FROM EULER-LAGRANGE EQUATIONS TO CANONICAL NONLINEAR CONNECTIONS

MIRCEA NEAGU

ABSTRACT. The aim of this paper is to construct a canonical nonlinear connection $\Gamma = (M_{(\alpha)\beta}^{(i)}, N_{(\alpha)j}^{(i)})$ on the 1-jet space $J^1(T, M)$ from the Euler-Lagrange equations of the quadratic multi-time Lagrangian function

 $L = h^{\alpha\beta}(t)g_{ij}(t,x)x^i_{\alpha}x^j_{\beta} + U^{(\alpha)}_{(i)}(t,x)x^i_{\alpha} + F(t,x).$

1. Kronecker h-regularity

We start our study considering a smooth multi-time Lagrangian function $L : E \to \mathbb{R}$, expressed locally by

(1.1) $E \ni (t^{\alpha}, x^{i}, x^{i}_{\alpha}) \to L(t^{\alpha}, x^{i}, x^{i}_{\alpha}) \in \mathbb{R},$

whose fundamental vertical metrical d-tensor is defined by

(1.2)
$$G_{(i)(j)}^{(\alpha)(\beta)} = \frac{1}{2} \frac{\partial^2 L}{\partial x_{\alpha}^i \partial x_{\beta}^j}.$$

In the sequel, let us fix $h = (h_{\alpha\beta})$ a semi-Riemannian metric on the temporal manifold T and let $g_{ij}(t^{\gamma}, x^k, x^k_{\gamma})$ be a symmetric d-tensor on $E = J^1(T, M)$, of rank n and having a constant signature.

Definition 1.1. A multi-time Lagrangian function $L: E \to \mathbb{R}$, having the fundamental vertical metrical d-tensor of the form

(1.3)
$$G_{(i)(j)}^{(\alpha)(\beta)}(t^{\gamma}, x^{k}, x^{k}_{\gamma}) = h^{\alpha\beta}(t^{\gamma})g_{ij}(t^{\gamma}, x^{k}, x^{k}_{\gamma})$$

is called a Kronecker *h*-regular multi-time Lagrangian function.

In this context, we can introduce the following important concept:

Definition 1.2. A pair $ML_p^n = (J^1(T, M), L)$, $p = \dim T$, $n = \dim M$, consisting of the 1-jet fibre bundle and a Kronecker *h*-regular multi-time Lagrangian function $L: J^1(T, M) \to \mathbb{R}$, is called a **multi-time Lagrange space**.

²⁰⁰⁰ Mathematics Subject Classification: 53B40, 53C60, 53C80.

 $Key\ words\ and\ phrases:$ 1-jet fibre bundles, nonlinear connections, quadratic Lagrangian functions.

Received November 4, 2005.

Remark 1.3. i) In the particular case $(T,h) = (\mathbb{R},\delta)$, a multi-time Lagrange space is called a **relativistic rheonomic Lagrange space** and is denoted by

$$RL^n = \left(J^1(\mathbb{R}, M), L\right)$$

For more details about the relativistic rheonomic Lagrangian geometry, the reader may consult [14].

ii) If the temporal manifold T is 1-dimensional one, then, via o temporal reparametrization, we have

$$J^1(T,M) \equiv J^1(\mathbb{R},M) \,.$$

In other words, a multi-time Lagrange space, having dim T = 1, is a reparametrized relativistic rheonomic Lagrange space.

Example 1.4. Let us suppose that the spatial manifold M is also endowed with a semi-Riemannian metric $g = (g_{ij}(x))$. Then, the multi-time Lagrangian function

(1.4)
$$L_1: E \to \mathbb{R}, \quad L_1 = h^{\alpha\beta}(t)g_{ij}(x)x^i_{\alpha}x^j_{\beta}$$

is a Kronecker h-regular one. It follows that the pair

$$\mathcal{BSML}_p^n = (J^1(T, M), L_1)$$

is a multi-time Lagrange space. It is important to note that the multi-time Lagrangian $\mathcal{L}_1 = L_1 \sqrt{|h|}$ is exactly the "energy" Lagrangian, whose extremals are the harmonic maps between the semi-Riemannian manifolds (T, h) and (M, g) [4]. At the same time, the multi-time Lagrangian that governs the physical theory of bosonic strings is of kind of the Lagrangian \mathcal{L}_1 [6].

