IDEAL TUBULAR HYPERSURFACES IN REAL SPACE FORMS

JOHAN FASTENAKELS

ABSTRACT. In this article we give a classification of tubular hypersurfaces in real space forms which are $\delta(2, 2, ..., 2)$ -ideal.

1. Ideal immersions

Let M be a Riemannian *n*-manifold. Denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_pM$, $p \in M$. For any orthonormal basis e_1, \ldots, e_n of the tangent space T_pM , the scalar curvature τ at p is defined to be

(1)
$$\tau(p) = \sum_{i < j} K(e_i \wedge e_j)$$

When L is a 1-dimensional subspace of T_pM , we put $\tau(L) = 0$. If L is a subspace of T_pM of dimension $r \ge 2$, we define the scalar curvature $\tau(L)$ of L by

(2)
$$\tau(L) = \sum_{\alpha < \beta} K(e_{\alpha} \wedge e_{\beta}), \qquad 1 \le \alpha, \beta \le r,$$

where $\{e_1, \ldots, e_r\}$ is an orthonormal basis of L.

For an integer $k \ge 0$, denote by $\mathcal{S}(n, k)$ the finite set consisting of unordered *k*-tuples (n_1, \ldots, n_k) of integers ≥ 2 satisfying $n_1 < n$ and $n_1 + \cdots + n_k \le n$. Let $\mathcal{S}(n)$ be the union $\bigcup_{k\ge 0} \mathcal{S}(n, k)$. If n = 2, we have k = 0 and $\mathcal{S}(2) = \{\emptyset\}$.

For each $(n_1, \ldots, n_k) \in \mathcal{S}(n)$, the invariant $\delta(n_1, \ldots, n_k)$ is defined in [3] by:

(3)
$$\delta(n_1,\ldots,n_k)(p) = \tau(p) - S(n_1,\ldots,n_k)(p),$$

where

$$S(n_1,\ldots,n_k)(p) = \inf\left\{\tau(L_1) + \cdots + \tau(L_k)\right\}$$

and L_1, \ldots, L_k run over all k mutually orthogonal subspaces of T_pM such that $\dim L_j = n_j, j = 1, \ldots, k$. Clearly, the invariant $\delta(\emptyset)$ is nothing but the scalar curvature τ of M.

²⁰⁰⁰ Mathematics Subject Classification: 53B25.

Key words and phrases: tubular hypersurfaces, ideal immersion, real space form. The author is Research assistant of the Research Foundation - Flanders (FWO). Received April 28, 2006.

For a given partition $(n_1, \ldots, n_k) \in \mathcal{S}(n)$, we put

(4)
$$b(n_1, \dots, n_k) = \frac{1}{2} \left(n(n-1) - \sum_{j=1}^k n_j (n_j - 1) \right),$$

(5)
$$c(n_1, \dots, n_k) = \frac{n^2(n+k-1-\sum n_j)}{2(n+k-\sum n_j)}.$$

For each real number c and each $(n_1, \ldots, n_k) \in \mathcal{S}(n)$, the associated normalized invariant $\Delta_c(n_1, \ldots, n_k)$ is defined by

(6)
$$\Delta_c(n_1,\ldots,n_k) = \frac{\delta(n_1,\ldots,n_k) - b(n_1,\ldots,n_k)c}{c(n_1,\ldots,n_k)}.$$

We recall the following general result from [3].

Theorem 1. Let M be an n-dimensional submanifold of a real space form $\mathbb{R}^m(c)$ of constant sectional curvature c. Then for each $(n_1, \ldots, n_k) \in S(n)$ we have

(7)
$$H^2 \ge \Delta_c(n_1, \dots, n_k),$$

where H^2 is the squared norm of the mean curvature vector.

