IDEAL TUBULAR HYPERSURFACES IN REAL SPACE FORMS

JOHAN FASTENAKELS

Abstract

In this article we give a classification of tubular hypersurfaces in real space forms which are $\delta(2,2, \ldots, 2)$-ideal.

1. IDEAL IMMERSIONS

Let M be a Riemannian n-manifold. Denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M, p \in M$. For any orthonormal basis e_{1}, \ldots, e_{n} of the tangent space $T_{p} M$, the scalar curvature τ at p is defined to be

$$
\begin{equation*}
\tau(p)=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right) \tag{1}
\end{equation*}
$$

When L is a 1-dimensional subspace of $T_{p} M$, we put $\tau(L)=0$. If L is a subspace of $T_{p} M$ of dimension $r \geq 2$, we define the scalar curvature $\tau(L)$ of L by

$$
\begin{equation*}
\tau(L)=\sum_{\alpha<\beta} K\left(e_{\alpha} \wedge e_{\beta}\right), \quad 1 \leq \alpha, \beta \leq r \tag{2}
\end{equation*}
$$

where $\left\{e_{1}, \ldots, e_{r}\right\}$ is an orthonormal basis of L.
For an integer $k \geq 0$, denote by $\mathcal{S}(n, k)$ the finite set consisting of unordered k-tuples $\left(n_{1}, \ldots, n_{k}\right)$ of integers ≥ 2 satisfying $n_{1}<n$ and $n_{1}+\cdots+n_{k} \leq n$. Let $\mathcal{S}(n)$ be the union $\cup_{k \geq 0} \mathcal{S}(n, k)$. If $n=2$, we have $k=0$ and $\mathcal{S}(2)=\{\emptyset\}$.

For each $\left(n_{1}, \ldots, n_{k}\right) \in \mathcal{S}(n)$, the invariant $\delta\left(n_{1}, \ldots, n_{k}\right)$ is defined in [3] by:

$$
\begin{equation*}
\delta\left(n_{1}, \ldots, n_{k}\right)(p)=\tau(p)-S\left(n_{1}, \ldots, n_{k}\right)(p) \tag{3}
\end{equation*}
$$

where

$$
S\left(n_{1}, \ldots, n_{k}\right)(p)=\inf \left\{\tau\left(L_{1}\right)+\cdots+\tau\left(L_{k}\right)\right\}
$$

and L_{1}, \ldots, L_{k} run over all k mutually orthogonal subspaces of $T_{p} M$ such that $\operatorname{dim} L_{j}=n_{j}, j=1, \ldots, k$. Clearly, the invariant $\delta(\emptyset)$ is nothing but the scalar curvature τ of M.

[^0]For a given partition $\left(n_{1}, \ldots, n_{k}\right) \in \mathcal{S}(n)$, we put

$$
\begin{align*}
b\left(n_{1}, \ldots, n_{k}\right) & =\frac{1}{2}\left(n(n-1)-\sum_{j=1}^{k} n_{j}\left(n_{j}-1\right)\right) \tag{4}\\
c\left(n_{1}, \ldots, n_{k}\right) & =\frac{n^{2}\left(n+k-1-\sum n_{j}\right)}{2\left(n+k-\sum n_{j}\right)} \tag{5}
\end{align*}
$$

For each real number c and each $\left(n_{1}, \ldots, n_{k}\right) \in \mathcal{S}(n)$, the associated normalized invariant $\Delta_{c}\left(n_{1}, \ldots, n_{k}\right)$ is defined by

$$
\begin{equation*}
\Delta_{c}\left(n_{1}, \ldots, n_{k}\right)=\frac{\delta\left(n_{1}, \ldots, n_{k}\right)-b\left(n_{1}, \ldots, n_{k}\right) c}{c\left(n_{1}, \ldots, n_{k}\right)} \tag{6}
\end{equation*}
$$

We recall the following general result from [3].
Theorem 1. Let M be an n-dimensional submanifold of a real space form $R^{m}(c)$ of constant sectional curvature c. Then for each $\left(n_{1}, \ldots, n_{k}\right) \in \mathcal{S}(n)$ we have

$$
\begin{equation*}
H^{2} \geq \Delta_{c}\left(n_{1}, \ldots, n_{k}\right) \tag{7}
\end{equation*}
$$

where H^{2} is the squared norm of the mean curvature vector.
The equality case of inequality (7) holds at a point $p \in M$ if and only if, with respect to a suitable orthonormal basis $e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}$ at p, the shape operators $A_{r}=A_{e_{r}}, r=n+1, \ldots, m$ of M in $R^{m}(c)$ at p take the following forms:

$$
\begin{align*}
A_{n+1} & =\left(\begin{array}{ccccc}
a_{1} & 0 & 0 & \cdots & 0 \\
0 & a_{2} & 0 & \cdots & 0 \\
0 & 0 & a_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n}
\end{array}\right) \tag{8}\\
A_{r} & =\left(\begin{array}{cccccc}
A_{1}^{r} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & A_{k}^{r} & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right), \quad r=n+2, \ldots, m
\end{align*}
$$