Example 1.5. In the above notations, taking $U_{(i)}^{(\alpha)}(t,x)$ a d-tensor field on E and $F: T \times M \to \mathbb{R}$ a smooth function, the more general multi-time Lagrangian function

(1.5)
$$L_2: E \to \mathbb{R}, \quad L_2 = h^{\alpha\beta}(t)g_{ij}(x)x^i_{\alpha}x^j_{\beta} + U^{(\alpha)}_{(i)}(t,x)x^i_{\alpha} + F(t,x),$$

is also a Kronecker h-regular one. The multi-time Lagrange space

$$\mathcal{EDML}_n^n = \left(J^1(T, M), L_2\right)$$

is called the **autonomous multi-time Lagrange space of electrodynamics**. This is because, in the particular case $(T, h) = (\mathbb{R}, \delta)$, the space \mathcal{EDML}_1^n naturally generalizes the clasical Lagrange space of electrodynamics [10], that governs the movement law of a particle placed concomitently into a gravitational field and an electromagnetic one. In a such context, from a physical point of view, the semi-Riemannian metric $h_{\alpha\beta}(t)$ (resp. $g_{ij}(x)$) represents the **gravitational potentials** of the manifold T (resp. M), the d-tensor $U_{(i)}^{(\alpha)}(t,x)$ play the role of the **electromagnetic potentials**, and F is a **potential function**. The non-dynamical character of the spatial gravitational potentials $g_{ij}(x)$ motivates us to use the term "autonomous".

Example 1.6. More general, if we consider the symmetrical d-tensor $g_{ij}(t, x)$ on E, of rank n and having a constant signature on E, we can define the Kronecker h-regular multi-time Lagrangian function

(1.6)
$$L_3: E \to \mathbb{R}, \quad L_3 = h^{\alpha\beta}(t)g_{ij}(t,x)x^i_{\alpha}x^j_{\beta} + U^{(\alpha)}_{(i)}(t,x)x^i_{\alpha} + F(t,x).$$

The multi-time Lagrange space

$$\mathcal{NEDML}_p^n = (J^1(T, M), L_3)$$

is called the **non-autonomous multi-time Lagrange space of electrodynamics**. From a physical point of view, we remark that the spatial gravitational potentials $g_{ij}(t, x)$ are dependent of the temporal coordinates t^{γ} . For that reason, we use the term "non-autonomous", in order to emphasize the dynamical character of $g_{ij}(t, x)$.

2. The characterization theorem of multi-time Lagrange spaces

An important role and, at the same time, an obstruction in the subsequent development of the theory of the multi-time Lagrange spaces, is played by

Theorem 2.1 (of characterization of multi-time Lagrange spaces). If $p = \dim T \ge 2$, then the following statements are equivalent:

i) L is a Kronecker h-regular Lagrangian function on $J^1(T, M)$.

ii) The multi-time Lagrangian function L reduces to a multi-time Lagrangian function of non-autonomous electrodynamic kind, that is

$$L = h^{\alpha\beta}(t)g_{ij}(t,x)x^i_{\alpha}x^j_{\beta} + U^{(\alpha)}_{(i)}(t,x)x^i_{\alpha} + F(t,x).$$

Proof 1. ii) \Rightarrow i) It is obvious.

i) \Rightarrow ii) Let us suppose that L is a Kronecker $h\mbox{-regular}$ multi-time Lagrangian function, that is

$$\frac{1}{2} \frac{\partial^2 L}{\partial x^i_{\alpha} \partial x^j_{\beta}} = h^{\alpha\beta}(t^{\gamma}) g_{ij}(t^{\gamma}, x^k, x^k_{\gamma}) \,.$$

For the beginning, let us suppose that there are two distinct indices α and β from the set $\{1, \ldots, p\}$, such that $h^{\alpha\beta} \neq 0$. Let k (resp. γ) be an arbitrary element of the set $\{1, \ldots, n\}$ (resp. $\{1, \ldots, p\}$). Deriving the above relation with respect to the variable x_{γ}^k and using the Schwartz theorem, we obtain the equalities

$$\frac{\partial g_{ij}}{\partial x_{\gamma}^{k}}h^{\alpha\beta} = \frac{\partial g_{jk}}{\partial x_{\alpha}^{i}}h^{\beta\gamma} = \frac{\partial g_{ik}}{\partial x_{\beta}^{j}}h^{\gamma\alpha}, \quad \forall \alpha, \beta, \gamma \in \{1, \dots, p\}, \quad \forall i, j, k \in \{1, \dots, n\}.$$