The equality case of inequality (7) holds at a point $p \in M$ if and only if, with respect to a suitable orthonormal basis $e_1, \ldots, e_n, e_{n+1}, \ldots, e_m$ at p, the shape operators $A_r = A_{e_r}$, $r = n + 1, \ldots, m$ of M in $\mathbb{R}^m(c)$ at p take the following forms:

(8)
$$A_{n+1} = \begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & a_2 & 0 & \cdots & 0 \\ 0 & 0 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{pmatrix},$$

(9)
$$A_r = \begin{pmatrix} A_1^r & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & A_k^r & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}, \quad r = n+2, \dots, m,$$

where a_1, \ldots, a_n satisfy

(10)
$$a_1 + \dots + a_{n_1} = \dots = a_{n_1 + \dots + n_{k-1} + 1} + \dots + a_{n_1 + \dots + n_k}$$

 $= a_{n_1 + \dots + n_k + 1} = \dots = a_n$

and each A_j^r is an $n_j \times n_j$ submatrix such that

(11) $\operatorname{trace}(A_j^r) = 0, \quad (A_j^r)^t = A_j^r, \quad r = n+2, \dots, m; \quad j = 1, \dots, k.$

For an isometric immersion $x: M \to R^m(c)$ of a Riemannian *n*-manifold into $R^m(c)$, this theorem implies that

(12)
$$H^2(p) \ge \hat{\Delta}_c(p)$$

where $\hat{\Delta}_c$ denotes the invariant on M defined by

(13)
$$\hat{\Delta}_c = \max\left\{\Delta_c(n_1,\ldots,n_k) \mid (n_1,\ldots,n_k) \in \mathcal{S}(n)\right\}.$$

In general, there do not exist direct relations between these new invariants.

Applying inequality (12) B. Y. Chen introduced in [4] the notion of ideal immersions as follows.

Definition 1. An isometric immersion $x : M \to R^m(c)$ is called an ideal immersion if the equality case of (12) holds at every point $p \in M$. An isometric immersion is called (n_1, \ldots, n_k) -ideal if it satisfies $H^2 = \Delta_c(n_1, \ldots, n_k)$ identically for $(n_1, \ldots, n_k) \in S(n)$.

Physical Interpretation of Ideal Immersions. An isometric immersion $x : M \to R^m(c)$ is ideal means that M receives the least possible amount of tension (given by $\hat{\Delta}_c(p)$) at each point $p \in M$ from the ambient space. This is due to (12) and the well-known fact that the mean curvature vector field is exactly the tension field for isometric immersions. Therefore, the squared mean curvature $H^2(p)$ at a point $p \in M$ simply measures the amount of tension M is receiving from the ambient space $R^m(c)$ at that point.

2. Tubular hypersurfaces

Recall the definition of the exponential mapping exp of a Riemannian manifold M. Denote by $\gamma_v, v \in T_p M$, the geodesic of M through p such that $\gamma'(p) = v$. Then we have that

$$\exp: TM \to M: (p, v) \mapsto \exp_n(v) = \gamma_v(1)$$

for every $v \in T_p M$ for which γ_v is defined on [0, 1].

Let B^{ℓ} be a topologically imbedded ℓ -dimensional $(\ell < n)$ submanifold in an n + 1-dimensional real space form $R^{n+1}(c)$. Denote by $\nu_1(B^{\ell})$ the unit normal subbundle of the normal bundle $T^{\perp}(B^{\ell})$ of B^{ℓ} in $R^{n+1}(c)$. Then, for a sufficiently small r > 0, the mapping

$$\psi: \nu_1(B^\ell) \to R^{n+1}(c): (p,e) \mapsto \exp_{\nu}(re)$$

is an immersion which is called the *tubular hypersurface* with radius r about B^{ℓ} . We denote it by $T_r(B^{\ell})$.

In this article, we consider r > 0 such that the map is an immersion only. Thus, the shape operator of the tubular hypersurface $T_r(B^{\ell})$ is a well defined self-adjoint linear operator at each point.

J. FASTENAKELS

Now take an arbitrary point p in B^{ℓ} and a vector u in $\nu_1(B^{\ell})$. Denote with $\kappa_1(u), \ldots, \kappa_\ell(u)$ the eigenvalues of the shape operator of B^ℓ in $R^{n+1}(c)$ with respect to u at the point p. Then we can give an expression for the principal curvatures $\bar{\kappa}_1, \ldots, \bar{\kappa}_m$ of the tubular hypersurface in the point $\exp(p, u)$. We consider three cases.