where a_{1}, \ldots, a_{n} satisfy

$$
\begin{align*}
a_{1}+\cdots+a_{n_{1}} & =\cdots=a_{n_{1}+\ldots n_{k-1}+1}+\cdots+a_{n_{1}+\cdots+n_{k}} \tag{10}\\
& =a_{n_{1}+\ldots n_{k}+1}=\cdots=a_{n}
\end{align*}
$$

and each A_{j}^{r} is an $n_{j} \times n_{j}$ submatrix such that

$$
\begin{equation*}
\operatorname{trace}\left(A_{j}^{r}\right)=0, \quad\left(A_{j}^{r}\right)^{t}=A_{j}^{r}, \quad r=n+2, \ldots, m ; \quad j=1, \ldots, k \tag{11}
\end{equation*}
$$

For an isometric immersion $x: M \rightarrow R^{m}(c)$ of a Riemannian n-manifold into $R^{m}(c)$, this theorem implies that

$$
\begin{equation*}
H^{2}(p) \geq \hat{\Delta}_{c}(p) \tag{12}
\end{equation*}
$$

where $\hat{\Delta}_{c}$ denotes the invariant on M defined by

$$
\begin{equation*}
\hat{\Delta}_{c}=\max \left\{\Delta_{c}\left(n_{1}, \ldots, n_{k}\right) \mid\left(n_{1}, \ldots, n_{k}\right) \in \mathcal{S}(n)\right\} . \tag{13}
\end{equation*}
$$

In general, there do not exist direct relations between these new invariants.
Applying inequality (12) B. Y. Chen introduced in [4] the notion of ideal immersions as follows.

Definition 1. An isometric immersion $x: M \rightarrow R^{m}(c)$ is called an ideal immersion if the equality case of (12) holds at every point $p \in M$. An isometric immersion is called $\left(n_{1}, \ldots, n_{k}\right)$-ideal if it satisfies $H^{2}=\Delta_{c}\left(n_{1}, \ldots, n_{k}\right)$ identically for $\left(n_{1}, \ldots, n_{k}\right) \in \mathcal{S}(n)$.

Physical Interpretation of Ideal Immersions. An isometric immersion x : $M \rightarrow R^{m}(c)$ is ideal means that M receives the least possible amount of tension (given by $\hat{\Delta}_{c}(p)$) at each point $p \in M$ from the ambient space. This is due to (12) and the well-known fact that the mean curvature vector field is exactly the tension field for isometric immersions. Therefore, the squared mean curvature $H^{2}(p)$ at a point $p \in M$ simply measures the amount of tension M is receiving from the ambient space $R^{m}(c)$ at that point.

2. Tubular hypersurfaces

Recall the definition of the exponential mapping exp of a Riemannian manifold M. Denote by $\gamma_{v}, v \in T_{p} M$, the geodesic of M through p such that $\gamma^{\prime}(p)=v$. Then we have that

$$
\exp : T M \rightarrow M:(p, v) \mapsto \exp _{p}(v)=\gamma_{v}(1)
$$

for every $v \in T_{p} M$ for which γ_{v} is defined on $[0,1]$.
Let B^{ℓ} be a topologically imbedded ℓ-dimensional $(\ell<n)$ submanifold in an $n+1$-dimensional real space form $R^{n+1}(c)$. Denote by $\nu_{1}\left(B^{\ell}\right)$ the unit normal subbundle of the normal bundle $T^{\perp}\left(B^{\ell}\right)$ of B^{ℓ} in $R^{n+1}(c)$. Then, for a sufficiently small $r>0$, the mapping

$$
\psi: \nu_{1}\left(B^{\ell}\right) \rightarrow R^{n+1}(c):(p, e) \mapsto \exp _{\nu}(r e)
$$

is an immersion which is called the tubular hypersurface with radius r about B^{ℓ}. We denote it by $T_{r}\left(B^{\ell}\right)$.

In this article, we consider $r>0$ such that the map is an immersion only. Thus, the shape operator of the tubular hypersurface $T_{r}\left(B^{\ell}\right)$ is a well defined self-adjoint linear operator at each point.