Contracting now with $h_{\gamma\mu}$, we deduce

$$\frac{\partial g_{ij}}{\partial x_{\gamma}^{k}} h^{\alpha\beta} h_{\gamma\mu} = 0, \quad \forall \ \mu \in \{1, \dots, p\}.$$

In these conditions, the supposing $h^{\alpha\beta} \neq 0$ implies that $\frac{\partial g_{ij}}{\partial x_{\gamma}^k} = 0$ for all two arbitrary indices k and γ . Consequently, we have $g_{ij} = g_{ij}(t^{\mu}, x^m)$.

M. NEAGU

Supposing now that $h^{\alpha\beta} = 0, \forall \alpha \neq \beta \in \{1, \ldots, p\}$, it follows that we have $h^{\alpha\beta} = h^{\alpha}\delta^{\alpha}_{\beta}, \forall \alpha, \beta \in \{1, \ldots, p\}$. In other words, we use an ortogonal system of coordinates on the manifold T. In these conditions, the relations

$$\frac{\partial^2 L}{\partial x^i_{\alpha} \partial x^j_{\beta}} = 0, \quad \forall \ \alpha \neq \beta \in \{1, \dots, p\}, \quad \forall \ i, j \in \{1, \dots, n\},$$
$$\frac{1}{2h^{\alpha}(t)} \frac{\partial^2 L}{\partial x^i_{\alpha} \partial x^j_{\alpha}} = g_{ij}(t^{\mu}, x^m, x^m_{\mu}), \quad \forall \ \alpha \in \{1, \dots, p\}, \quad \forall \ i, j \in \{1, \dots, n\},$$

hold good. If we fix now an indice α in the set $\{1, \ldots, p\}$, from the first relation we deduce that the local functions $\frac{\partial L}{\partial x_{\alpha}^{i}}$ depend only by the coordinates $(t^{\mu}, x^{m}, x_{\alpha}^{m})$. Considering $\beta \neq \alpha$ in the set $\{1, \ldots, p\}$, the second relation implies

$$\frac{1}{2h^{\alpha}(t)}\frac{\partial^{2}L}{\partial x_{\alpha}^{i}\partial x_{\alpha}^{j}} = \frac{1}{2h^{\beta}(t)}\frac{\partial^{2}L}{\partial x_{\beta}^{i}\partial x_{\beta}^{j}} = g_{ij}(t^{\mu}, x^{m}, x_{\mu}^{m}), \quad \forall i, j \in \{1, \dots, n\}.$$

Because the first term of the above equality depends by $(t^{\mu}, x^{m}, x^{m}_{\alpha})$, while the second term is dependent only by the coordinates $(t^{\mu}, x^{m}, x^{m}_{\beta})$, and because we have $\alpha \neq \beta$, we conclude that $g_{ij} = g_{ij}(t^{\mu}, x^{m})$.

Finally, the equality

$$\frac{1}{2}\frac{\partial^2 L}{\partial x^i_{\alpha}\partial x^j_{\beta}} = h^{\alpha\beta}(t^{\gamma})g_{ij}(t^{\gamma}, x^k), \quad \forall \, \alpha, \beta \in \{1, \dots, p\}, \quad \forall \, i, j \in \{1, \dots, n\}$$

implies without difficulties that the multi-time Lagrangian function L is one of non-autonomous electrodynamic kind.

Corollary 2.2. The fundamental vertical metrical d-tensor of an arbitrary Kronecker h-regular multi-time Lagrangian function L is of the form

(2.1)
$$G_{(i)(j)}^{(\alpha)(\beta)} = \frac{1}{2} \frac{\partial^2 L}{\partial x_{\alpha}^i \partial x_{\beta}^j} = \begin{cases} h^{11}(t)g_{ij}(t, x^k, y^k), & p = \dim T = 1\\ h^{\alpha\beta}(t^{\gamma})g_{ij}(t^{\gamma}, x^k), & p = \dim T \ge 2. \end{cases}$$