(i) c = 0. In the Euclidean case, we find

(14)
$$\bar{\kappa}_i = \frac{\kappa_i(u)}{1 - r\kappa_i(u)}, \qquad i = 1, \dots, \ell,$$

(15)
$$\bar{\kappa}_{\alpha}(r) = -\frac{1}{r}, \qquad \alpha = \ell + 1, \dots, n.$$

(ii) c = 1. For the unit sphere, we can simplify the expressions by denoting $\kappa_1(u) = \tan(\theta_1), \ldots, \kappa_\ell(u) = \tan(\theta_\ell)$ with $-\frac{\pi}{2} < \theta_i < \frac{\pi}{2}$. Then we have

(16)
$$\bar{\kappa}_i = \tan(\theta_i + r), \qquad i = 1, \dots, \ell,$$

 $\bar{\kappa}_{\alpha}(r) = -\cot(r), \qquad \alpha = \ell + 1, \dots, n.$ (17)

(iii) c = -1. In the hyperbolic space we have

(18)
$$\bar{\kappa}_i = \frac{\kappa_i(u) \coth(r) - 1}{\coth(r) - \kappa_i(u)}, \qquad i = 1, \dots, \ell,$$

(19)
$$\bar{\kappa}_{\alpha}(r) = -\coth(r), \qquad \alpha = \ell + 1, \dots, n$$

More details can be found in [2].

3. $\delta_{(2,2...,2)}$ -IDEAL TUBULAR HYPERSURFACES

In this section we will give a complete classification of tubular hypersurfaces in real space forms for which the immersion defined in the previous section is a $\delta_{(2,2,\ldots,2)}$ -ideal immersion. We again consider three cases.

In the Euclidean space \mathbb{E}^{n+1} .

Theorem 2. A tubular hypersurface $T_r(B^{\ell})$ in \mathbb{E}^{n+1} (n > 2) satisfies equality in (7) for k-tuple $(n_1, \ldots, n_k) = (2, \ldots, 2)$ if and only if one of the following three cases occurs:

- (1) $\ell = 0$ and the tubular hypersurface is a hypersphere.
- (2) $\ell = k \in \{1, \dots, \lfloor \frac{n}{2} \rfloor\}$ and the tubular hypersurface is an open part of a spherical hypercylinder: $\mathbb{E}^{\ell} \times S^{n-\ell}(r)$. (3) n is even, $\ell = k = \frac{n}{2}$ and B^{ℓ} is totally umbilical.

Proof. Let $\kappa_1(u), \ldots, \kappa_\ell(u)$ be the eigenvalues of the shape operator of B^ℓ in \mathbb{E}^{n+1} with respect to a unit normal vector u at p. Then we find, according to the previous section, that the principal curvatures of the tubular hypersurface $T_r(B)$

at p + ru are given by

(20)
$$\bar{\kappa}_i = \frac{\kappa_i(u)}{1 - r\kappa_i(u)}, \qquad i = 1, \dots, \ell,$$

(21)
$$\bar{\kappa}_{\alpha}(r) = -\frac{1}{r}, \qquad \alpha = \ell + 1, \dots, n.$$

Suppose now that $T_r(B)$ satisfies equality in (7) for a k-tuple $(n_1, \ldots, n_k) = (2, \ldots, 2)$.

If $\ell = 0$, the tubular hypersurface is an open part of an hypersphere. This gives us the first case in the theorem.

If $\ell = 1$, the multiplicity of $-\frac{1}{r}$ is n-1. From (8) and (10) we find the following three cases:

- $\bar{\kappa}_1 + \left(-\frac{1}{r}\right) = -\frac{1}{r}$, which implies that $\bar{\kappa}_1 = 0$.
- $\frac{\kappa_1}{1-r\kappa_1} = -\frac{1}{r} \frac{1}{r} = -\frac{2}{r}$, so we have that $r\kappa_1 = 2$. This gives a contradiction with the fact that $\kappa_1(-u) = -\kappa_1(u)$.
- $\frac{\kappa_1}{1-r\kappa_1} + \left(-\frac{1}{r}\right) = -\frac{2}{r}$, from which we also get a contradiction.

So we see that $\bar{\kappa}_1 = 0$ and that k = 1. Thus B^1 is an open part of a line segment and the tubular hypersurface is an open part of $\mathbb{E}^1 \times S^{n-1}(r)$. This gives a special case of case (2) of the theorem.