Now take an arbitrary point p in B^{ℓ} and a vector u in $\nu_{1}\left(B^{\ell}\right)$. Denote with $\kappa_{1}(u), \ldots, \kappa_{\ell}(u)$ the eigenvalues of the shape operator of B^{ℓ} in $R^{n+1}(c)$ with respect to u at the point p. Then we can give an expression for the principal curvatures $\bar{\kappa}_{1}, \ldots, \bar{\kappa}_{m}$ of the tubular hypersurface in the point $\exp (p, u)$. We consider three cases.
(i) $c=0$. In the Euclidean case, we find

$$
\begin{align*}
\bar{\kappa}_{i} & =\frac{\kappa_{i}(u)}{1-r \kappa_{i}(u)}, & & i=1, \ldots, \ell \tag{14}\\
\bar{\kappa}_{\alpha}(r) & =-\frac{1}{r}, & & \alpha=\ell+1, \ldots, n . \tag{15}
\end{align*}
$$

(ii) $c=1$. For the unit sphere, we can simplify the expressions by denoting $\kappa_{1}(u)=\tan \left(\theta_{1}\right), \ldots, \kappa_{\ell}(u)=\tan \left(\theta_{\ell}\right)$ with $-\frac{\pi}{2}<\theta_{i}<\frac{\pi}{2}$. Then we have

$$
\begin{align*}
\bar{\kappa}_{i} & =\tan \left(\theta_{i}+r\right), & & i=1, \ldots, \ell \tag{16}\\
\bar{\kappa}_{\alpha}(r) & =-\cot (r), & & \alpha=\ell+1, \ldots, n \tag{17}
\end{align*}
$$

(iii) $c=-1$. In the hyperbolic space we have

$$
\begin{array}{rlrl}
\bar{\kappa}_{i} & =\frac{\kappa_{i}(u) \operatorname{coth}(r)-1}{\operatorname{coth}(r)-\kappa_{i}(u)}, & & i=1, \ldots, \ell, \\
\bar{\kappa}_{\alpha}(r) & =-\operatorname{coth}(r), & \alpha=\ell+1, \ldots, n . \tag{19}
\end{array}
$$

More details can be found in [2].

3. $\delta_{(2,2 \ldots, 2)}$-IDEAL TUBULAR HYPERSURFACES

In this section we will give a complete classification of tubular hypersurfaces in real space forms for which the immersion defined in the previous section is a $\delta_{(2,2 \ldots, 2)}$-ideal immersion. We again consider three cases.

In the Euclidean space \mathbb{E}^{n+1}.
Theorem 2. A tubular hypersurface $T_{r}\left(B^{\ell}\right)$ in $\mathbb{E}^{n+1}(n>2)$ satisfies equality in (7) for k-tuple $\left(n_{1}, \ldots, n_{k}\right)=(2, \ldots, 2)$ if and only if one of the following three cases occurs:
(1) $\ell=0$ and the tubular hypersurface is a hypersphere.
(2) $\ell=k \in\left\{1, \ldots,\left[\frac{n}{2}\right]\right\}$ and the tubular hypersurface is an open part of a spherical hypercylinder: $\mathbb{E}^{\ell} \times S^{n-\ell}(r)$.
(3) n is even, $\ell=k=\frac{n}{2}$ and B^{ℓ} is totally umbilical.

Proof. Let $\kappa_{1}(u), \ldots, \kappa_{\ell}(u)$ be the eigenvalues of the shape operator of B^{ℓ} in \mathbb{E}^{n+1} with respect to a unit normal vector u at p. Then we find, according to the previous section, that the principal curvatures of the tubular hypersurface $T_{r}(B)$
at $p+r u$ are given by

$$
\begin{align*}
\bar{\kappa}_{i} & =\frac{\kappa_{i}(u)}{1-r \kappa_{i}(u)}, & & i=1, \ldots, \ell, \tag{20}\\
\bar{\kappa}_{\alpha}(r) & =-\frac{1}{r}, & & \alpha=\ell+1, \ldots, n . \tag{21}
\end{align*}
$$

Suppose now that $T_{r}(B)$ satisfies equality in (7) for a k-tuple $\left(n_{1}, \ldots, n_{k}\right)=$ $(2, \ldots, 2)$.

If $\ell=0$, the tubular hypersurface is an open part of an hypersphere. This gives us the first case in the theorem.

If $\ell=1$, the multiplicity of $-\frac{1}{r}$ is $n-1$. From (8) and (10) we find the following three cases:

- $\bar{\kappa}_{1}+\left(-\frac{1}{r}\right)=-\frac{1}{r}$, which implies that $\bar{\kappa}_{1}=0$.
- $\frac{\kappa_{1}}{1-r \kappa_{1}}=-\frac{1}{r}-\frac{1}{r}=-\frac{2}{r}$, so we have that $r \kappa_{1}=2$. This gives a contradiction with the fact that $\kappa_{1}(-u)=-\kappa_{1}(u)$.
- $\frac{\kappa_{1}}{1-r \kappa_{1}}+\left(-\frac{1}{r}\right)=-\frac{2}{r}$, from which we also get a contradiction.

So we see that $\bar{\kappa}_{1}=0$ and that $k=1$. Thus B^{1} is an open part of a line segment and the tubular hypersurface is an open part of $\mathbb{E}^{1} \times S^{n-1}(r)$. This gives a special case of case (2) of the theorem.