Remark 2.3. i) It is obvious that the preceding theorem is an obstruction in the development of a fertile geometrical theory for the multi-time Lagrange spaces. This obstruction will be surpassed in the paper [12], when we will introduce the more general notion of a **generalized multi-time Lagrange space**. The generalized multi-time Riemann-Lagrange geometry on $J^1(T, M)$ will be constructed using only a Kronecker *h*-regular vertical metrical d-tensor $G_{(i)(j)}^{(\alpha)(\beta)}$ and a nonlinear connection Γ , "a priori" given on the 1-jet space $J^1(T, M)$.

ii) In the case $p = \dim T \ge 2$, the preceding theorem obliges us to continue our geometrical study of the multi-time Lagrange spaces, sewering our attention upon the non-autonomous multi-time Lagrange spaces of electrodynamics.

3. Canonical nonlinear connection Γ

Let $ML_p^n = (J^1(T, M), L)$, where dim T = p, dim M = n, be a multi-time Lagrange space whose fundamental vertical metrical d-tensor metric is

$$G_{(i)(j)}^{(\alpha)(\beta)} = \frac{1}{2} \frac{\partial^2 L}{\partial x_{\alpha}^i \partial x_{\beta}^j} = \begin{cases} h^{11}(t)g_{ij}(t, x^k, y^k), & p = 1\\ h^{\alpha\beta}(t^{\gamma})g_{ij}(t^{\gamma}, x^k), & p \ge 2. \end{cases}$$

Supposing that the semi-Riemannian temporal manifold (T, h) is compact and orientable, by integration on the manifold T, we can define the *energy functional* associated to the multi-time Lagrange function L, taking

$$\mathcal{E}_L : C^{\infty}(T, M) \to \mathbb{R}, \quad \mathcal{E}_L(f) = \int_T L(t^{\alpha}, x^i, x^i_{\alpha}) \sqrt{|h|} dt^1 \wedge dt^2 \wedge \ldots \wedge dt^p,$$

where the smooth map f is locally expressed by $(t^{\alpha}) \to (x^i(t^{\alpha}))$ and $x^i_{\alpha} = \frac{\partial x^i}{\partial t^{\alpha}}$.

It is obvious that, for each index $i \in \{1, 2, ..., n\}$, the extremals of the energy functional \mathcal{E}_L verify the Euler-Lagrange equations

(3.1)
$$2G_{(i)(j)}^{(\alpha)(\beta)}x_{\alpha\beta}^{j} + \frac{\partial^{2}L}{\partial x^{j}\partial x_{\alpha}^{i}}x_{\alpha}^{j} - \frac{\partial L}{\partial x^{i}} + \frac{\partial^{2}L}{\partial t^{\alpha}\partial x_{\alpha}^{i}} + \frac{\partial L}{\partial x_{\alpha}^{i}}H_{\alpha\gamma}^{\gamma} = 0,$$

where $x_{\alpha\beta}^{j} = \frac{\partial^{2}x^{j}}{\partial t^{\alpha}\partial t^{\beta}}$ and $H_{\alpha\beta}^{\gamma}$ are the Christoffel symbols of the semi-Riemannian temporal metric $h_{\alpha\beta}$.

Taking into account the Kronecker *h*-regularity of the Lagrangian function *L*, it is possible to rearrange the Euler-Lagrange equations of the Lagrangian $\mathcal{L} = L\sqrt{|h|}$ in the following *generalized Poisson form*:

(3.2)
$$\Delta_h x^k + 2\mathcal{G}^k(t^\mu, x^m, x^m_\mu) = 0$$

where

$$\Delta_h x^k = h^{\alpha\beta} \{ x^k_{\alpha\beta} - H^{\gamma}_{\alpha\beta} x^k_{\gamma} \},$$

$$2\mathcal{G}^k = \frac{g^{ki}}{2} \Big\{ \frac{\partial^2 L}{\partial x^j \partial x^i_{\alpha}} x^j_{\alpha} - \frac{\partial L}{\partial x^i} + \frac{\partial^2 L}{\partial t^{\alpha} \partial x^i_{\alpha}} + \frac{\partial L}{\partial x^i_{\alpha}} H^{\gamma}_{\alpha\gamma} + 2g_{ij} h^{\alpha\beta} H^{\gamma}_{\alpha\beta} x^j_{\gamma} \Big\}.$$

Proposition 3.1. i) The geometrical object $\mathcal{G} = (\mathcal{G}^r)$ is a multi-time dependent spatial h-spray.

ii) Moreover, the spatial h-spray $\mathcal{G} = (\mathcal{G}^l)$ is the h-trace of a multi-time dependent spatial spray $G = (G^{(i)}_{(\alpha)\beta})$, that is $\mathcal{G}^l = h^{\alpha\beta}G^{(l)}_{(\alpha)\beta}$.

