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GENERALIZED VERMA MODULE HOMOMORPHISMS

IN SINGULAR CHARACTER

PETER FRANEK

Abstract. In this paper we study invariant differential operators on mani-
folds with a given parabolic structure. The model for the parabolic geometry
is the quotient of the orthogonal group by a maximal parabolic subgroup
corresponding to crossing of the k-th simple root of the Dynkin diagram. In
particular, invariant differential operators discussed in the paper correspond
(in a flat model) to the Dirac operator in several variables.

1. Introduction

1.1. Definitions and notation. Let G be a real or complex semisimple Lie
group, P a parabolic subgroup of G, g and p their Lie algebras. Then p is a
parabolic subalgebra of g. We fix a Cartan subalgebra h of g and a set of positive
roots Φ+ for (g, h). Let Φ = Φ+ ∪−Φ+ be the set of all roots. Because h ⊂ p, h is
a Cartan subalgebra for p as well and there is a set of roots Φp ⊂ Φ so that the cor-
responding root spaces are contained in p. Let W be the Weyl groups associated
to the triple (g, h, Φ+). The choice of the parabolic subalgebra p ⊂ g determines
a gradation g = ⊕k

i=−kgk with p = ⊕i≥0gi. Let g− := ⊕i<0gi and p+ := ⊕i>0(gi).
We say that an element of µ ∈ h∗ is P -dominant, resp. p-dominant, if it is a

highest weight of an irreducible finite dimensional representation of P , resp. p.
Such a representation is unique up to an isomorphism and will be denoted by Vµ.
Similarly, we define G- and g-dominance. A nonzero highest weight vector in Vλ

will be denoted by vλ. Note, that µ is p-dominant iff for each α ∈ ∆p µ(Hα) ∈ Z+
0 ,

where Hα is the coroot corresponding to α. Each P -dominant weight µ is also p

dominant and the P -module Vµ is a p-module as well.

Let P++
p ⊂ h∗ be the set of all p-dominant elements and P++

P the set of P -
dominant elements. The homogenous space G/P is a principal fiber bundle and
for each µ ∈ P++

P , there is an associated vector bundle Vµ := G×P Vµ. The group
G has a natural left action on Vµ and on its sections Γ(Vµ) (we consider smooth
sections in case of real lie groups G, P and holomorphic sections in the complex
case).

The paper is in final form and no version of it will be submitted elsewhere.
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An invariant differential operator of order k is a map

D : Γ(Vλ) → Γ(Vµ)

that commutes with the natural G-action on sections and D(s)(x) depends only
on derivations of s in x up to order k.

1.2. Invariant operators and generalized Verma modules. Let U(g) resp.
U(p) be the universal enveloping algebra of g resp. p. For each P -dominant weight
µ, Vµ is also a representation of U(p) and we define the generalized Verma module

Mp(µ) := U(g) ⊗U(p) Vµ

where the left g-action is simply the left multiplication in U(g). As a g−-module
(and also g0-module), Mp(µ) ≃ U(g−) ⊗ Vµ.

To each linear invariant differential operator of order k we can assign a map
φ : J k

eP (Vλ) → Vµ, jk
eP s 7→ D(s)(eP ), where J k

eP is the space of k-jets in the
point eP ∈ G/P and the fiber in Vµ over eP is identified with Vµ via [e, v]P 7→ v.
The space J k

eP can be given a structure of P -module in a natural way, so that φ
is a P -homomorphism. Moreover, there is a 1 − 1 correspondence between such
operators of order ≤ k and HomP (J k

eP (Vλ), Vµ). Each section s ∈ Γ(Vλ) can be
represented by a P -equivariant function f ∈ C∞(G, Vλ)P . The space J k

eP is dual
to Uk(g) ⊗U(p) V∗

λ, (Uk(g−) is the k-th filtration of U(g)) and the duality is given
by

(1) 〈Y1 . . . Yl ⊗ A, jk
e f〉 = A

(

(LY1
. . . LYl

f)(e)
)

for l ≤ k, A ∈ V∗
λ, Yj ∈ g, LYj

the derivation with respect to the left invariant
vector fields given by Yj .