Suppose now that $\ell \geq 2$, then (8) and (10) imply that we have one of the following five cases:
(a) for all unit normal vectors u of B^{ℓ}, we have

$$
\begin{equation*}
\kappa_{1}(u)=\cdots=\kappa_{\ell}(u)=0 \tag{22}
\end{equation*}
$$

and $\ell=k \leq \frac{n}{2}$;
(b) for all unit normal vectors u of B^{ℓ}, we have

$$
\begin{equation*}
\bar{\kappa}_{1}(u)=\cdots=\bar{\kappa}_{\ell}(u) \neq 0 \tag{23}
\end{equation*}
$$

n is even and $k=\ell=\frac{n}{2}$;
(c) for all $i \in\{1, \ldots, \ell\}$ there exists a $j \in\{1, \ldots, \ell\}$ such that $i \neq j$ and such that:

$$
\begin{equation*}
\frac{\kappa_{i}(u)}{1-r \kappa_{i}(u)}+\frac{\kappa_{j}(u)}{1-r \kappa_{j}(u)}=-\frac{1}{r} ; \tag{24}
\end{equation*}
$$

(d) for all $i \in\{1, \ldots, \ell\}$ there exists a $j \in\{1, \ldots, \ell\}$ such that $i \neq j$ and such that:

$$
\begin{equation*}
\frac{\kappa_{i}(u)}{1-r \kappa_{i}(u)}-\frac{1}{r}=\frac{\kappa_{j}(u)}{1-r \kappa_{j}(u)} \tag{25}
\end{equation*}
$$

(e) $\ell=k=2, n=4$ and

$$
\begin{equation*}
\frac{\kappa_{1}(u)}{1-r \kappa_{1}(u)}+\frac{\kappa_{2}(u)}{1-r \kappa_{2}(u)}=-\frac{2}{r} . \tag{26}
\end{equation*}
$$

Case (a) implies that B^{ℓ} is totally geodesic. Thus the tubular hypersurface is an open part of a spherical hypercylinder $\mathbb{E}^{\ell} \times S^{n-\ell}(r)$, which gives case (2) of the theorem.

Case (b) gives us case (3) of the theorem because $\bar{\kappa}_{i}=\bar{\kappa}_{j}$ if and only if $\kappa_{i}=\kappa_{j}$. Next we want to proof that cases (c), (d) and (e) cannot occur.
From (24), we find that

$$
\begin{equation*}
1=r^{2} \kappa_{i}(u) \kappa_{j}(u) \tag{27}
\end{equation*}
$$

for every u. This is impossible since the codimension of B^{ℓ} in \mathbb{E}^{n+1} is at least 2 . We can see this in the following way. Because the codimension is at least 2, we can take a plane in the normal space which contains u. If $\kappa_{i}(u)=0$, then we have a contradiction at once. Otherwise $\kappa_{i}(u)$ is strict positive or strict negative. Then we have that $\kappa_{i}(-u)$ is strict negative or strict positive respectively. Now we rotate u in the chosen plane to $-u$. Because the principal curvature is a continuous function, there exists a normal vector ξ for which $\kappa_{i}(\xi)=0$. Putting ξ in equation (27) gives a contradiction.

From (25) we find analogously that

$$
\begin{equation*}
1-2 r \kappa_{i}(u)-r^{2} \kappa_{i}(u) \kappa_{j}(u)=0 \tag{28}
\end{equation*}
$$

Because $\kappa_{i}(-u)=-\kappa_{i}(u)$ we have also that

$$
\begin{equation*}
1+2 r \kappa_{i}(u)-r^{2} \kappa_{i}(u) \kappa_{j}(u)=0 \tag{29}
\end{equation*}
$$

Combining (28) and (29) then gives

$$
4 r \kappa_{i}(u)=0
$$

which gives a contradiction unless all the principal curvatures of B^{ℓ} are zero. But then we are again in case (a).

Similarly case (e) gives a contradiction since we find from (26) that $\kappa_{1}+\kappa_{2}=\frac{2}{r}$. The converse is trivial.

In the sphere $S^{n+1}(1)$. First we recall the definition of an austere submanifold in the sense of Harvey and Lawson [5].
Definition 2. We call a submanifold M of a Riemannian manifold \widetilde{M} austere if for every normal $\xi \in T^{\perp} M$ the set of all eigenvalues of the shape operator counted with multiplicities is invariant under multiplication with -1 .
Theorem 3. A tubular hypersurface $T_{r}\left(B^{\ell}\right)$ in $S^{n+1}(1)(n>2)$ satisfies equality in (7) for a k-tuple $\left(n_{1}, \ldots, n_{k}\right)=(2, \ldots, 2)$ if and only if one of the following four cases occur:
(1) $\ell=0$ and the tubular hypersurface is a geodesic sphere with radius $r \in$ $] 0, \pi[$.
(2) $n>\ell \geq \frac{n}{2}, k=n-\ell, r=\frac{\pi}{2}$ and B^{ℓ} is a totally umbilical submanifold in $S^{n+1}(1)$.
(3) $\ell=2 k<n, r=\frac{\pi}{2}$ and B^{ℓ} is an austere submanifold in $S^{n+1}(1)$.
(4) n is even, $\ell=k=\frac{n}{2}$ and B^{ℓ} is totally umbilical.