Suppose now that $\ell \geq 2$, then (8) and (10) imply that we have one of the following five cases:

(a) for all unit normal vectors u of B^{ℓ} , we have

(22)
$$\kappa_1(u) = \dots = \kappa_\ell(u) = 0$$

and $\ell = k \leq \frac{n}{2}$;

(b) for all unit normal vectors u of B^{ℓ} , we have

(23)
$$\bar{\kappa}_1(u) = \dots = \bar{\kappa}_\ell(u) \neq 0,$$

n is even and $k = \ell = \frac{n}{2}$;

(c) for all $i \in \{1, ..., \ell\}$ there exists a $j \in \{1, ..., \ell\}$ such that $i \neq j$ and such that:

(24)
$$\frac{\kappa_i(u)}{1 - r\kappa_i(u)} + \frac{\kappa_j(u)}{1 - r\kappa_j(u)} = -\frac{1}{r}$$

(d) for all $i \in \{1, ..., \ell\}$ there exists a $j \in \{1, ..., \ell\}$ such that $i \neq j$ and such that:

(25)
$$\frac{\kappa_i(u)}{1 - r\kappa_i(u)} - \frac{1}{r} = \frac{\kappa_j(u)}{1 - r\kappa_j(u)};$$

(e)
$$\ell = k = 2, n = 4$$
 and

(26)
$$\frac{\kappa_1(u)}{1 - r\kappa_1(u)} + \frac{\kappa_2(u)}{1 - r\kappa_2(u)} = -\frac{2}{r}$$

J. FASTENAKELS

Case (a) implies that B^{ℓ} is totally geodesic. Thus the tubular hypersurface is an open part of a spherical hypercylinder $\mathbb{E}^{\ell} \times S^{n-\ell}(r)$, which gives case (2) of the theorem.

Case (b) gives us case (3) of the theorem because $\bar{\kappa}_i = \bar{\kappa}_j$ if and only if $\kappa_i = \kappa_j$. Next we want to proof that cases (c), (d) and (e) cannot occur. From (24), we find that

(27)
$$1 = r^2 \kappa_i(u) \kappa_i(u)$$

for every u. This is impossible since the codimension of B^{ℓ} in \mathbb{E}^{n+1} is at least 2. We can see this in the following way. Because the codimension is at least 2, we can take a plane in the normal space which contains u. If $\kappa_i(u) = 0$, then we have a contradiction at once. Otherwise $\kappa_i(u)$ is strict positive or strict negative. Then we have that $\kappa_i(-u)$ is strict negative or strict positive respectively. Now we rotate u in the chosen plane to -u. Because the principal curvature is a continuous function, there exists a normal vector ξ for which $\kappa_i(\xi) = 0$. Putting ξ in equation (27) gives a contradiction.

From (25) we find analogously that

(28)
$$1 - 2r\kappa_i(u) - r^2\kappa_i(u)\kappa_j(u) = 0.$$

Because $\kappa_i(-u) = -\kappa_i(u)$ we have also that (29) $1 + 2r\kappa_i(u) - r^2\kappa_i(u)\kappa_j(u) = 0$.

Combining (28) and (29) then gives

$$4r\kappa_i(u) = 0\,,$$

which gives a contradiction unless all the principal curvatures of B^{ℓ} are zero. But then we are again in case (a).

Similarly case (e) gives a contradiction since we find from (26) that $\kappa_1 + \kappa_2 = \frac{2}{r}$. The converse is trivial.

In the sphere $S^{n+1}(1)$. First we recall the definition of an austere submanifold in the sense of Harvey and Lawson [5].

Definition 2. We call a submanifold M of a Riemannian manifold \widetilde{M} austere if for every normal $\xi \in T^{\perp}M$ the set of all eigenvalues of the shape operator counted with multiplicities is invariant under multiplication with -1.

Theorem 3. A tubular hypersurface $T_r(B^{\ell})$ in $S^{n+1}(1)$ (n > 2) satisfies equality in (7) for a k-tuple $(n_1, \ldots, n_k) = (2, \ldots, 2)$ if and only if one of the following four cases occur:

- (1) $\ell = 0$ and the tubular hypersurface is a geodesic sphere with radius $r \in [0, \pi[$.
- (2) $n > \ell \ge \frac{n}{2}, k = n \ell, r = \frac{\pi}{2}$ and B^{ℓ} is a totally umbilical submanifold in $S^{n+1}(1)$.