It follows that there is a natural duality between invariant linear differential
operators D : Γ(Vλ) → Γ(Vµ) of any finite order and (g, P )-homomorphisms of
generalized Verma modules Mp(V

∗
µ) → Mp(V

∗
λ) (for details, see [1], [2]).

1.3. Homomorphisms of generalized Verma modules. Let us define the
affine action of the Weyl groups by w·µ := w(µ+δ)−δ, where δ := 1/2

∑

β∈Φ+ β. A

necessary condition for existence of a nonzero g-homomorphism Mp(µ) → Mp(λ)
is that µ = w · λ for some w ∈ W .

The Weyl orbit of λ + δ (and µ + δ) contains a unique dominant weight. The
Weyl orbit is called regular if this weight is in the interior of the dominant Weyl
chamber and singular otherwise. Writing this dominant weight as λ̃+δ, regularity
is equivalent to the fact that λ̃ is g-dominant. In the singular case, λ̃ need not
even have to be p-dominant.

There is a subset W p of W of elements that take g-dominant elements to p-
dominant elements. The Hasse diagram for (g, p) is the set W p of vertices so that
there is an arrow w → w′ if and only if w = sβw′ (root reflection) for some β ∈ Φ+

and the length l(w′) = l(w) + 1.



SINGULAR GENERALIZED VERMA MODULE HOMOMORPHISMS 231

2. Dirac operator in the parabolic setting

2.1. Example in low dimension. Let us consider a homogeneous space G/P

of type × ◦
�◦

�◦, i.e. g = so(8, C), and p consists of the Cartan subalgebra and

those root spaces, the determining roots of which could be written as a linear
combination of simple roots having nonnegative coefficient in the first simple root
α1. The pair g, p determines a gradation g = g−1 ⊕ g0 ⊕ g1.

If λ̃ ∈ P++
g , then the structure of generalized Verma module homomorphisms

on the affine orbit of λ̃ looks as follows:

• • •

•
•

• • •

The generalized Verma module Mp(λ̃) is on the top, the others are of the form
Mp(µ), where µ is only p-dominant. The form of the diagram does not depend on

a choice of a g-dominant weight λ̃.
The same graph with reversed arrows describes the structure of invariant dif-

ferential operators between sections of homogeneous vector bundles, associated to
dual representations V∗

µ. The dual graph will be called the regular BGG graph for
(g, p, λ).

The long arrows are not in the Hasse graph of (g, p) and the corresponding
operators are called nonstandard.

Further, let as consider a weight λ̃ :=
0
×

0
◦
�◦ −1

�◦ 0

. We see that λ̃+δ =
1
×

1
◦
�◦ 0

�◦ 1

is on the wall of fundamental Weyl chamber, so it has a singular affine orbit.
The structure of generalized Verma module homomorphisms on the affine Weyl

orbit of λ̃ looks like

× × •

•
•

• × ×

The crosses × correspond to weights that are not p-dominant and so there are
no associated generalized Verma modules for them. The nodes • are p-dominant
and the encircled weights coincide in this case.

It means there is only one possible generalized Verma module homomorphism

in this case, D : Mp(µ) → Mp(λ), where µ =
−4
×

0
◦
�◦ 1

�◦ 0

and λ =
−3
×

0
◦
�◦ 0

�◦ 1

We see the general fact that the affine orbit of a singular weight λ̃ (i.e. λ̃ + δ
is on the wall of the fundamental Weyl chamber) is smaller than the regular one:
some weights are “glued together” and some are not p-dominant.
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We will show the existence of D from the example. Let as represent the elements
of so(8, C) as matrices antisymmetric with respect to the antidiagonal and the
cartan subalgebra is the algebra of diagonal matrices, see e.g. [3].

In the standard basis ǫi of h∗, µ = 1
2 [−7|1, 1,−1] and λ = 1

2 [−5|1, 1, 1].

Note that δ = [3|2, 1, 0], µ + δ = 1
2 [−1|5, 3,−1], λ + δ = 1

2 [1|5, 3, 1], so we see
that λ + δ and µ + δ are connected by a root reflection.