Proof 2. i) By a direct calculation, we deduce the local geometrical entities

verify the following transformation laws:

It follows that the local entities $2\mathcal{G}^p = 2\mathcal{S}^p + 2\mathcal{H}^p + 2\mathcal{J}^p$ modify by the transformation laws

(3.5)
$$2\tilde{\mathcal{G}}^r = 2\mathcal{G}^p \frac{\partial \tilde{x}^r}{\partial x^p} - h^{\alpha\mu} \frac{\partial x^p}{\partial \tilde{x}^j} \frac{\partial \tilde{x}^r_{\mu}}{\partial x^p} \tilde{x}^j_{\alpha} ,$$

that is what we were looking for.

ii) In the particular case dim T = 1, any spatial *h*-spray $\mathcal{G} = (\mathcal{G}^l)$ is the *h*-trace of a spatial spray $G = (G_{(1)1}^{(l)})$, where $G_{(1)1}^{(l)} = h_{11}\mathcal{G}^l$. In other words, the equality $\mathcal{G}^l = h^{11}G_{(1)1}^{(l)}$ is true.

On the other hand, in the case dim $T \ge 2$, the Theorem of characterization of the Kronecker *h*-regular Lagrangian functions ensures us that

$$L = h^{\alpha\beta}(t)g_{ij}(t,x)x^{i}_{\alpha}x^{j}_{\beta} + U^{(\alpha)}_{(i)}(t,x)x^{i}_{\alpha} + F(t,x)$$

In this particular situation, by computations, the expressions of the entities S^l , \mathcal{H}^l and \mathcal{J}^l reduce to

$$2S^{l} = h^{\alpha\beta}\Gamma^{l}_{jk}x^{j}_{\alpha}x^{k}_{\beta} + \frac{g^{li}}{2} \left[U^{(\alpha)}_{(i)j}x^{j}_{\alpha} - \frac{\partial F}{\partial x^{i}} \right],$$

$$(3.6) \qquad 2\mathcal{H}^{l} = -h^{\alpha\beta}H^{\gamma}_{\alpha\beta}x^{l}_{\gamma} + \frac{g^{li}}{2} \left[2h^{\alpha\beta}\frac{\partial g_{ij}}{\partial t^{\alpha}}x^{j}_{\beta} + \frac{\partial U^{(\alpha)}_{(i)}}{\partial t^{\alpha}} + U^{(\alpha)}_{(i)}H^{\gamma}_{\alpha\gamma} \right],$$

$$2\mathcal{J}^{l} = h^{\alpha\beta}H^{\gamma}_{\alpha\beta}x^{l}_{\gamma},$$

where

$$\Gamma_{jk}^{l} = \frac{g^{li}}{2} \left(\frac{\partial g_{ij}}{\partial x^{k}} + \frac{\partial g_{ik}}{\partial x^{j}} - \frac{\partial g_{jk}}{\partial x^{i}} \right)$$

are the generalized Christoffel symbols of the multi-time dependent metric g_{ij} and

$$U_{(i)j}^{(\alpha)} = \frac{\partial U_{(i)}^{(\alpha)}}{\partial x^j} - \frac{\partial U_{(j)}^{(\alpha)}}{\partial x^i}$$

Consequently, the expression of the spatial *h*-spray $\mathcal{G} = (\mathcal{G}^l)$ becomes