- (3) $\ell = 2k < n, r = \frac{\pi}{2}$ and B^{ℓ} is an austere submanifold in $S^{n+1}(1)$.
- (4) n is even, $\ell = k = \frac{n}{2}$ and B^{ℓ} is totally umbilical.

Proof. Let B^{ℓ} be an ℓ -dimensional submanifold inbedded in $S^{n+1}(1)$. For every unit normal vector u of B^{ℓ} at a point p we denote by $\kappa_1(u), \ldots, \kappa_{\ell}(u)$ the eigenvalues of the shape operator of B^{ℓ} in $S^{n+1}(1)$ with respect to u. Suppose now that

(30)
$$\kappa_i(u) = \tan(\theta_i), \quad -\frac{\pi}{2} < \theta_i < \frac{\pi}{2}, \qquad 1 \le i \le \ell.$$

Then we know from the previous section that the principal curvatures of the tubular hypersurface $T_r(B^{\ell})$ in $S^{n+1}(1)$ at $\cos(r)p + \sin(r)u$ are given by

(31)
$$\bar{\kappa}_i = \tan(\theta_i + r), \quad i = 1, \dots, \ell,$$

 $\bar{\kappa}_\alpha(r) = -\cot(r), \quad \alpha = \ell + 1, \dots, n$

Suppose that $T_r(B^{\ell})$ satisfies (7) for a k-tupple $(n_1, \ldots, n_k) = (2, \ldots, 2)$.

If $\ell = 0$, the tubular hypersurface is totally umbilical in $S^{n+1}(1)$. Then theorem 1 implies that $T_r(B^{\ell})$ with radius $r \in [0, \pi[$ satisfies (7) for a k-tuple $(n_1, \ldots, n_k) = (2, \ldots, 2)$ if and only if k = 0 or $k = \frac{n}{2}$. So we find that $T_r(B^{\ell})$ is a geodesic sphere. This gives us case (1).

If $\ell = 1$, then (8) and (10) imply that we are in one of the following cases:

- $\frac{\kappa_1 + \tan r}{1 \kappa_1 \tan r} + (-\cot(r)) = -\cot(r)$, which implies that $\kappa_1(u) = -\tan(r)$ for every unit normal vector u of B^1 in $S^{n+1}(1)$. This gives a contradiction with the fact that $\kappa_1(-u) = -\kappa_1(u)$.
- $\frac{\kappa_1 + \tan r}{1 \kappa_1 \tan r} = -2 \cot r$, so we find $\kappa_1 \tan r = 2 + \tan^2 r$. Because $\kappa_1(-u) = -\kappa_1(u)$ we have $2 + \tan^2 r = 0$ which also gives a contradiction.
- $\frac{\kappa_1 + \tan r}{1 \kappa_1 \tan r} + (-\cot r) = -2 \cot r$, which becomes $\tan^2 r = -1$. This clearly also gives a contradiction.

In each case we get a contradiction, so $\ell = 1$ cannot occur.

Suppose now that $\ell \geq 2$, then theorem 1 implies that we are in one of the following cases:

(a) for all unit normal vectors u of B^{ℓ} we have that

(32)
$$\tan(\theta_j + r) = 0, \qquad j = 1, \dots, \ell$$

and $\ell = k \leq \frac{n}{2}$;

(b) for any unit normal vector u of B^{ℓ} we have that

(33)
$$\tan(\theta_1 + r) = \dots = \tan(\theta_\ell + r) \neq 0,$$

n is even and $k = \ell = \frac{n}{2}$;

(c) for all $i \in \{1, ..., \ell\}$ there exists a $j \in \{1, ..., \ell\}$ such that $i \neq j$ and such that:

(34)
$$\tan(\theta_i + r) - \cot(r) = \tan(\theta_j + r);$$

J. FASTENAKELS

(d) for all $i \in \{1, ..., \ell\}$ there exists a $j \in \{1, ..., \ell\}$ such that $i \neq j$ and such that:

(35)
$$\tan(\theta_i + r) + \tan(\theta_j + r) = -\cot(r);$$

(e) $\ell = k = 2, n = 4$ and

(36)
$$\tan(\theta_1 + r) + \tan(\theta_2 + r) = -2\cot(r)$$
.