The homomorphism D : Mp(µ) → Mp(λ) is completely determined by the
image of the highest weight vector in Mp(µ). This is a vector in Mp(λ) of weight
µ, annihilated by all positive root spaces in g.

Let yi,j resp. Yi,j be a matrix Ei,j − E9−j,9−i so that yi,j ∈ g− and Yi,j ∈ g0

(Ei,j is a matrix having 1 in i-th row and j-th column and 0 on other places).
These are exactly generators of negative root spaces in g. Similarly, generators
of positive root spaces will be denoted by xi,j and Xi,j and the generators of the
Cartan subalgebra by hi = Ei,i − E9−i,9−i:

(2)

0

B

B

B

B

B

B

B

B

B

B

@

h1 x12 x13 x14 x15 x16 x17 0

y21 h2 X23 X24 X25 X26 0 -x17

y31 Y32 h3 X34 X35 0 −X26 -x16

y41 Y42 Y43 h4 0 −X35 −X25 -x15

y51 Y52 Y53 0 −h4 −X34 −X24 -x14

y61 Y62 0 −Y53 −Y43 −h3 −X23 -x13

y71 0 −Y62 −Y52 −Y42 −Y32 −h2 -x12

0 −y71 −y61 −y51 −y41 −y31 −y21 −h1

1

C

C

C

C

C

C

C

C

C

C

A

The module Vλ is a highest weight module, hence from the PBW theorem it
follows that the vectors

(3) yi1,j1 . . . yin,jn
⊗ Yk1,l1 . . . Ykm,lmvλ

generate Mp(λ).

Lemma 1. There is exactly one vector (up to a multiple) in Mp(λ) of weight µ
that is extremal, i.e. annihilated by all positive root spaces in g. The vector has a
form

y5,1 ⊗ vλ − y31 ⊗ Y53vλ − y21 ⊗ Y52vλ

(under the identification Mp(λ) ≃ U(g−) ⊗ Vλ).

Proof. The vector yi1,j1 . . . yin,jn
⊗ Yk1,l1 . . . Ykm,lmvλ is a weight vector with

weight λ−
∑

k weight (yik,jk
)−

∑

k′ weight (Yik′ ,jk′
), where weight(y) is its weight

in the adjoint representation (i.e. a root). The difference λ − µ is equal to
[−1|0, 0,−1] in our case, so the µ-weight space in Mp(λ) is generated by vectors of
type (3), where the sum

∑

k weight (yik,jk
) +

∑

k′ weight (Yik′ ,jk′
) is [−1|0, 0,−1].

There are only 4 possibilities how to obtain [−1|0, 0,−1] as a sum of negative roots
in g:

• [−1|0, 0,−1] itself – corresponds to y51, so the weight vector is y51 ⊗ vλ

• [0| − 1, 0,−1] + [−1|1, 0, 0] – weight vector y21 ⊗ Y52vλ

• [0|0,−1,−1] + [−1|0, 1, 0] – weight vector y31 ⊗ Y53vλ

• [0|0,−1,−1] + [0| − 1, 1, 0] + [−1|1, 0, 0, ] – weight vector y21 ⊗ Y53Y32vλ
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The last vector is zero because λ = 1
2 [−5|1, 1, 1], Y32 is the negative root space

of the root β = ǫ2 − ǫ3 and the copy of sl(2, C) in g generated by h2 − h3, X23, Y32

acts trivial on vλ, because β(h2 − h3) = 1 − 1 = 0 (if we denote this copy of
sl(2, C) by g′, then Vλ contains an irreducible g′-submodule generated by vλ that
has highest weight λ(β) = 0, so this submodule is trivial). Therefore, Y32vλ = 0.

