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IDEAL TUBULAR HYPERSURFACES IN REAL SPACE FORMS

JOHAN FASTENAKELS

Abstract. In this article we give a classification of tubular hypersurfaces in
real space forms which are δ(2, 2, . . . , 2)-ideal.

1. Ideal immersions

Let M be a Riemannian n-manifold. Denote by K(π) the sectional curvature of
M associated with a plane section π ⊂ TpM , p ∈ M . For any orthonormal basis
e1, . . . , en of the tangent space TpM , the scalar curvature τ at p is defined to be

(1) τ(p) =
∑

i<j

K(ei ∧ ej) .

When L is a 1-dimensional subspace of TpM , we put τ(L) = 0. If L is a subspace
of TpM of dimension r ≥ 2, we define the scalar curvature τ(L) of L by

(2) τ(L) =
∑

α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r ,

where {e1, . . . , er} is an orthonormal basis of L.
For an integer k ≥ 0, denote by S(n, k) the finite set consisting of unordered

k-tuples (n1, . . . , nk) of integers ≥ 2 satisfying n1 < n and n1 + · · · + nk ≤ n. Let
S(n) be the union ∪k≥0 S(n, k). If n = 2, we have k = 0 and S(2) = {∅}.

For each (n1, . . . , nk) ∈ S(n), the invariant δ(n1, . . . , nk) is defined in [3] by:

δ(n1, . . . , nk)(p) = τ(p) − S(n1, . . . , nk)(p) ,(3)

where

S(n1, . . . , nk)(p) = inf
{
τ(L1) + · · · + τ(Lk)

}

and L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such that
dimLj = nj, j = 1, . . . , k. Clearly, the invariant δ(∅) is nothing but the scalar
curvature τ of M .
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For a given partition (n1, . . . , nk) ∈ S(n), we put

b(n1, . . . , nk) =
1

2

(
n(n− 1) −

k∑

j=1

nj(nj − 1)
)
,(4)

c(n1, . . . , nk) =
n2(n+ k − 1 − ∑

nj)

2(n+ k − ∑
nj)

.(5)

For each real number c and each (n1, . . . , nk) ∈ S(n), the associated normalized
invariant ∆c(n1, . . . , nk) is defined by

(6) ∆c(n1, . . . , nk) =
δ(n1, . . . , nk) − b(n1, . . . , nk)c

c(n1, . . . , nk)
.

We recall the following general result from [3].

Theorem 1. Let M be an n-dimensional submanifold of a real space form Rm(c)
of constant sectional curvature c. Then for each (n1, . . . , nk) ∈ S(n) we have

(7) H2 ≥ ∆c(n1, . . . , nk) ,

where H2 is the squared norm of the mean curvature vector.

The equality case of inequality (7) holds at a point p ∈ M if and only if, with

respect to a suitable orthonormal basis e1, . . . , en, en+1, . . . , em at p, the shape op-

erators Ar = Aer
, r = n+ 1, . . . ,m of M in Rm(c) at p take the following forms:

An+1 =




a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 · · · 0
...

...
...

. . .
...

0 0 0 · · · an



,(8)

Ar =




Ar
1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · Ar
k 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0




, r = n+ 2, . . . ,m,(9)

where a1, . . . , an satisfy

a1 + · · · + an1
= · · · = an1+...nk−1+1 + · · · + an1+···+nk

(10)

= an1+...nk+1 = · · · = an

and each Ar
j is an nj × nj submatrix such that

(11) trace(Ar
j) = 0 , (Ar

j)
t = Ar

j , r = n+ 2, . . . ,m ; j = 1, . . . , k .
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For an isometric immersion x : M → Rm(c) of a Riemannian n-manifold into
Rm(c), this theorem implies that

H2(p) ≥ ∆̂c(p) ,(12)

where ∆̂c denotes the invariant on M defined by

∆̂c = max
{
∆c(n1, . . . , nk) | (n1, . . . , nk) ∈ S(n)

}
.(13)

In general, there do not exist direct relations between these new invariants.
Applying inequality (12) B. Y. Chen introduced in [4] the notion of ideal im-

mersions as follows.