Proof. Let B^{ℓ} be an ℓ-dimensional submanifold inbedded in $S^{n+1}(1)$. For every unit normal vector u of B^{ℓ} at a point p we denote by $\kappa_{1}(u), \ldots, \kappa_{\ell}(u)$ the eigenvalues of the shape operator of B^{ℓ} in $S^{n+1}(1)$ with respect to u. Suppose now that

$$
\begin{equation*}
\kappa_{i}(u)=\tan \left(\theta_{i}\right), \quad-\frac{\pi}{2}<\theta_{i}<\frac{\pi}{2}, \quad 1 \leq i \leq \ell \tag{30}
\end{equation*}
$$

Then we know from the previous section that the principal curvatures of the tubular hypersurface $T_{r}\left(B^{\ell}\right)$ in $S^{n+1}(1)$ at $\cos (r) p+\sin (r) u$ are given by

$$
\begin{align*}
\bar{\kappa}_{i} & =\tan \left(\theta_{i}+r\right), \quad i=1, \ldots, \ell, \tag{31}\\
\bar{\kappa}_{\alpha}(r) & =-\cot (r), \quad \alpha=\ell+1, \ldots, n .
\end{align*}
$$

Suppose that $T_{r}\left(B^{\ell}\right)$ satisfies (7) for a k-tupple $\left(n_{1}, \ldots, n_{k}\right)=(2, \ldots, 2)$.
If $\ell=0$, the tubular hypersurface is totally umbilical in $S^{n+1}(1)$. Then theorem 1 implies that $T_{r}\left(B^{\ell}\right)$ with radius $\left.r \in\right] 0, \pi[$ satisfies (7) for a k-tuple $\left(n_{1}, \ldots, n_{k}\right)=(2, \ldots, 2)$ if and only if $k=0$ or $k=\frac{n}{2}$. So we find that $T_{r}\left(B^{\ell}\right)$ is a geodesic sphere. This gives us case (1).

If $\ell=1$, then (8) and (10) imply that we are in one of the following cases:

- $\frac{\kappa_{1}+\tan r}{1-\kappa_{1} \tan r}+(-\cot (r))=-\cot (r)$, which implies that $\kappa_{1}(u)=-\tan (r)$ for every unit normal vector u of B^{1} in $S^{n+1}(1)$. This gives a contradiction with the fact that $\kappa_{1}(-u)=-\kappa_{1}(u)$.
- $\frac{\kappa_{1}+\tan r}{1-\kappa_{1} \tan r}=-2 \cot r$, so we find $\kappa_{1} \tan r=2+\tan ^{2} r$. Because $\kappa_{1}(-u)=$ $-\kappa_{1}(u)$ we have $2+\tan ^{2} r=0$ which also gives a contradiction.
- $\frac{\kappa_{1}+\tan r}{1-\kappa_{1} \tan r}+(-\cot r)=-2 \cot r$, which becomes $\tan ^{2} r=-1$. This clearly also gives a contradiction.
In each case we get a contradiction, so $\ell=1$ cannot occur.
Suppose now that $\ell \geq 2$, then theorem 1 implies that we are in one of the following cases:
(a) for all unit normal vectors u of B^{ℓ} we have that

$$
\begin{equation*}
\tan \left(\theta_{j}+r\right)=0, \quad j=1, \ldots, \ell \tag{32}
\end{equation*}
$$

and $\ell=k \leq \frac{n}{2}$;
(b) for any unit normal vector u of B^{ℓ} we have that

$$
\begin{equation*}
\tan \left(\theta_{1}+r\right)=\cdots=\tan \left(\theta_{\ell}+r\right) \neq 0 \tag{33}
\end{equation*}
$$

n is even and $k=\ell=\frac{n}{2}$;
(c) for all $i \in\{1, \ldots, \ell\}$ there exists a $j \in\{1, \ldots, \ell\}$ such that $i \neq j$ and such that:

$$
\begin{equation*}
\tan \left(\theta_{i}+r\right)-\cot (r)=\tan \left(\theta_{j}+r\right) ; \tag{34}
\end{equation*}
$$

(d) for all $i \in\{1, \ldots, \ell\}$ there exists a $j \in\{1, \ldots, \ell\}$ such that $i \neq j$ and such that:

$$
\begin{equation*}
\tan \left(\theta_{i}+r\right)+\tan \left(\theta_{j}+r\right)=-\cot (r) \tag{35}
\end{equation*}
$$

(e) $\ell=k=2, n=4$ and

$$
\begin{equation*}
\tan \left(\theta_{1}+r\right)+\tan \left(\theta_{2}+r\right)=-2 \cot (r) \tag{36}
\end{equation*}
$$

Suppose now that we are in case (a) and thus (32) holds. Then we see that $\kappa_{j}(u) \cot (r)+1=0$ for any unit normal vector u of B^{ℓ} in $S^{n+1}(1)$. This is impossible since $\kappa_{j}(-u)=-\kappa_{j}(u)$.