We have identified a 3-dimensional µ-weight space in Mp(λ) and are looking
for a vector in this space that is extremal, i.e. annihilated by all positive root
spaces in g. The action of the positive root spaces can be computed using just the
commutation relation in U(g) and the fact that we know the action of p on vλ.
For example,

x12(y51 ⊗ vλ) = y51x12 ⊗ vλ + [x12, y51] ⊗ vλ

= y51 ⊗ x12vλ + [x12, y51] ⊗ vλ = 0 + (−Y52) ⊗ vλ

= 1 ⊗ (−Y52vλ)

x12(y21 ⊗ Y52vλ) = y21x12 ⊗ Y52vλ + [x12, y21] ⊗ Y52vλ

= y21 ⊗ x12Y52vλ + (h1 − h2) ⊗ Y52vλ = y21 ⊗ Y52x12vλ

+ y21 ⊗ [x12, Y52]vλ + 1 ⊗ (h1 − h2)Y52vλ = 0 + 0

+ 1 ⊗ Y52(h1 − h2)vλ + 1 ⊗ [h1 − h2, Y52]

= 1 ⊗ (−
5

2
−

1

2
)vλ + 1 ⊗ Y52vλ = −2 ⊗ Y52vλ

x12(y31 ⊗ Y53vλ) = y31 ⊗ x12Y53vλ + [x12, y31] ⊗ Y53vλ

= y31 ⊗ Y53x12vλ + y31 ⊗ [x12, Y53]vλ + (−Y32) ⊗ Y53vλ

= 0 + 0 − 1 ⊗ Y32Y53vλ = −Y53Y32vλ − [Y32, Y53]vλ

= 0 − 1 ⊗ (−Y52)vλ = 1 ⊗ Y52vλ

where ⊗ means product over U(p).
Similarly, we compute the action of the other positive root spaces xij and Xij

on each of the 3 nonzero vectors of weight µ. The condition that their combination
is annihilated by all of them yields the unique (up to multiple) vector from the
lemma. In fact, it suffices that it is annihilated by x12, X23, X34, X35, X26 and x17

because the others can be obtained by commuting those. �

This proves that there exists a unique nonzero g-homomorphism of generalized
Verma modules Mp(µ) → Mp(λ).

2.2. Generalization of the example. The previous example can be generalized
to higher dimensions:

Lemma 2. Let g = so(2n + 2, C), p a parabolic subalgebra corresponding to

× ◦ . . . ◦
�◦

�◦ .
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Then choosing

λ =
1

2
[−2n + 1|1, 1, . . . , 1] and µ =

1

2
[−2n − 1|1, 1, . . . , 1,−1] ,

or, in the language of Dynkin diagrams,

λ =
−n
×

0
◦ . . .

0
◦
�◦ 0

�◦ 1

µ =
−n−1
×

0
◦ . . .

0
◦
�◦ 1

�◦ 0

,

there exists a unique (up to a multiple) nonzero homomorphisms of generalized
Verma modules

Mp(µ) → Mp(λ) .

Representing elements of g as matrices like in (2), the image of the highest weight
vector of Mp(µ) in Mp(λ) is

(4) yn+2,1 ⊗ vλ − yn,1 ⊗ Yn+2,nvλ − yn−1,1 ⊗ Yn+2,n−1vλ − . . .− y2,1 ⊗ Yn+2,2vλ .

Similarly, for the weights

λ′ =
1

2
[−2n + 1|1, 1, . . . , 1,−1] and µ′ =

1

2
[−2n − 1|1, 1, . . . , 1, 1] ,

there also exists a unique (up to multiple) nonzero homomorphisms of generalized
Verma modules

Mp(µ
′) → Mp(λ

′)

and the image of the highest weight vector of Mp(µ
′) in Mp(λ

′) is

(5) yn+1,1⊗vλ′ −yn,1⊗Yn+1,nvλ′ −yn−1,1⊗Yn+1,n−1vλ′ − . . .−y2,1⊗Yn+1,2vλ′ .

Proof. The line of arguments is described in the proof of lemma 1. The compu-
tations of the extremal vector of the proper weight is very technical but straight-
forward. �

2.3. The real version. Let as now suppose that g = so(2n + 1, 1; R) is the real
Lie algebra consisting of matrices invariant with respect to the quadratic form

x0x∞ +
∑2n

j=1 x2
j and p is the (real) parabolic subalgebra stabilizing a line in the

null-cone. In matrices,




R g1 0
g−1 so(2n) g1

0 g−1 R





The negative part g−1 ≃ R2n is the fundamental defining representation of so(2n) ⊂
g0 via the adjoint action and g0 = so(2n) ⊕ R.