Definition 1. An isometric immersion x : M → Rm(c) is called an ideal im-

mersion if the equality case of (12) holds at every point p ∈ M . An isometric

immersion is called (n1, . . . , nk)-ideal if it satisfies H2 = ∆c(n1, . . . , nk) identi-

cally for (n1, . . . , nk) ∈ S(n).

Physical Interpretation of Ideal Immersions. An isometric immersion x :
M → Rm(c) is ideal means that M receives the least possible amount of tension

(given by ∆̂c(p)) at each point p ∈M from the ambient space. This is due to (12)
and the well-known fact that the mean curvature vector field is exactly the tension
field for isometric immersions. Therefore, the squared mean curvature H2(p) at
a point p ∈ M simply measures the amount of tension M is receiving from the
ambient space Rm(c) at that point.

2. Tubular hypersurfaces

Recall the definition of the exponential mapping exp of a Riemannian manifold
M . Denote by γv, v ∈ TpM, the geodesic of M through p such that γ′(p) = v.
Then we have that

exp : TM →M : (p, v) 7→ expp(v) = γv(1)

for every v ∈ TpM for which γv is defined on [0, 1].
Let Bℓ be a topologically imbedded ℓ-dimensional (ℓ < n) submanifold in an

n + 1-dimensional real space form Rn+1(c). Denote by ν1(B
ℓ) the unit normal

subbundle of the normal bundle T⊥(Bℓ) of Bℓ in Rn+1(c). Then, for a sufficiently
small r > 0, the mapping

ψ : ν1(B
ℓ) → Rn+1(c) : (p, e) 7→ expν(re)

is an immersion which is called the tubular hypersurface with radius r about Bℓ.
We denote it by Tr(B

ℓ).
In this article, we consider r > 0 such that the map is an immersion only. Thus,

the shape operator of the tubular hypersurface Tr(B
ℓ) is a well defined self-adjoint

linear operator at each point.
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Now take an arbitrary point p in Bℓ and a vector u in ν1(B
ℓ). Denote with

κ1(u), . . . , κℓ(u) the eigenvalues of the shape operator of Bℓ in Rn+1(c) with re-
spect to u at the point p. Then we can give an expression for the principal cur-
vatures κ̄1, . . . , κ̄m of the tubular hypersurface in the point exp(p, u). We consider
three cases.

(i) c = 0. In the Euclidean case, we find

κ̄i =
κi(u)

1 − rκi(u)
, i = 1, . . . , ℓ ,(14)

κ̄α(r) = −1

r
, α = ℓ+ 1, . . . , n .(15)

(ii) c = 1. For the unit sphere, we can simplify the expressions by denoting
κ1(u) = tan(θ1), . . . , κℓ(u) = tan(θℓ) with −π

2 < θi <
π
2 . Then we have

κ̄i = tan(θi + r) , i = 1, . . . , ℓ ,(16)

κ̄α(r) = − cot(r) , α = ℓ+ 1, . . . , n .(17)

(iii) c = −1. In the hyperbolic space we have

κ̄i =
κi(u) coth(r) − 1

coth(r) − κi(u)
, i = 1, . . . , ℓ ,(18)

κ̄α(r) = − coth(r) , α = ℓ+ 1, . . . , n .(19)

More details can be found in [2].

3. δ(2,2...,2)-ideal tubular hypersurfaces

In this section we will give a complete classification of tubular hypersurfaces
in real space forms for which the immersion defined in the previous section is a
δ(2,2...,2)-ideal immersion. We again consider three cases.

In the Euclidean space E
n+1.

Theorem 2. A tubular hypersurface Tr(B
ℓ) in E

n+1 (n > 2) satisfies equality in

(7) for k-tuple (n1, . . . , nk) = (2, . . . , 2) if and only if one of the following three

cases occurs:

(1) ℓ = 0 and the tubular hypersurface is a hypersphere.

(2) ℓ = k ∈ {1, . . . , [n
2 ]} and the tubular hypersurface is an open part of a

spherical hypercylinder: E
ℓ × Sn−ℓ(r).

(3) n is even, ℓ = k = n
2 and Bℓ is totally umbilical.