Suppose now that we are in case (a) and thus (32) holds. Then we see that $\kappa_j(u) \cot(r) + 1 = 0$ for any unit normal vector u of B^{ℓ} in $S^{n+1}(1)$. This is impossible since $\kappa_j(-u) = -\kappa_j(u)$.

If case (b) holds, then we get case (4) of the theorem, since

$$\frac{\kappa_i + \tan r}{1 - \kappa_i \tan r} = \frac{\kappa_j + \tan r}{1 - \kappa_j \tan r}$$

implies that

$$(\kappa_i - \kappa_j)(1 + \tan^2 r) = 0$$

Suppose now that we are in case (c). Then we have from (34) that:

(37)
$$\cot^3(r) - 2\kappa_i \cot^2(r) + \kappa_i \kappa_j \cot(r) + (\kappa_j - \kappa_i) = 0$$

We use again the fact that $\kappa_i(-u) = -\kappa_i(u)$ and therefore we find

(38)
$$\cot(r)(\cot^2(r) + \kappa_i(u)\kappa_j(u)) = 0$$

and

(39)
$$2\kappa_i(u)\cot^2(r) + \kappa_i(u) - \kappa_j(u) = 0.$$

If $\cot(r) \neq 0$, then (38) implies that $\cot^2(r) = -\kappa_i(u)\kappa_j(u)$. Because $\ell < n$ we get a contradiction with the same argument as in the preceding proof.

Thus we have $\cot(r) = 0$, and thus $r = \frac{\pi}{2}$. From (39) we also see that $\kappa_i(u) = \kappa_j(u)$. Without loss of generality, we may assume

 $a_1 = \mu$, $a_2 = 0$, $a_3 = \mu$, $a_4 = 0$, ..., $a_{2k-1} = \mu$, $a_{2k} = 0$, $a_{2k+1} = \mu$, ..., $a_n = \mu$ where $\mu = -\frac{1}{\kappa_1}$ and a_1, \ldots, a_n are given by theorem (1).

Furthermore we see that $\tan(\theta_i + r) \neq 0$ since $-\frac{\pi}{2} < \theta_i < \frac{\pi}{2}$ and from (31) we find that $\cot(r)$ has multiplicity $n - \ell$. So theorem (1) implies that $\ell \geq \frac{n}{2}$ and $\tan(\theta_1 + r) = \cdots = \tan(\theta_\ell + r)$. This implies also that $\tan(\theta_1) = \cdots = \tan(\theta_\ell)$ and thus that B^{ℓ} is totally umbilical. Moreover we see that theorem (1) implies that $k = n - \ell$. This gives rise to case (2).

Suppose now that we are in case (d) and thus that (35) holds. Then we have

(40)
$$\cot^3(r) + 2\cot(r) - \kappa_i \kappa_j \cot(r) - (\kappa_i + \kappa_j) = 0.$$

If we use that $\kappa_i(-u) = -\kappa_i(u)$ we find

(41)
$$\cot(r)(\cot^2(r) + 2 - \kappa_i \kappa_j) = 0$$

- and
- (42) $\kappa_i + \kappa_j = 0.$

Like in case (c) we get a contradiction if $\cot(r) \neq 0$. So we find $\cot(r) = 0$ and thus $r = \frac{\pi}{2}$. Moreover we have $\kappa_i = -\kappa_j$. Without loss of generality, we may assume

$$a_1 = \tan(\theta_1 + r) = -\frac{1}{\kappa_1}, \quad a_2 = \tan(\theta_2 + r) = -\frac{1}{\kappa_2}, \dots, a_n = -\cot(r) = 0$$

We also know that $\tan(\theta_j + r) \neq 0$ (since $-\frac{\pi}{2} < \theta_j < \frac{\pi}{2}$). Thus (31) and theorem 1 imply that B^{ℓ} is an austere submanifold in $S^{n+1}(1)$; in particular ℓ is even. This gives case (3).