We assume that g is naturally embedded into its complexification gc = so(2n+
2, C) and that the Cartan subalgebra, positive roots and fundamental weights of
the complexification are given like before. The complexification of p is exactly the

parabolic subalgebra corresponding to × ◦ . . . ◦
�◦

�◦.

Let Vλ and Vµ be representation of pc like before. Via restriction, they are
(complex) representations of the real form p as well.
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As vector spaces, the generalized Verma modules for real Lie algebras and com-
plex inducing representation are isomorphic to the generalized Verma modules for
the complex Lie algebras:

Mpc(µ) = U(gc) ⊗U(pc) Vµ ≃ U(g) ⊗U(p) Vµ .

The first product is over the complex universal enveloping algebra and the second
is over the real algebra.

This vector space homomorphism is compatible with the action of g ⊂ gc on
both spaces, i.e. it is an g-isomorphism.

Because we know from the previous section that there exists a unique (up to
multiple) gc-homomorphism Mpc(µ) → Mpc(λ), it follows that there exist a unique
(up to multiple) nonzero homomorphism of the real generalized Verma modules
Mp(µ) → Mp(λ) in this case as well.

2.4. Description of the differential operator. Let g, p be as in the last section,
G = Spin(2n+1, 1) the real Lie group with Lie algebra g, P the parabolic subgroup
of G whose lie algebra is p. Let Vλ and Vµ be representations of pc like in lemma 2.
The duality between homomorphisms of generalized Verma modules and invariant
differential operators yields a nonzero invariant differential operator D : Γ(Vλ∗) →
Γ(Vµ∗) where Vν∗ = G ×P V∗

ν , ν = λ, µ (Γ(V) is the set of smooth sections).

Lemma 3. The operator D is of first order.

Proof. The homomorphism from lemma 2 sends vµ 7→ uvλ, where u ∈ U(gc) is
given by (4) resp. (5). We see from (4) resp. (5) that uvλ ∈ U1(g

c
−) ⊗ Vλ. For

u0 ∈ U(gc
0), u0vµ 7→ u0uvλ which is also in U1(g

c
−) ⊗ Vλ and we see that the

homomorphism Mpc(µ) → Mpc(λ) maps 1 ⊗C Vµ to U1(g
c
−) ⊗C Vλ (but not to

U0(g
c
−)⊗C Vλ). It follows that the homomorphism Mp(µ) → Mp(λ) takes 1⊗R Vµ

to U1(g−) ⊗R Vλ. Dualizing this (see the introduction, (1) or [1]), we get a map
J 1

eP (Vλ∗) → V∗
µ which yields an invariant differential operator of order 1. �

Now we want to describe the P -homomorphism ϕ : J 1
eP (Vλ∗) → V∗

µ. This is a

p-homomorphism, hence also a g0-homomorphism. As a g0-module, J 1
eP (Vλ∗) ≃

V∗
λ⊕ (g1⊗R V∗

λ) (g1 is dual to g−1, the model for the tangent space in eP of G/P ).
As so(2n, C)-modules, the spaces Vµ and Vλ are called basic spinor modules and

can be realized as subspaces of the Clifford algebra Cliff(2n, β), where β(x, y) =
∑

j xjy2n−j is the form defining the matrices in so(2n, C). We will denote S+ the

representation Vλ with highest weight [12 , . . . , 1
2 ] and S− the representation Vµ

with highest weight [12 , . . . , 1
2 ,− 1

2 ] (as so(2n, C)-modules). It can be shown that
(S+)∗ ≃ S−. Further, because S+ and S− are subspaces of the Clifford algebra,
the Clifford multiplication R2n ⊗ S± → S∓ is defined.