(3.7)
$$2\mathcal{G}^p = 2\mathcal{S}^p + 2\mathcal{H}^p + 2\mathcal{J}^p = h^{\alpha\beta}\Gamma^l_{jk}x^j_{\alpha}x^k_{\beta} + 2\mathcal{T}^l,$$

where the local components

$$(3.8) 2\mathcal{T}^{l} = \frac{g^{li}}{2} \left[2h^{\alpha\beta} \frac{\partial g_{ij}}{\partial t^{\alpha}} x^{j}_{\beta} + U^{(\alpha)}_{(i)j} x^{j}_{\alpha} + \frac{\partial U^{(\alpha)}_{(i)}}{\partial t^{\alpha}} + U^{(\alpha)}_{(i)} H^{\gamma}_{\alpha\gamma} - \frac{\partial F}{\partial x^{i}} \right]$$

represent the components of a tensor d-field $\mathcal{T} = (\mathcal{T}^l)$ on $J^1(T, M)$. It follows that the d-tensor \mathcal{T} can be written as the *h*-trace of the d-tensor

$$T^{(l)}_{(\alpha)\beta} = \frac{h_{\alpha\beta}}{p} \mathcal{T}^l \,,$$

where $p = \dim T$. In other words, the relation $\mathcal{T}^l = h^{\alpha\beta}T^{(l)}_{(\alpha)\beta}$ is true. Obviously, this writing is not unique one but represents a natural extension of the case $\dim T = 1$.

Finally, we can conclude that the spatial *h*-spray $\mathcal{G} = (\mathcal{G}^l)$ is the *h*-trace of the spatial spray

(3.9)
$$G_{(\alpha)\beta}^{(l)} = \frac{1}{2} \Gamma^{l}_{jk} x^{j}_{\alpha} x^{k}_{\beta} + T^{(l)}_{(\alpha)\beta}$$

that is the relation $\mathcal{G}^l = h^{\alpha\beta} G^{(l)}_{(\alpha)\beta}$ holds good.

Following previous reasonings and the preceding result, we can regard the equations (3.2) as being the equations of the harmonic maps of a multi-time dependent spray.

Theorem 3.2. The extremals of the energy functional \mathcal{E}_L attached to the Kronecker h-regular Lagrangian function L are harmonic maps on $J^1(T, M)$ of the multi-time dependent spray (H, G) defined by the temporal components

$$H_{(\alpha)\beta}^{(i)} = \begin{cases} -\frac{1}{2}H_{11}^{1}(t)y^{i}, & p = 1\\ -\frac{1}{2}H_{\alpha\beta}^{\gamma}x_{\gamma}^{i}, & p \ge 2 \end{cases}$$

and the local spatial components $G^{(i)}_{(\alpha)\beta} =$

$$= \begin{cases} \frac{h_{11}g^{ik}}{4} \Big[\frac{\partial^2 L}{\partial x^j \partial y^k} y^j - \frac{\partial L}{\partial x^k} + \frac{\partial^2 L}{\partial t \partial y^k} + \frac{\partial L}{\partial x^k} H^1_{11} + 2h^{11} H^1_{11} g_{kl} y^l \Big], & p = 1 \\ \frac{1}{2} \Gamma^i_{jk} x^j_{\alpha} x^k_{\beta} + T^{(i)}_{(\alpha)\beta}, & p \ge 2, \end{cases}$$

where $p = \dim T$.

Definition 3.3. The multi-time dependent spray (H, G) constructed in the preceding Theorem is called the **canonical multi-time spray attached to the multi-time Lagrange space** ML_p^n .

In the sequel, by local computations, the canonical multi-time spray (H, G) of the multi-time Lagrange space ML_p^n induces naturally a nonlinear connection Γ on $J^1(T, M)$.

Theorem 3.4. The canonical nonlinear connection

$$\Gamma = (M_{(\alpha)\beta}^{(i)}, N_{(\alpha)j}^{(i)})$$

of the multi-time Lagrange space ML_p^n is defined by the temporal components

(3.10)
$$M_{(\alpha)\beta}^{(i)} = 2H_{(\alpha)\beta}^{(i)} = \begin{cases} -H_{11}^1 y^i, & p=1\\ -H_{\alpha\beta}^{\gamma} x_{\gamma}^i, & p \ge 2, \end{cases}$$

and the spatial components

(3.11)
$$N_{(\alpha)j}^{(i)} = \frac{\partial \mathcal{G}^{i}}{\partial x_{\gamma}^{j}} h_{\alpha\gamma} = \begin{cases} h_{11} \frac{\partial \mathcal{G}^{i}}{\partial y^{j}}, & p = 1\\ \Gamma_{jk}^{i} x_{\alpha}^{k} + \frac{g^{ik}}{2} \frac{\partial g_{jk}}{\partial t^{\alpha}} + \frac{g^{ik}}{4} h_{\alpha\gamma} U_{(k)j}^{(\gamma)}, & p \ge 2, \end{cases}$$

where $\mathcal{G}^{i} = h^{\alpha\beta}G^{(i)}_{(\alpha)\beta}$.

