Pi_{n > m} \Lambda_n)) \cap M$ is an open neighbourhood of a_i , and $(a_i)_m \in \Lambda_m$ is the m-th coordinate of a_i . By Lemma 2.6, $x = f(a_i) \in f(U_i) \subset$ $P_{(a_i)_m} \in (\mathcal{P}_m)_x$ for each $i = 1, 2, \dots, s$. We only need to prove that sequence $\{x_n\}$ converging to x is eventually in $\bigcup \{P_{(a_i)_m}: i=1,2,\ldots,s\}$. If not, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \notin \bigcup \{P_{(a_i)_m} : i = 1, 2, \dots, s\}$ for each $k \in \mathbb{N}$. That is, for each $k \in \mathbb{N}$ and each $i = 1, 2, \ldots, s, x_{n_k} \notin P_{(a_i)_m}$. For each $k \in \mathbb{N}$, we pick $b_k \in K$ such that $f(b_k) = x_{n_k}$. If for some $k \in \mathbb{N}$ and some $i = 1, 2, ..., s, b_k \in U_i$, then $x_{n_k} = f(b_k) \in f(U_i) \subset P_{(a_i)_m}$ from Lemma 2.6. This is a contradiction. So $b_k \notin U_i$ for each $k \in \mathbb{N}$ and each $i = 1, 2, \ldots, s$. Thus $\{b_k: k \in \mathbb{N}\} \subset K - \bigcup \{U_i: i = 1, 2, \dots, s\}.$ Note that $K - \bigcup \{U_i: i = 1, 2, \dots, s\}$ is a compact metric subspace, there exists a sequence $\{b_{k_j}\}$ converging to a point $b \in K - \bigcup \{U_i : i = 1, 2, \dots, s\}$. Thus $b \notin f^{-1}(x)$, so $f(b) \neq x$. On the other hand, $\{f(b_{k_i})\}\$ converges to f(b) by the continuity of f and $\{f(b_{k_j})\}=\{x_{n_{k_i}}\}\$ converges to x, so f(b) = x. This is a contradiction. So sequence $\{x_n\}$ converging to x is eventually in $\bigcup \{P_{(a_i)_i}: i=1,2,\ldots,s\}.$

3. Some consequences

 cs^* -cover and fcs-cover are not equivalent in general, but there exist some relations between cs^* -cover and fcs-cover.

Proposition 3.1. Let \mathcal{P} be a cover of a space X. Then the following hold.

- (1) If \mathcal{P} is an fcs-cover of X, then \mathcal{P} is a cs^* -cover of X.
- (2) If \mathcal{P} is a point-countable cs^* -cover of X, then \mathcal{P} is an fcs-cover of X.

Proof. (1) holds from Definition 2.5. We only need to prove (2).

Let \mathcal{P} be a point-countable cs^* -cover of X. Let $S = \{x_n\}$ be a sequence converging to x in X. Since \mathcal{P} is point-countable, put $(\mathcal{P})_x = \{P_n : n \in \mathbb{N}\}$. Then S is eventually in $\bigcup_{n \leq k} P_n$ for some $k \in \mathbb{N}$. If not, then for any $k \in \mathbb{N}$, S is not eventually in $\bigcup_{n \leq k} P_n$. So, for each $k \in \mathbb{N}$, there exists $x_{n_k} \in S - \bigcup_{n \leq k} P_n$. We may assume $n_1 < n_2 < \cdots < n_{k-1} < n_k < n_{k+1} < \cdots$. Put $S' = \{x_{n_k} : k \in \mathbb{N}\}$, then S' is a sequence converging to x. Since \mathcal{P} is a cs^* -cover, there exists $m \in \mathbb{N}$ and a subsequence S'' of S' such that S'' is eventually in P_m . Note that $P_m \in (\mathcal{P})_x$. This contradicts the construction of S'.

Corollary 3.2. Let $(f, M, X, \{P_n\})$ be a Ponomarev-system. Then the following are equivalent.

- (1) f is a sequentially-quotient, s-mapping;
- (2) f is a sequence-covering, s-mapping.

Proof. Consider the following conditions.

- (3) \mathcal{P}_n is a point-countable cs^* -cover of X for each $n \in \mathbb{N}$;
- (4) \mathcal{P}_n is a point-countable fcs-cover of X for each $n \in \mathbb{N}$.

Then $(1) \iff (3)$ and $(2) \iff (4)$ from Theorem 2.7 and Theorem 2.8 respectively. $(3) \iff (4)$ from Proposition 3.1. So $(1) \iff (2)$.

Can "s-" in Corollary 3.2 be omitted? We give a negative answer for this question. We call a family \mathcal{D} of subsets of a set D is an almost disjoint family if $A \cap B$ is finite whenever $A, B \in \mathcal{D}$, $A \neq B$.

Example 3.3. There exists a space X, which has a point-star network $\{\mathcal{P}_n\}$ consisting of cs^* -covers of X, but \mathcal{P}_n is not an fcs-cover of X for each $n \in \mathbb{N}$.

Proof. Let $X = \{0\} \cup \{1/n : n \in \mathbb{N}\}$ endow usual subspace topology of real line \mathbb{R} . Let $n \in \mathbb{N}$, we construct \mathcal{P}_n as follows.

Put $A_n = \{1/k : k > n\}$. Using Zorn's Lemma, there exists a family \mathcal{A}_n of infinite subsets of A_n such that \mathcal{A}_n is an almost disjoint family and maximal with respect to these properties. Then \mathcal{A}_n must be infinite (in fact, \mathcal{A}_n must be uncountable) and denote it by $\{P_\beta : \beta \in \Lambda_n\}$. Put $\mathcal{B}_n = \{P_\beta \bigcup \{0\} : \beta \in \Lambda_n\}$, and put $\mathcal{P}_n = \mathcal{B}_n \bigcup \{\{1/k\} : k = 1, 2, \ldots, n\}$. Thus \mathcal{P}_n is constructed. We only need to prove the following three claims.