So, as a representation of gss
0 ≃ so(2n), V∗

λ ≃ S− and V∗
µ ≃ S+. It can be

shown easily that g1 ≃ R2n, the defining representation of so(2n) and therefore,
as a gss

0 -module homomorphism,

(6) ϕ : J 1
eP (Vλ∗) ≃ S− ⊕ ((R2n) ⊗R S−) → S+ .
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It is a well-known fact that

(7) R2n ⊗R S− ≃ S+ ⊕ T ,

where S+ and T are the spinor and twistor representations (see [5]), so the operator
is given just by the projection π of the second summand in (6) to S+.

It is well-known that g− can be imbedded into G/P as an open dense subspace
by

i : g− → G/P, y 7→ exp(y)P.

We will identify g− with its image under i. To any section s ∈ Γ(V) given by
gP 7→ [g, v]P we can assign a V-valued function f on g− given by

(8) f : g− → V, y 7→ v, where s(i(y)) = [exp(y), v]P .

The space g− is endowed with a basis




0 0 0
ej 0 0
0 −eT

j 0





where ej = (0, . . . , 0, 1, 0, . . . , 0)T is the j-th vector of the standard basis of R2n,
and with the standard metric

∑

j x2
j . Let ∇ be the flat Levi-Civita connection on

g− induced by this metric. The map i : g− → G/P = S2n is a conformal map.

Theorem 1. Let s, s′ ∈ Γ(Vλ∗) are sections and f, f ′ : g− → S+ (S−) the spinor
valued functions corresponding to s and s′ under the above identification. Assume

that s′ = Ds. Then f ′ =
∑2n

i=1 ei∇ei
f .

Proof. Take s ∈ Γ(G ×P S−) and denote by ∇ any Weyl covariant derivative on
G ×P S−. Then (s,∇s) is a section of J 1(V∗

λ). The last bundle is the associated
bundle to the P -module J1(S−) ≃ S−⊕C2n⊗S−, where we identify g− ≃ g/p (as
a p-module) via the Killing form. It follows from the classification of the first order
invariant operators in [4], that there is a P -homomorphism π : J1(S−) → S+ such
that D = π̃ ◦ ∇, where π̃ : J 1(V∗

λ) → V∗
µ is induced by π. But there is clearly a

unique gss
0 -homomorphism from J1(S−) to S+, given by the invariant projection

from g+⊗RS− to S+. Hence π should be equal to this projection (up to a multiple).
Let us restrict now ourselves to the big cell g−. We can take the flat connection

for ∇ on g−. The explicit form of the projection π was computed in [5]. Its form
is, up to a multiple, equal to

(9) π(
∑

j

ej ⊗ sj) =
∑

j

ejsj

where ejsj is the Clifford multiplication. So, we get Df =
∑n

i=1 ei∇ei
f . �

In the case that the quadratic form is not specified, we get a more general
formula for D. Suppose that b(x, y) is a scalar product corresponding to a given
quadratic form β(x) on g−. Take any basis {ei} of g− and denote by {e′i} the dual
basis with respect to b.

By an easy modification of calculations in [5], we get the following claim.
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Let s, s′ ∈ Γ(Vλ∗) are sections and f, f ′ : g− → S+ (S−) the spinor valued
functions corresponding to s and s′ under the above identification. Assume that
s′ = Ds. Then f ′ =

∑n
i=1 ei∇e′

i
f

Therefore, we can call the operator D the Dirac operator.

3. More Dirac operators

3.1. Verma modules in higher grading. Consider now a pair of real Lie alge-
bras (g, p) with complexification described by the Dynkin diagram

◦ . . . ◦ ◦ × ◦ . . . ◦
�◦

�◦

The real form is chosen to be g = so(k, 2n + k; R) and the k-th node is crossed.
We can choose p to be the parabolic subalgebra corresponding to the following
gradation:





g0 g1 g2

g−1 g0 g1

g−2 g−1 g0





where g0 = sl(k, R)⊕ so(2n)⊕RE and, as a g0-module, g−1 ≃ ((Rk)∗ ⊗R2n), the
product of dual resp. defining representations of sl(k, R) resp. so(2n). The part
g−2 is commutative.