Proof. Let κ1(u), . . . , κℓ(u) be the eigenvalues of the shape operator of Bℓ in
E

n+1 with respect to a unit normal vector u at p. Then we find, according to the
previous section, that the principal curvatures of the tubular hypersurface Tr(B)
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at p+ ru are given by

κ̄i =
κi(u)

1 − rκi(u)
, i = 1, . . . , ℓ ,(20)

κ̄α(r) = −1

r
, α = ℓ+ 1, . . . , n .(21)

Suppose now that Tr(B) satisfies equality in (7) for a k-tuple (n1, . . . , nk) =
(2, . . . , 2).

If ℓ = 0, the tubular hypersurface is an open part of an hypersphere. This gives
us the first case in the theorem.

If ℓ = 1, the multiplicity of − 1
r

is n−1. From (8) and (10) we find the following
three cases:

• κ̄1 +
(
− 1

r

)
= − 1

r
, which implies that κ̄1 = 0.

• κ1

1−rκ1

= − 1
r
− 1

r
= − 2

r
, so we have that rκ1 = 2. This gives a contradiction

with the fact that κ1(−u) = −κ1(u).

• κ1

1−rκ1

+
(
− 1

r

)
= − 2

r
, from which we also get a contradiction.

So we see that κ̄1 = 0 and that k = 1. Thus B1 is an open part of a line segment
and the tubular hypersurface is an open part of E

1 ×Sn−1(r). This gives a special
case of case (2) of the theorem.

Suppose now that ℓ ≥ 2, then (8) and (10) imply that we have one of the
following five cases:

(a) for all unit normal vectors u of Bℓ, we have

(22) κ1(u) = · · · = κℓ(u) = 0

and ℓ = k ≤ n
2 ;

(b) for all unit normal vectors u of Bℓ, we have

(23) κ̄1(u) = · · · = κ̄ℓ(u) 6= 0 ,

n is even and k = ℓ = n
2 ;

(c) for all i ∈ {1, . . . , ℓ} there exists a j ∈ {1, . . . , ℓ} such that i 6= j and such
that:

(24)
κi(u)

1 − rκi(u)
+

κj(u)

1 − rκj(u)
= −1

r
;

(d) for all i ∈ {1, . . . , ℓ} there exists a j ∈ {1, . . . , ℓ} such that i 6= j and such
that:

(25)
κi(u)

1 − rκi(u)
− 1

r
=

κj(u)

1 − rκj(u)
;

(e) ℓ = k = 2, n = 4 and

(26)
κ1(u)

1 − rκ1(u)
+

κ2(u)

1 − rκ2(u)
= −2

r
.
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Case (a) implies that Bℓ is totally geodesic. Thus the tubular hypersurface is
an open part of a spherical hypercylinder E

ℓ ×Sn−ℓ(r), which gives case (2) of the
theorem.

Case (b) gives us case (3) of the theorem because κ̄i = κ̄j if and only if κi = κj .
Next we want to proof that cases (c), (d) and (e) cannot occur.
From (24), we find that

(27) 1 = r2κi(u)κj(u)

for every u. This is impossible since the codimension of Bℓ in E
n+1 is at least 2.

We can see this in the following way. Because the codimension is at least 2, we
can take a plane in the normal space which contains u. If κi(u) = 0, then we have
a contradiction at once. Otherwise κi(u) is strict positive or strict negative. Then
we have that κi(−u) is strict negative or strict positive respectively. Now we ro-
tate u in the chosen plane to −u. Because the principal curvature is a continuous
function, there exists a normal vector ξ for which κi(ξ) = 0. Putting ξ in equation
(27) gives a contradiction.

From (25) we find analogously that

(28) 1 − 2rκi(u) − r2κi(u)κj(u) = 0 .

Because κi(−u) = −κi(u) we have also that

(29) 1 + 2rκi(u) − r2κi(u)κj(u) = 0 .

Combining (28) and (29) then gives

4rκi(u) = 0 ,

which gives a contradiction unless all the principal curvatures of Bℓ are zero. But
then we are again in case (a).

Similarly case (e) gives a contradiction since we find from (26) that κ1+κ2 = 2
r
.

The converse is trivial. �

In the sphere Sn+1(1). First we recall the definition of an austere submanifold
in the sense of Harvey and Lawson [5].

Definition 2. We call a submanifold M of a Riemannian manifold M̃ austere if

for every normal ξ ∈ T⊥M the set of all eigenvalues of the shape operator counted

with multiplicities is invariant under multiplication with −1.