If case (b) holds, then we get case (4) of the theorem, since

$$
\frac{\kappa_{i}+\tan r}{1-\kappa_{i} \tan r}=\frac{\kappa_{j}+\tan r}{1-\kappa_{j} \tan r}
$$

implies that

$$
\left(\kappa_{i}-\kappa_{j}\right)\left(1+\tan ^{2} r\right)=0 .
$$

Suppose now that we are in case (c). Then we have from (34) that:

$$
\begin{equation*}
\cot ^{3}(r)-2 \kappa_{i} \cot ^{2}(r)+\kappa_{i} \kappa_{j} \cot (r)+\left(\kappa_{j}-\kappa_{i}\right)=0 \tag{37}
\end{equation*}
$$

We use again the fact that $\kappa_{i}(-u)=-\kappa_{i}(u)$ and therefore we find

$$
\begin{equation*}
\cot (r)\left(\cot ^{2}(r)+\kappa_{i}(u) \kappa_{j}(u)\right)=0 \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \kappa_{i}(u) \cot ^{2}(r)+\kappa_{i}(u)-\kappa_{j}(u)=0 . \tag{39}
\end{equation*}
$$

If $\cot (r) \neq 0$, then (38) implies that $\cot ^{2}(r)=-\kappa_{i}(u) \kappa_{j}(u)$. Because $\ell<n$ we get a contradiction with the same argument as in the preceding proof.

Thus we have $\cot (r)=0$, and thus $r=\frac{\pi}{2}$. From (39) we also see that $\kappa_{i}(u)=$ $\kappa_{j}(u)$. Without loss of generality, we may assume
$a_{1}=\mu, a_{2}=0, a_{3}=\mu, a_{4}=0, \ldots, a_{2 k-1}=\mu, a_{2 k}=0, a_{2 k+1}=\mu, \ldots, a_{n}=\mu$ where $\mu=-\frac{1}{\kappa_{1}}$ and a_{1}, \ldots, a_{n} are given by theorem (1).

Furthermore we see that $\tan \left(\theta_{i}+r\right) \neq 0$ since $-\frac{\pi}{2}<\theta_{i}<\frac{\pi}{2}$ and from (31) we find that $\cot (r)$ has multiplicity $n-\ell$. So theorem (1) implies that $\ell \geq \frac{n}{2}$ and $\tan \left(\theta_{1}+r\right)=\cdots=\tan \left(\theta_{\ell}+r\right)$. This implies also that $\tan \left(\theta_{1}\right)=\cdots=\tan \left(\theta_{\ell}\right)$ and thus that B^{ℓ} is totally umbilical. Moreover we see that theorem (1) implies that $k=n-\ell$. This gives rise to case (2).

Suppose now that we are in case (d) and thus that (35) holds. Then we have

$$
\begin{equation*}
\cot ^{3}(r)+2 \cot (r)-\kappa_{i} \kappa_{j} \cot (r)-\left(\kappa_{i}+\kappa_{j}\right)=0 \tag{40}
\end{equation*}
$$

If we use that $\kappa_{i}(-u)=-\kappa_{i}(u)$ we find

$$
\begin{equation*}
\cot (r)\left(\cot ^{2}(r)+2-\kappa_{i} \kappa_{j}\right)=0 \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa_{i}+\kappa_{j}=0 \tag{42}
\end{equation*}
$$

Like in case (c) we get a contradiction if $\cot (r) \neq 0$. So we find $\cot (r)=0$ and thus $r=\frac{\pi}{2}$. Moreover we have $\kappa_{i}=-\kappa_{j}$. Without loss of generality, we may assume

$$
a_{1}=\tan \left(\theta_{1}+r\right)=-\frac{1}{\kappa_{1}}, \quad a_{2}=\tan \left(\theta_{2}+r\right)=-\frac{1}{\kappa_{2}}, \ldots, a_{n}=-\cot (r)=0
$$

We also know that $\tan \left(\theta_{j}+r\right) \neq 0$ (since $-\frac{\pi}{2}<\theta_{j}<\frac{\pi}{2}$). Thus (31) and theorem 1 imply that B^{ℓ} is an austere submanifold in $S^{n+1}(1)$; in particular ℓ is even. This gives case (3).

A similar computation as in case (d) shows that case (e) gives a contradiction. The converse can be verified easily.

In the hyperbolic space $H^{n+1}(-1)$.

Theorem 4. A tubular hypersurface $T_{r}\left(B^{\ell}\right)$ in $H^{n+1}(-1)(n>2)$ satisfies equality in (7) for a k-tuple $\left(n_{1}, \ldots, n_{k}\right)=(2, \ldots, 2)$ if and only if we are in one of the following three cases:
(1) $\ell=0$ and the tubular hypersurface is a geodesic sphere with radius $r>0$.
(2) $\ell=2 k, B^{\ell}$ is totally geodesic and $r=\operatorname{coth}^{-1}(\sqrt{2})$.
(3) n is even, $\ell=k=\frac{n}{2}$ and B^{ℓ} is totally umbilical.