The real generalized Verma modules are again the same as the complex, due to
the fact that we consider complex representations of p.

Theorem 2 (generalization of Lemma 2). Independent of the dimension, there is
a Verma module homomorphism D : Mp(µ) → Mp(λ) for

µ =
0
◦ . . .

0
◦

1
◦

−n−1
×

0
◦ . . .

0
◦
�◦ 1

�◦ 0

and

λ =
0
◦ . . .

0
◦

−n
×

0
◦ . . .

0
◦
�◦ 0

�◦ 1

and the corresponding (dual) differential operator is of first order. Analogous state-
ment holds for the weights µ′ and λ′ having interchanged 0 and 1 over the last
positions in the Dynkin diagram.

Proof. Using the technique of lemma 1, it can be shown that the only extremal
vector of weight µ in Mpc(λ) is the vector

yn+2,k ⊗ vλ − yn,k ⊗ Yn+2,nvλ − yn−1,k ⊗ Yn+2,n−1vλ − . . . − y2,k ⊗ Yn+2,2vλ

We see again that it lies in U1(g−)⊗Vλ, so only first derivations are involved. �
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3.2. Description of the operator. As before, we associate to the graded Lie
algebra from the last paragraph a real form g of real matrices fixing the inner prod-

uct
∑k

i=1 xix2(n+k)+1−i +
∑2n

j=1 x2
k+j (it has signature (2n + k, k)). The parabolic

subalgebra p of g is such that g0 = sl(k, R) ⊕ so(2n) ⊕ RE. The complexification
(gc, pc) is the even orthogonal complex Lie algebra of rank n+k with the k-th nod
crossed in the Dynkin diagram.

As a g0-module, g−1 ≃ ((Rk)∗ ⊗ R2n), the product of dual resp. defining
representations of sl(k, R) resp. so(2n). The part g−2 is commutative. Let µ, λ be
weights like before and consider Vµ and Vλ to be complex representations of the
real Lie algebra p with highest weight µ resp. λ. We see that, as a gss

0 -module,

Vµ ≃ Ck∗ ⊗ S− and Vλ ≃ C ⊗ S+ where Ck resp. C are the defining resp. trivial
representation of sl(k, R).

We know from 2.3 and the previous paragraph that there is a nonzero homo-
morphism of generalized Verma modules Mp(µ) → Mp(λ) in this case as well.

The corresponding dual differential operator acts between sections of dual rep-
resentation:

D : Γ(G ×P C ⊗ S−) → Γ(G ×P Ck ⊗ S+)

(we identified (S−)∗ ≃ S+).
Assume that s is a section of G ×P (C ⊗ S−) and f is a C ⊗ S− ≃ S−-valued

functions on g− defined as in (8). The coordinates on g−1 can be chosen to be
y11, . . . , y1n, . . . , yk1, . . . , ykn and on g−2 y1, . . . , yl. We assign a function Df :
g− → Ck ⊗ S+ to each section Ds and Df can be naturally identified with k
S+-valued functions D1(f), . . . , Dk(f).

Assume that f is constant in the g−2 variables y1, . . . , yl, so, it can be considered
as a function of yi,j only.

As before, the corresponding differential operator D can be written in the form
D = π̃ ◦ ∇, where ∇ is the covariant derivative of the Weyl connection on the
tangent bundle induced by the trivialization of the tangent bundle by left invariant
vector fields.

On a function f that does not depend on the g−2-variables, covariant derivative
∇ei,j

coincide with the ordinary flat derivations ∂
∂yij

of f . Restricting to such

functions, the operator can be considered as

C∞((Rk)∗ ⊗ R2n, S−) → C∞((Rk)∗ ⊗ R2n, Ck ⊗ S+)

It is given by the projection

π : (Rk ⊗ (R2n)∗) ⊗R S− ≃ Ck ⊗C (C2n ⊗C S−) → Ck ⊗C S+

The projection should be a g0-homomorphism, what yields π = (π1, . . . , πk) where
πi : R2n ⊗ S− → S+ is given by (9). Therefore, the operator D = (D1, . . . , Dk)
where Di =

∑

j ej∇eij
.