A similar computation as in case (d) shows that case (e) gives a contradiction. The converse can be verified easily. $\hfill \Box$

In the hyperbolic space $H^{n+1}(-1)$.

Theorem 4. A tubular hypersurface $T_r(B^{\ell})$ in $H^{n+1}(-1)$ (n > 2) satisfies equality in (7) for a k-tuple $(n_1, \ldots, n_k) = (2, \ldots, 2)$ if and only if we are in one of the following three cases:

- (1) $\ell = 0$ and the tubular hypersurface is a geodesic sphere with radius r > 0.
- (2) $\ell = 2k$, B^{ℓ} is totally geodesic and $r = \operatorname{coth}^{-1}(\sqrt{2})$.
- (3) n is even, $\ell = k = \frac{n}{2}$ and B^{ℓ} is totally umbilical.

Proof. Let B^{ℓ} be an ℓ -dimensional submanifold in the hyperbolic space $H^{n+1}(-1)$ and $T_r(B^{\ell})$ be the tubular hypersurface of B^{ℓ} in $H^{n+1}(-1)$. Suppose that $T_r(B^{\ell})$ satisfies (7) for a k-tuple $(n_1, \ldots, n_k) = (2, \ldots, 2)$. For any unit normal vector uof B^{ℓ} at a point p of B^{ℓ} denote with $\kappa_1(u), \ldots, \kappa_\ell(u)$ the principal curvatures of B^{ℓ} in $H^{n+1}(-1)$ at p with respect to u. Then it follows from section 2 that the principal curvatures $\bar{\kappa}_1, \ldots, \bar{\kappa}_n$ of the shape operator of $T_r(B^{\ell})$ are given by:

(43)
$$\bar{\kappa}_i = \frac{\kappa_i(u) \coth(r) - 1}{\coth(r) - \kappa_i(u)}, \qquad i = 1, \dots, \ell,$$

(44)
$$\bar{\kappa}_{\alpha}(r) = -\coth(r), \qquad \alpha = \ell + 1, \dots, n$$

If $\ell = 0$, then the tubular hypersurface is totally umbilical. So we find from theorem (1) that k = 0 or $k = \frac{n}{2}$ and $T_r(B^{\ell})$ is a geodesic sphere. Thus we are in case (1).

If $\ell = 1$, then from theorem 1 and (43) it follows that we are in one of the following cases:

- $\bar{\kappa}_1 \cot r = -\cot r$, which implies immediately that $\bar{\kappa}_1(u) = 0$ for any unit normal vector u of B^1 in $S^{n+1}(1)$. Then (43) would imply that $\kappa_1(u) = -\tanh(r)$ which gives a contradiction with the fact that $\kappa_1(-u) = -\kappa_1(u)$ since $r \in \mathbb{R}^+_0$.
- $\frac{\kappa_1 \coth r 1}{\coth r \kappa_1} = -2 \coth r$, so we find $\kappa_1 \coth r = 2 \coth^2 r 1$. Because $\kappa_1(-u) = -\kappa_1(u)$ this implies that $\coth^2 r = \frac{1}{2}$ which gives a contradiction since $\coth^2 r$ is always greater than 1.
- $\frac{\kappa_1 \coth r 1}{\coth r \kappa_1} + (-\cot r) = -2 \cot r$, this implies $\coth^2 r = 1$ which gives a contradiction as above.

Thus we see that the case $\ell = 1$ cannot occur.

Suppose now that $\ell \geq 2$, then theorem (1) implies that one of the following cases occur:

(a) for all unit normal vectors u of B^{ℓ} we have

(45)
$$\kappa_i(u) \coth(r) = 1$$
, for all $i \in \{1, \dots \ell\}$
and $\ell = k \le \frac{n}{2}$;

(b) for all unit normal vectors u of B^{ℓ} we have

(46)
$$\bar{\kappa}_1(u) = \dots = \bar{\kappa}_\ell(u) \neq 0,$$

n is even and $k = \ell = \frac{n}{2}$;

(c) for all $i \in \{1, ..., \ell\}$ there exists a $j \in \{1, ..., \ell\}$ such that $i \neq j$ and such that:

(47)
$$\frac{\kappa_i(u)\coth(r)-1}{\coth(r)-\kappa_i(u)}-\coth(r)=\frac{\kappa_j(u)\coth(r)-1}{\coth(r)-\kappa_j(u)};$$