Theorem 3. A tubular hypersurface Tr(B
ℓ) in Sn+1(1) (n > 2) satisfies equality

in (7) for a k-tuple (n1, . . . , nk) = (2, . . . , 2) if and only if one of the following

four cases occur:

(1) ℓ = 0 and the tubular hypersurface is a geodesic sphere with radius r ∈
]0, π[.

(2) n > ℓ ≥ n
2 , k = n− ℓ, r = π

2 and Bℓ is a totally umbilical submanifold in

Sn+1(1).
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(3) ℓ = 2k < n, r = π
2 and Bℓ is an austere submanifold in Sn+1(1).

(4) n is even, ℓ = k = n
2 and Bℓ is totally umbilical.

Proof. Let Bℓ be an ℓ-dimensional submanifold inbedded in Sn+1(1). For every
unit normal vector u of Bℓ at a point p we denote by κ1(u), . . . , κℓ(u) the eigen-
values of the shape operator of Bℓ in Sn+1(1) with respect to u. Suppose now
that

(30) κi(u) = tan(θi) , −π
2
< θi <

π

2
, 1 ≤ i ≤ ℓ .

Then we know from the previous section that the principal curvatures of the tubu-
lar hypersurface Tr(B

ℓ) in Sn+1(1) at cos(r)p + sin(r)u are given by

κ̄i = tan(θi + r) , i = 1, . . . , ℓ ,(31)

κ̄α(r) = − cot(r) , α = ℓ+ 1, . . . , n .

Suppose that Tr(B
ℓ) satisfies (7) for a k-tupple (n1, . . . , nk) = (2, . . . , 2).

If ℓ = 0, the tubular hypersurface is totally umbilical in Sn+1(1). Then the-
orem 1 implies that Tr(B

ℓ) with radius r ∈ ]0, π[ satisfies (7) for a k-tuple
(n1, . . . , nk) = (2, . . . , 2) if and only if k = 0 or k = n

2 . So we find that Tr(B
ℓ) is a

geodesic sphere. This gives us case (1).

If ℓ = 1, then (8) and (10) imply that we are in one of the following cases:

• κ1+tan r
1−κ1 tan r

+ (− cot(r)) = − cot(r), which implies that κ1(u) = − tan(r) for

every unit normal vector u of B1 in Sn+1(1). This gives a contradiction
with the fact that κ1(−u) = −κ1(u).

• κ1+tan r
1−κ1 tan r

= −2 cot r, so we find κ1 tan r = 2 + tan2 r. Because κ1(−u) =

−κ1(u) we have 2 + tan2 r = 0 which also gives a contradiction.

• κ1+tan r
1−κ1 tan r

+ (− cot r) = −2 cot r, which becomes tan2 r = −1. This clearly
also gives a contradiction.

In each case we get a contradiction, so ℓ = 1 cannot occur.
Suppose now that ℓ ≥ 2, then theorem 1 implies that we are in one of the

following cases:

(a) for all unit normal vectors u of Bℓ we have that

(32) tan(θj + r) = 0 , j = 1, . . . , ℓ

and ℓ = k ≤ n
2 ;

(b) for any unit normal vector u of Bℓ we have that

(33) tan(θ1 + r) = · · · = tan(θℓ + r) 6= 0 ,

n is even and k = ℓ = n
2 ;

(c) for all i ∈ {1, . . . , ℓ} there exists a j ∈ {1, . . . , ℓ} such that i 6= j and such
that:

(34) tan(θi + r) − cot(r) = tan(θj + r) ;
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(d) for all i ∈ {1, . . . , ℓ} there exists a j ∈ {1, . . . , ℓ} such that i 6= j and such
that:

(35) tan(θi + r) + tan(θj + r) = − cot(r) ;

(e) ℓ = k = 2, n = 4 and

(36) tan(θ1 + r) + tan(θ2 + r) = −2 cot(r) .

Suppose now that we are in case (a) and thus (32) holds. Then we see that
κj(u) cot(r) + 1 = 0 for any unit normal vector u of Bℓ in Sn+1(1). This is impos-
sible since κj(−u) = −κj(u).