4. A complex of homomorphisms of Verma modules

4.1. The singular orbit. In the case k ≥ 1 (more Dirac operators in the sense
of the last section), there are also other p-dominant weights on the affine orbit of
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λ and µ. Let us return now to the case of complex Lie algebras and consider the
case k = 2. Then

λ =
0
◦

−n
×

0
◦ . . .

0
◦
�◦ 0

�◦ 1

and λ + δ = 1
2 [3, 1| . . . , 5, 3, 1].

There are exactly 3 other p−dominant weights µ, ν, ξ on the same affine orbit:

µ + δ =
1

2
[3,−1 | . . . , 5, 3,−1]

ν + δ =
1

2
[1,−3 | . . . , 5, 3,−1]

ξ + δ =
1

2
[−1,−3 | . . . , 5, 3, 1]

We know from Theorem 2 that there is a homomorphism of generalized Verma
modules Mp(µ) → Mp(λ).

Theorem 3. There exists a unique (up to a multiple) nonzero homomorphism
of generalized Verma modules Mp(ν) → Mp(µ) and a unique (up to a multiple)
nonzero homomorphism Mp(ξ) → Mp(ν) so that the composition Mp(ξ) → Mp(ν) →
Mp(µ) is zero and the composition Mp(ν) → Mp(µ) → Mp(λ) is zero. So, there is
a complex of generalized Verma modules described by the highest weights λ, µ, ν, ξ

ξ + δ = 1
2 [−1,−3| . . . , 5, 3,−1]

ν + δ = 1
2 [1,−3| . . . , 5, 3,−1]

µ + δ = 1
2 [3,−1| . . . , 5, 3,−1]

λ + δ = 1
2 [3, 1| . . . , 5, 3, 1]

Proof. The existence and uniqueness of the homomorphism can be shown using
the technique of lemma 1. We will outline the proof only in low dimension, for
k = 2, n = 3. In this case, elements of g are matrices 10 × 10 antisymmetric
with respect to the antidiagonal and we can denote the root spaces by yij and Yij

similar to (2).
The extremal vector in w ∈ Mp(µ) of the weight ν is described by some u ∈ U(g)

so that w = uβ, where β is the highest weight vector in Mp(µ). It can be checked
that the only possibility is (up to multiple)

u = (y61 − y41Y64 − y31Y63)(y52 − y42Y54 − y32Y53)

+ (y62 − y42Y64 − y32Y63)(y52 − y42Y54 − y32Y53)Y21 − y91 .

The multiplication of the brackets is multiplication in U(g). Similarly, it can be
checked that the extremal vector in Mp(ν) of the weight ξ is wγ, where β is the
highest weight vector in Mp(ν) and

w = (y51 − y41Y54 − y31Y53) + (y52 − y42Y54 − y32Y53)Y21 .



240 P. FRANEK

The composition of two homomorphisms of generalized Verma modules Mp(ν) →
Mp(µ) → Mp(λ) is zero exactly if it sends the highest weight vector γ ∈ Mp(ν)
to zero. We know that γ is mapped to uβ where β is the highest weight vector in
Mp(µ). The second homomorphism sends β to u′α, where α is the highest weight
vector in Mp(λ) and u′ is determined by the proof of Theorem 2. Therefore, uβ
is mapped to uu′α by the homomorphism Mp(µ) → Mp(λ). It remains to show
that uu′α = 0 in Mp(λ). This can be done using commutation relation in U(g)
and basic representation theory.

Similarly we check that Mp(ξ) → Mp(ν) → Mp(µ) is zero.
In higher dimension, the extremal vectors are similar, just instead of (y61 −

y41Y63 − y31Y63) one has to write (y2n,1 − y2n−2,1Y2n,2n−2 − . . . − y31Y2n−2,3)
etc. �

Remark 1. Choosing proper real forms of g, p, these homomorphisms can be
translated to invariant differential operators. The first one is the Dirac operator
in two variables, as we already showed. The second and third operator together
with the first form a complex of differential operators.
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