Proof. Let B^{ℓ} be an ℓ-dimensional submanifold in the hyperbolic space $H^{n+1}(-1)$ and $T_{r}\left(B^{\ell}\right)$ be the tubular hypersurface of B^{ℓ} in $H^{n+1}(-1)$. Suppose that $T_{r}\left(B^{\ell}\right)$ satisfies (7) for a k-tuple $\left(n_{1}, \ldots, n_{k}\right)=(2, \ldots, 2)$. For any unit normal vector u of B^{ℓ} at a point p of B^{ℓ} denote with $\kappa_{1}(u), \ldots, \kappa_{\ell}(u)$ the principal curvatures of B^{ℓ} in $H^{n+1}(-1)$ at p with respect to u. Then it follows from section 2 that the principal curvatures $\bar{\kappa}_{1}, \ldots, \bar{\kappa}_{n}$ of the shape operator of $T_{r}\left(B^{\ell}\right)$ are given by:

$$
\begin{align*}
\bar{\kappa}_{i} & =\frac{\kappa_{i}(u) \operatorname{coth}(r)-1}{\operatorname{coth}(r)-\kappa_{i}(u)}, & & i=1, \ldots, \ell, \tag{43}\\
\bar{\kappa}_{\alpha}(r) & =-\operatorname{coth}(r), & \alpha & =\ell+1, \ldots, n . \tag{44}
\end{align*}
$$

If $\ell=0$, then the tubular hypersurface is totally umbilical. So we find from theorem (1) that $k=0$ or $k=\frac{n}{2}$ and $T_{r}\left(B^{\ell}\right)$ is a geodesic sphere. Thus we are in case (1).

If $\ell=1$, then from theorem 1 and (43) it follows that we are in one of the following cases:

- $\bar{\kappa}_{1}-\cot r=-\cot r$, which implies immediately that $\bar{\kappa}_{1}(u)=0$ for any unit normal vector u of B^{1} in $S^{n+1}(1)$. Then (43) would imply that $\kappa_{1}(u)=$ $-\tanh (r)$ which gives a contradiction with the fact that $\kappa_{1}(-u)=-\kappa_{1}(u)$ since $r \in \mathbb{R}_{0}^{+}$.
- $\frac{\kappa_{1} \operatorname{coth} r-1}{\operatorname{coth} r-\kappa_{1}}=-2 \operatorname{coth} r$, so we find $\kappa_{1} \operatorname{coth} r=2 \operatorname{coth}^{2} r-1$. Because $\kappa_{1}(-u)=-\kappa_{1}(u)$ this implies that $\operatorname{coth}^{2} r=\frac{1}{2}$ which gives a contradiction since $\operatorname{coth}^{2} r$ is always greater than 1.
- $\frac{\kappa_{1} \operatorname{coth} r-1}{\text { coth } r-\kappa_{1}}+(-\cot r)=-2 \cot r$, this implies $\operatorname{coth}^{2} r=1$ which gives a contradiction as above.

Thus we see that the case $\ell=1$ cannot occur.
Suppose now that $\ell \geq 2$, then theorem (1) implies that one of the following cases occur:
(a) for all unit normal vectors u of B^{ℓ} we have

$$
\begin{equation*}
\kappa_{i}(u) \operatorname{coth}(r)=1, \quad \text { for all } i \in\{1, \ldots \ell\} \tag{45}
\end{equation*}
$$

and $\ell=k \leq \frac{n}{2}$;
(b) for alle unit normal vectors u of B^{ℓ} we have

$$
\begin{equation*}
\bar{\kappa}_{1}(u)=\cdots=\bar{\kappa}_{\ell}(u) \neq 0, \tag{46}
\end{equation*}
$$

n is even and $k=\ell=\frac{n}{2}$;
(c) for all $i \in\{1, \ldots, \ell\}$ there exists a $j \in\{1, \ldots, \ell\}$ such that $i \neq j$ and such that:

$$
\begin{equation*}
\frac{\kappa_{i}(u) \operatorname{coth}(r)-1}{\operatorname{coth}(r)-\kappa_{i}(u)}-\operatorname{coth}(r)=\frac{\kappa_{j}(u) \operatorname{coth}(r)-1}{\operatorname{coth}(r)-\kappa_{j}(u)} \tag{47}
\end{equation*}
$$

(d) for all $i \in\{1, \ldots, \ell\}$ there exists a $j \in\{1, \ldots, \ell\}$ such that $i \neq j$ and such that:

$$
\begin{equation*}
\frac{\kappa_{i}(u) \operatorname{coth}(r)-1}{\operatorname{coth}(r)-\kappa_{i}(u)}+\frac{\kappa_{j}(u) \operatorname{coth}(r)-1}{\operatorname{coth}(r)-\kappa_{j}(u)}=-\operatorname{coth}(r) \tag{48}
\end{equation*}
$$