Remark 3.5. In the particular case $(T, h) = (\mathbb{R}, \delta)$, the canonical nonlinear connection $\Gamma = (0, N_{(1)j}^{(i)})$ of the relativistic rheonomic Lagrange space

$$RL^n = (J^1(\mathbb{R}, M), L)$$

generalizes naturally the canonical nonlinear connection of the classical rheonomic Lagrange space $L^n = (\mathbb{R} \times \mathbf{T}M, L)$ [10].

References

- Asanov, G. S., Gauge-Covariant Stationary Curves on Finslerian and Jet Fibrations and Gauge Extension of Lorentz Force, Tensor (N.S.) 50 (1991), 122–137.
- [2] Asanov, G. S., Jet Extension of Finslerian Gauge Approach, Fortschr. Phys. 38(8) (1990), 571–610.
- [3] Cordero, L. A., Dodson, C. T. J., de Léon, M., Differential Geometry of Frame Bundles, Kluwer Academic Publishers, 1989.
- [4] Eells, J., Lemaire, L., A Report on Harmonic Maps, Bull. London Math. Soc. 10 (1978), 1–68.
- [5] Giachetta, G., Mangiarotti, L., Sardanashvily, G., Covariant Hamiltonian Field Theory, http://xxx.lanl.gov/hep-th/9904062, (1999).
- [6] Gotay, M. J., Isenberg, J., Marsden, J. E., Momentum Maps and the Hamiltonian Structure of Classical Relativistic Fields, http://xxx.lanl.gov/hep/9801019, (1998).
- [7] Holm, D. D., Marsden, J. E., Raţiu, T. S., The Euler-Poincaré Equations and Semidirect Products with Applications to Continuum Theories, http://xxx.lanl.gov/chao-dyn/9801015, (1998).
- [8] Kamran, N., Olver, P. J., Le Probléme d'Equivalence à une Divergence prés dans le Calcul des Variations des Intégrales Multiple, C. R. Acad. Sci. Paris, 308, Série I, (1989), 249–252.
- [9] Michor, P. W., Raţiu, T. S., On the Geometry of the Virasoro-Bott Group, Helderman-Verlag, No. 8 (1998), 293–309.
- [10] Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Academic Publishers, 1994.
- [11] Miron, R., Kirkovits, M. S., Anastasiei, M., A Geometrical Model for Variational Problems of Multiple Integrals, Proc. Conf. Diff. Geom. Appl., June 26-July 3, (1988), Dubrovnik, Yugoslavia.

- [12] Neagu, M., Generalized Metrical Multi-Time Lagrange Geometry of Physical Fields, Forum Math. 15(1) (2003), 63–92.
- [13] Neagu, M., Ricci and Bianchi Identities for h-Normal Γ -Linear Connections on $J^1(T, M)$, Hindawi Publishing Corporation, Int. J. Math. Math. Sci. **34** (2003), 2177–2192.
- [14] Neagu, M., The Geometry of Relativistic Rheonomic Lagrange Spaces, Proceedings of Workshop on Diff. Geom., Global Analysis, Lie Algebras, No. 5, 142–169, (2001); Editor: Prof. Dr. Grigorios Tsagas, Aristotle University of Thessaloniki, Greece.
- [15] Neagu, M., Udrişte, C., Oană, A., Multi-Time Dependent Sprays and h-Traceless Maps, Balkan J. Geom. Appl. 10(2) (2005), 76–92.
- [16] Olver, P. J., Applications of Lie Groups to Differential Equations, Springer-Verlag, 1986.
- [17] Olver, P. J., Canonical Elastic Moduli, J. Elasticity 19, 189–212, (1988).
- [18] Saunders, D., The Geometry of Jet Bundles, Cambridge University Press, New-York, London, 1989.
- [19] Vondra, A., Symmetries of Connections on Fibered Manifolds, Arch. Math. (Brno) 30 (1994), 97–115.

Str. Lămâiței, Nr. 66, Bl. 93, Sc. G, Ap. 10 Brașov, BV 500371, România *E-mail*: mirceaneagu730yahoo.com