If case (b) holds, then we get case (4) of the theorem, since

κi + tan r

1 − κi tan r
=

κj + tan r

1 − κj tan r

implies that

(κi − κj)(1 + tan2 r) = 0 .

Suppose now that we are in case (c). Then we have from (34) that:

(37) cot3(r) − 2κi cot2(r) + κiκj cot(r) + (κj − κi) = 0 .

We use again the fact that κi(−u) = −κi(u) and therefore we find

(38) cot(r)(cot2(r) + κi(u)κj(u)) = 0

and

(39) 2κi(u) cot2(r) + κi(u) − κj(u) = 0 .

If cot(r) 6= 0, then (38) implies that cot2(r) = −κi(u)κj(u). Because ℓ < n we get
a contradiction with the same argument as in the preceding proof.

Thus we have cot(r) = 0, and thus r = π
2 . From (39) we also see that κi(u) =

κj(u). Without loss of generality, we may assume

a1 = µ, a2 = 0, a3 = µ, a4 = 0, . . . , a2k−1 = µ, a2k = 0, a2k+1 = µ, . . . , an = µ

where µ = − 1
κ1

and a1, . . . , an are given by theorem (1).

Furthermore we see that tan(θi + r) 6= 0 since −π
2 < θi <

π
2 and from (31)

we find that cot(r) has multiplicity n− ℓ. So theorem (1) implies that ℓ ≥ n
2 and

tan(θ1 + r) = · · · = tan(θℓ + r). This implies also that tan(θ1) = · · · = tan(θℓ) and
thus that Bℓ is totally umbilical. Moreover we see that theorem (1) implies that
k = n− ℓ. This gives rise to case (2).

Suppose now that we are in case (d) and thus that (35) holds. Then we have

(40) cot3(r) + 2 cot(r) − κiκj cot(r) − (κi + κj) = 0 .

If we use that κi(−u) = −κi(u) we find

(41) cot(r)(cot2(r) + 2 − κiκj) = 0

and

(42) κi + κj = 0 .
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Like in case (c) we get a contradiction if cot(r) 6= 0. So we find cot(r) = 0 and thus
r = π

2 . Moreover we have κi = −κj . Without loss of generality, we may assume

a1 = tan(θ1 + r) = − 1

κ1
, a2 = tan(θ2 + r) = − 1

κ2
, . . . , an = − cot(r) = 0

We also know that tan(θj + r) 6= 0 (since −π
2 < θj <

π
2 ). Thus (31) and theorem 1

imply that Bℓ is an austere submanifold in Sn+1(1); in particular ℓ is even. This
gives case (3).

A similar computation as in case (d) shows that case (e) gives a contradiction.
The converse can be verified easily. �

In the hyperbolic space Hn+1(−1).

Theorem 4. A tubular hypersurface Tr(B
ℓ) in Hn+1(−1) (n > 2) satisfies equal-

ity in (7) for a k-tuple (n1, . . . , nk) = (2, . . . , 2) if and only if we are in one of the

following three cases:

(1) ℓ = 0 and the tubular hypersurface is a geodesic sphere with radius r > 0.

(2) ℓ = 2k, Bℓ is totally geodesic and r = coth−1(
√

2).

(3) n is even, ℓ = k = n
2 and Bℓ is totally umbilical.

Proof. LetBℓ be an ℓ-dimensional submanifold in the hyperbolic spaceHn+1(−1)
and Tr(B

ℓ) be the tubular hypersurface of Bℓ in Hn+1(−1). Suppose that Tr(B
ℓ)

satisfies (7) for a k-tuple (n1, . . . , nk) = (2, . . . , 2). For any unit normal vector u
of Bℓ at a point p of Bℓ denote with κ1(u), . . . , κℓ(u) the principal curvatures of
Bℓ in Hn+1(−1) at p with respect to u. Then it follows from section 2 that the
principal curvatures κ̄1, . . . , κ̄n of the shape operator of Tr(B

ℓ) are given by:

κ̄i =
κi(u) coth(r) − 1

coth(r) − κi(u)
, i = 1, . . . , ℓ ,(43)

κ̄α(r) = − coth(r) , α = ℓ+ 1, . . . , n .(44)

If ℓ = 0, then the tubular hypersurface is totally umbilical. So we find from
theorem (1) that k = 0 or k = n

2 and Tr(B
ℓ) is a geodesic sphere. Thus we are in

case (1).
If ℓ = 1, then from theorem 1 and (43) it follows that we are in one of the

following cases:

• κ̄1−cot r = − cot r, which implies immediately that κ̄1(u) = 0 for any unit
normal vector u of B1 in Sn+1(1). Then (43) would imply that κ1(u) =
− tanh(r) which gives a contradiction with the fact that κ1(−u) = −κ1(u)
since r ∈ R

+
0 .