Claim 1: $\{\mathcal{P}_n\}$ is a point-star network of X.

Let $x \in U$ with U open in X. If x = 0, then there exists $m \in \mathbb{N}$ such that $A_m \subset U$. It is easy to check that $st(0, \mathcal{P}_m) = A_m \bigcup \{0\}$. So $0 \in st(0, \mathcal{P}_m) \subset U$. If

x = 1/n for some $n \in \mathbb{N}$, then $st(1/n, \mathcal{P}_n) = \{1/n\}$. So $1/n \in st(1/n, \mathcal{P}_n) \subset U$. This proves that $\{\mathcal{P}_n\}$ is a point-star network of X.

Claim 2: For each $n \in \mathbb{N}$, \mathcal{P}_n is a cs^* -cover of X.

Let $n \in \mathbb{N}$ and let $S = \{x_k\}$ be a sequence converging to x in X. Without loss of generalization, we can assume S is nontrivial, that is, the set $L = \{x_k : k \in \mathbb{N}\} \cap A_n$ is an infinite subset of A_n and the limit point x = 0. If $L \in \mathcal{A}_n$, it is clear that S has a subsequence is eventually in $L \cup \{0\} \in \mathcal{B}_n \subset \mathcal{P}_n$. If $L \notin \mathcal{A}_n$, then there exists $\beta \in \Lambda_n$ such that $L \cap P_\beta$ is infinite. Otherwise, $L \in \mathcal{A}_n$ by maximality of \mathcal{A}_n . Thus S has a subsequence is eventually in $P_\beta \cup \{0\} \in \mathcal{B}_n \subset \mathcal{P}_n$. So \mathcal{P}_n is a cs^* -cover of X.

Claim 3: For each $n \in \mathbb{N}$, \mathcal{P}_n is not an fcs-cover of X.

Let $n \in \mathbb{N}$. If \mathcal{P}_n is an fcs-cover of X, then, for sequence $\{1/k\}$ converging to 0 in X, there exist $P_{\beta_1}, P_{\beta_2}, \ldots, P_{\beta_s} \in \mathcal{A}_n$ and some $m \in \mathbb{N}$ such that $A_m = \{1/k : k > m\} \subset \bigcup \{P_{\beta_i} : i = 1, 2, \ldots, s\}$. Since Λ_n is infinite, pick $\beta \in \Lambda_n - \{\beta_i : i = 1, 2, \ldots, s\}$. Then $A_m \cap P_\beta$ is infinite, and $A_m \cap P_\beta \subset \bigcup \{P_{\beta_i} : i = 1, 2, \ldots, s\}$. So there exists $i \in \{1, 2, \ldots, s\}$ such that $A_m \cap P_\beta \cap P_{\beta_i}$ is infinite. Thus $P_\beta \cap P_{\beta_i}$ is infinite. This contradicts that A_n is almost disjoint. So \mathcal{P}_n is not an fcs-cover of X.

Thus we complete the proof of this example.

Remark 3.4. Let X and $\{\mathcal{P}_n\}$ be given as in Example 3.3. Then, for *Ponomarev*-system $(f, M, X, \{\mathcal{P}_n\})$, f is sequentially-quotient from Theorem 2.7 and Claim 2 in Example 3.3 (note: f is also a π -mapping from Remark 2.(1)), and f is not sequence-covering from Theorem 2.8 and Claim 3 in Example 3.3. So "s-" in Corollary 3.2 can not be omitted.

Remark 3.5. Recently, Lin proved that each sequentially-quotient, compact mapping from a metric space is sequence-covering, which answers [6, Question 3.4.8] (also, [2, Question 2.6]). Naturally, we ask: is each sequentially-quotient, π -mapping from a metric space sequence-covering? The answer is negative. In fact, let f be a mapping in Remark 3.4. Then f is a sequentially-quotient, π -mapping from a metric space M, but it is not sequence-covering.

Acknowledgement. The author would like to thank the referee for his/her valuable amendments and suggestions.

References

- Boone, J. R., and Siwiec F., Sequentially quotient mappings, Czechoslovak Math. J. 26 (1976), 174–182.
- [2] Ge, Y., On quotient compact images of locally separable metric spaces, Topology Proceedings 276 (2003), 351–560.
- [3] Ge, Y. and Gu, J., On π -images of separable metric spaces, Mathematical Sciences 10 (2004), 65–71.
- [4] Gruenhage, G., Michael, E. and Tanaka, Y., Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303–332.

- [5] Ikeda, Y., Liu, C. and Tanaka, Y., Quotient compact images of metric spaces and related matters, Topology Appl. 122 (2002), 237–252.
- [6] Lin, S., Point-countable covers and sequence-covering mappings, Chinese Science Press, Beijing, 2002. (Chinese)
- [7] Lin, S. and Yan, P., Notes on cfp-covers, Comment. Math. Univ. Carolin. 44 (2003), 295–306
- [8] Michael, E., \aleph_0 -spaces, J. Math. Mech. **15** (1966), 983–1002.
- [9] Ponomarev, V. I., $Axiom\ of\ countability\ and\ continuous\ mappings,$ Bull. Pol. Acad. Math. 8 (1960), 127–133.
- [10] Tanaka, Y. and Ge, Y., Around quotient compact images of metric spaces and symmetric spaces, Houston J. Math. 32 (2006), 99–117.

Department of Mathematics, Suzhou University Suzhou 215006, P. R. China E-mail: geying@pub.sz.jsinfo.net