(d) for all $i \in \{1, ..., \ell\}$ there exists a $j \in \{1, ..., \ell\}$ such that $i \neq j$ and such that:

(48)
$$\frac{\kappa_i(u)\coth(r)-1}{\coth(r)-\kappa_i(u)} + \frac{\kappa_j(u)\coth(r)-1}{\coth(r)-\kappa_j(u)} = -\coth(r);$$

(e)
$$\ell = k = 2, n = 4$$
 and

(49)
$$\frac{\kappa_1(u)\coth(r)-1}{\coth(r)-\kappa_1(u)} + \frac{\kappa_2(u)\coth(r)-1}{\coth(r)-\kappa_2(u)} = -2\coth(r).$$

We see at once that (45) and thus case (a) cannot occur since $\kappa_i(-u) = -\kappa_i(u)$. Suppose now that we are in case (b). The condition $\bar{\kappa}_i = \bar{\kappa}_j$ gives us

$$(\kappa_i - \kappa_j)(\coth^2 r - 1) = 0.$$

Because $\operatorname{coth}^2 r > 1$ this implies $\bar{\kappa}_i = \bar{\kappa}_j$ if and only if $\kappa_i = \kappa_j$. This is case (3) of the theorem.

Suppose that we are in case (c). Then from (47), we find

(50)
$$\operatorname{coth}^{3}(r) - 2\kappa_{i}\operatorname{coth}^{2}(r) + \kappa_{i}\kappa_{j}\operatorname{coth}(r) + \kappa_{i} - \kappa_{j} = 0.$$

Because $\kappa_i(-u) = -\kappa_i(u)$ we have

(51)
$$\operatorname{coth}^{3}(r) + \kappa_{i}\kappa_{j}\operatorname{coth}(r) = 0$$
,

(52)
$$-2\kappa_i \coth^2(r) + \kappa_i - \kappa_j = 0.$$

From (51), it follows that $\kappa_i(u)\kappa_j(u) = -\coth^2(r)$ since $\coth(r) \neq 0$. But this gives a contradiction with the same argument as in the Euclidean case because the codimension is at least 2.

Analogously from (48) we find:

(53)
$$(\kappa_i + \kappa_j) \tanh^3(r) - (2 + \kappa_i \kappa_j) \tanh^2(r) + 1 = 0.$$

By switching to -u we get:

(54) $-(\kappa_i + \kappa_j) \tanh^3(r) - (2 + \kappa_i \kappa_j) \tanh^2(r) + 1 = 0.$

This implies that $\kappa_i(u) + \kappa_j(u) = 0$. Substituting this in (53) gives $\kappa_i(u)^2 = 2 - \coth^2(r)$. We can also substitute the other way round, then we find $\kappa_j(u)^2 = 2 - \coth^2(r)$. Thus κ_i must be zero for every $i \in \{1, \ldots, \ell\}$. We see that B^ℓ is totally geodesic. We see also that in this case $r = \coth^{-1}(\sqrt{2})$. Thus we get as principal curvatures for $T_r(B^\ell)$ $\bar{\kappa}_i = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$, $i = 1, \ldots, \ell$ and $\bar{\kappa}_\alpha = -\sqrt{2}$, $\alpha = \ell + 1, \ldots, n$. From theorem (1) it follows that $\ell = 2k$. So we get case (2).

Case (e) cannot occur since similar computations as in case (d) give a contradiction.

The converse can be verified easily.

References

- B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. 60 (1993), 568-578.
- [2] B. Y. Chen, Tubular hypersurfaces satisfying a basic equality., Soochow Journal of Mathematics 20 No. 4 (1994), 569-586.
- B. Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersions, Japan J. Math. 26 (2000), 105-127.
- [4] B. Y. Chen, Strings of Riemannian invariants, inequalities, ideal immersions and their applications, in Third Pacific Rim Geom. Conf., (Intern. Press, Cambridge, MA), (1998), 7-60.
- [5] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157.

Katholieke Universiteit Leuven, Departement Wiskunde Celestijnenlaan 200 B, B-3001 Leuven, Belgium E-mail: johan.fastenakels@wis.kuleuven.be