• κ1 coth r−1
coth r−κ1

= −2 coth r, so we find κ1 coth r = 2 coth2 r − 1. Because

κ1(−u) = −κ1(u) this implies that coth2 r = 1
2 which gives a contradiction

since coth2 r is always greater than 1.

• κ1 coth r−1
coth r−κ1

+ (− cot r) = −2 cot r, this implies coth2 r = 1 which gives a
contradiction as above.
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Thus we see that the case ℓ = 1 cannot occur.
Suppose now that ℓ ≥ 2, then theorem (1) implies that one of the following

cases occur:

(a) for all unit normal vectors u of Bℓ we have

(45) κi(u) coth(r) = 1 , for all i ∈ {1, . . . ℓ}
and ℓ = k ≤ n

2 ;

(b) for alle unit normal vectors u of Bℓ we have

(46) κ̄1(u) = · · · = κ̄ℓ(u) 6= 0 ,

n is even and k = ℓ = n
2 ;

(c) for all i ∈ {1, . . . , ℓ} there exists a j ∈ {1, . . . , ℓ} such that i 6= j and such
that:

(47)
κi(u) coth(r) − 1

coth(r) − κi(u)
− coth(r) =

κj(u) coth(r) − 1

coth(r) − κj(u)
;

(d) for all i ∈ {1, . . . , ℓ} there exists a j ∈ {1, . . . , ℓ} such that i 6= j and such
that:

(48)
κi(u) coth(r) − 1

coth(r) − κi(u)
+
κj(u) coth(r) − 1

coth(r) − κj(u)
= − coth(r) ;

(e) ℓ = k = 2, n = 4 and

(49)
κ1(u) coth(r) − 1

coth(r) − κ1(u)
+
κ2(u) coth(r) − 1

coth(r) − κ2(u)
= −2 coth(r) .

We see at once that (45) and thus case (a) cannot occur since κi(−u) = −κi(u).
Suppose now that we are in case (b). The condition κ̄i = κ̄j gives us

(κi − κj)(coth2 r − 1) = 0 .

Because coth2 r > 1 this implies κ̄i = κ̄j if and only if κi = κj . This is case (3) of
the theorem.

Suppose that we are in case (c). Then from (47), we find

(50) coth3(r) − 2κi coth2(r) + κiκj coth(r) + κi − κj = 0 .

Because κi(−u) = −κi(u) we have

coth3(r) + κiκj coth(r) = 0 ,(51)

−2κi coth2(r) + κi − κj = 0 .(52)

From (51), it follows that κi(u)κj(u) = − coth2(r) since coth(r) 6= 0. But this
gives a contradiction with the same argument as in the Euclidean case because
the codimension is at least 2.

Analogously from (48) we find:

(53) (κi + κj) tanh3(r) − (2 + κiκj) tanh2(r) + 1 = 0 .
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By switching to −u we get:

(54) −(κi + κj) tanh3(r) − (2 + κiκj) tanh2(r) + 1 = 0 .

This implies that κi(u) + κj(u) = 0. Substituting this in (53) gives κi(u)
2 =

2 − coth2(r). We can also substitute the other way round, then we find κj(u)
2 =

2−coth2(r). Thus κi must be zero for every i ∈ {1, . . . , ℓ}. We see that Bℓ is totally

geodesic. We see also that in this case r = coth−1(
√

2). Thus we get as principal

curvatures for Tr(B
ℓ) κ̄i = − 1√

2
= −

√
2

2 , i = 1, . . . , ℓ and κ̄α = −
√

2, α =

ℓ+ 1, . . . , n. From theorem (1) it follows that ℓ = 2k. So we get case (2).
Case (e) cannot occur since similar computations as in case (d) give a contra-

diction.
The converse can be verified easily. �
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