(e) $\ell=k=2, n=4$ and

$$
\begin{equation*}
\frac{\kappa_{1}(u) \operatorname{coth}(r)-1}{\operatorname{coth}(r)-\kappa_{1}(u)}+\frac{\kappa_{2}(u) \operatorname{coth}(r)-1}{\operatorname{coth}(r)-\kappa_{2}(u)}=-2 \operatorname{coth}(r) . \tag{49}
\end{equation*}
$$

We see at once that (45) and thus case (a) cannot occur since $\kappa_{i}(-u)=-\kappa_{i}(u)$.
Suppose now that we are in case (b). The condition $\bar{\kappa}_{i}=\bar{\kappa}_{j}$ gives us

$$
\left(\kappa_{i}-\kappa_{j}\right)\left(\operatorname{coth}^{2} r-1\right)=0 .
$$

Because $\operatorname{coth}^{2} r>1$ this implies $\bar{\kappa}_{i}=\bar{\kappa}_{j}$ if and only if $\kappa_{i}=\kappa_{j}$. This is case (3) of the theorem.

Suppose that we are in case (c). Then from (47), we find

$$
\begin{equation*}
\operatorname{coth}^{3}(r)-2 \kappa_{i} \operatorname{coth}^{2}(r)+\kappa_{i} \kappa_{j} \operatorname{coth}(r)+\kappa_{i}-\kappa_{j}=0 \tag{50}
\end{equation*}
$$

Because $\kappa_{i}(-u)=-\kappa_{i}(u)$ we have

$$
\begin{align*}
& \operatorname{coth}^{3}(r)+\kappa_{i} \kappa_{j} \operatorname{coth}(r)=0 \tag{51}\\
& -2 \kappa_{i} \operatorname{coth}^{2}(r)+\kappa_{i}-\kappa_{j}=0 \tag{52}
\end{align*}
$$

From (51), it follows that $\kappa_{i}(u) \kappa_{j}(u)=-\operatorname{coth}^{2}(r)$ since $\operatorname{coth}(r) \neq 0$. But this gives a contradiction with the same argument as in the Euclidean case because the codimension is at least 2 .

Analogously from (48) we find:

$$
\begin{equation*}
\left(\kappa_{i}+\kappa_{j}\right) \tanh ^{3}(r)-\left(2+\kappa_{i} \kappa_{j}\right) \tanh ^{2}(r)+1=0 . \tag{53}
\end{equation*}
$$

By switching to $-u$ we get:

$$
\begin{equation*}
-\left(\kappa_{i}+\kappa_{j}\right) \tanh ^{3}(r)-\left(2+\kappa_{i} \kappa_{j}\right) \tanh ^{2}(r)+1=0 \tag{54}
\end{equation*}
$$

This implies that $\kappa_{i}(u)+\kappa_{j}(u)=0$. Substituting this in (53) gives $\kappa_{i}(u)^{2}=$ $2-\operatorname{coth}^{2}(r)$. We can also substitute the other way round, then we find $\kappa_{j}(u)^{2}=$ $2-\operatorname{coth}^{2}(r)$. Thus κ_{i} must be zero for every $i \in\{1, \ldots, \ell\}$. We see that B^{ℓ} is totally geodesic. We see also that in this case $r=\operatorname{coth}^{-1}(\sqrt{2})$. Thus we get as principal curvatures for $T_{r}\left(B^{\ell}\right) \bar{\kappa}_{i}=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}, i=1, \ldots, \ell$ and $\bar{\kappa}_{\alpha}=-\sqrt{2}, \alpha=$ $\ell+1, \ldots, n$. From theorem (1) it follows that $\ell=2 k$. So we get case (2).

Case (e) cannot occur since similar computations as in case (d) give a contradiction.

The converse can be verified easily.

References

[1] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. 60 (1993), 568-578.
[2] B. Y. Chen, Tubular hypersurfaces satisfying a basic equality., Soochow Journal of Mathematics 20 No. 4 (1994), 569-586.
[3] B. Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersions, Japan J. Math. 26 (2000), 105-127.
[4] B. Y. Chen, Strings of Riemannian invariants, inequalities, ideal immersions and their applications, in Third Pacific Rim Geom. Conf., (Intern. Press, Cambridge, MA), (1998), 7-60.
[5] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157.

Katholieke Universiteit Leuven, Departement Wiskunde
Celestijnenlaan 200 B, B-3001 Leuven, Belgium
E-mail: johan.fastenakels@wis.kuleuven.be

[^0]: 2000 Mathematics Subject Classification: 53B25.
 Key words and phrases: tubular hypersurfaces, ideal immersion, real space form. The author is Research assistant of the Research Foundation - Flanders (FWO).
 Received April 28, 2006.

