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SOME ASPECTS OF THE HOMOGENEOUS FORMALISM

IN FIELD THEORY AND GAUGE INVARIANCE

MARCELLA PALESE AND EKKEHART WINTERROTH

Abstract. We propose a suitable formulation of the Hamiltonian formalism
for Field Theory in terms of Hamiltonian connections and multisymplectic
forms where a composite fibered bundle, involving a line bundle, plays the
role of an extended configuration bundle. This new approach can be in-
terpreted as a suitable generalization to Field Theory of the homogeneous
formalism for Hamiltonian Mechanics. As an example of application, we
obtain the expression of a formal energy for a parametrized version of the
Hilbert–Einstein Lagrangian and we show that this quantity is conserved.

1. Introduction

A geometric setting for the Hamiltonian description of Field Theory is proposed
which generalizes the homogeneus Hamiltonian formalism in time-dependent Me-
chanics (see e.g. [27]). The aim is to provide a suitable description of the gauge
character appearing in the covariant formulations of Hamiltonian multiphase Field
Theory and their quantizations based on the seminal paper by Dedecker [4] and
developed in the recent literature by many authors; see e.g. [5, 6, 13, 14, 20, 24, 25]
and many references quoted therein.

One of the main features of our approach is that one can describe the polymo-
menta and other objects such as Hamiltonian forms in terms of differential forms
with values in the vertical tangent bundle of an appropriate line bundle Θ. The
introduction of the line bundle Θ, in fact, can be understood as a suitable way
of describing the gauge character appearing in the multiphase formalism for Field
Theory, essentially due to the fact that the independent variables are more than
one and thus the Poincaré–Cartan invariant is defined only up to the choice of a
linear connection on the basis manifold (see e.g. [9, 16, 19, 20]).
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With the aim of overcoming this ambiguities, instead of bundles over an n–
dimensional base manifold X , we consider fibrations over a line bundle Θ fibered

over X . We recall that a geometric formulation of the Hamiltonian formalism for
Field Theory in terms of Hamiltonian connections and multisymplectic forms was
developed e.g. in [22, 26, 27]. In this framework, the covariant Hamilton equations
for Mechanics and Field Theory are defined in terms of multisymplectic (n + 2)–
forms, where n is the dimension of the basis manifold, together with connections
on the configuration bundle. Following the analogous setting for Mechanics and for
the polymomentum approach to Field Theory, we propose a new concept of event
bundle, configuration bundle and Legendre bundle. Correspondingly, Hamiltonian
connections, Hamiltonian forms and covariant Hamilton equations can be suitably
described in this framework. This new approach takes into account the existence of
more than one independent variable in Field Theory, but enables us to keep most
of the features of time-dependent Hamiltonian Mechanics. In fact, the prominent
role of symplectic structures in field theories has been stressed in [15, 16, 17, 18]
and recently a symplectic approach for the study of Canonical Gravity [10] has
been proposed.

We point out that the extension of the Hamiltonian formalism from Mechanics
to Field Theory is usually performed starting from the non-homogeneous formalism
of Mechanics, where a gauge choice is assumed a priori to be performed; precisely
q0(t) = t, where t is the time. It is however well known – and it deserves to
be noticed within our note - that Mechanics is invariant with respect to gauge
choices of this kind, i.e. with respect to choices of the section q0(t); see e.g. the
review in [10]. Accordingly with the just mentioned approach to Mechanics, in
Hamiltonian Field Theory the configuration variables (fields) are usually assumed
to depend directly on a number of independent variables greater than one. As
an outcome, it is well known that polymomenta correspondingly defined are in a
bigger number than the configurations, and that the corresponding Hamiltonians
do not have a clear interpretation as physical observables. Many difficulties arises
in the attempts of quantization of such a Hamiltonian Field Theory (see e.g. the
detailed reviews in [11, 12, 14]).

In the present paper we generalize to Field Theory the so-called homogeneous

formalism of time-dependent Mechanics, so that a local line coordinate τ plays the
role of the ‘homogeneous’ local coordinate q0, and a formal Hamiltonian theory is
constructed where the Hamiltonian describes the formal evolution along the line
coordinate. The latter in turn depends on the basis (independent) coordinates
when a gauge choice is performed, i.e. a section of the line bundle is chosen. This
is nearer to [3], and it keeps the advantages of a finite dimensional approach. Thus
the formal Hamiltonian can be interpreted as a formal energy (beeing the conju-
gated momentum to the formal evolution parameter). The energy then is a gauge
charge since it is related with invariance properties with respect to infinitesimal
transformations of the line (vertical) coordinate.

In Section 2 we state the general framework of composite fiber bundles, their
jet prolongations and composite connections. Section 3 contains abstract Hamil-

ton equations and a Theorem which relates the abstract Hamiltonian dynamics
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introduced here with the standard Hamilton–De Donder equations (see [20] for a
detailed review on the topic and recent developments). Proceeding in analogy with
Mechanics we obtain the expression of a ‘formal’ energy for an extended version
of the Hilbert–Einstein Lagrangian and we show that this quantity is conserved.

The present approach is a completion of [7] where the formal aspect of the homo-
geneous setting was not exhaustively explicated. Some misprints and imprecisions
there appearing will be also corrected.

2. Jets and connections on composite bundles

The general framework is a fibered bundle over X , π : Y → X , with dimX = n
and dimY = n + m and, for r ≥ 0, its jet manifold JrY . We recall the natural
fiber bundles πr

s : JrY → JsY , r ≥ s, πr : JrY → X , and, among these, the affine

fiber bundles πr
r−1.

Greek indices λ, µ, . . . run from 1 to n and they label base coordinates, while
Latin indices i, j, . . . run from 1 to m and label fibre coordinates, unless otherwise
specified. We denote multi–indices of dimension n by underlined Greek letters
such as α = (α1, . . . , αn), with 0 ≤ αµ, µ = 1, . . . , n; by an abuse of notation, we
denote with λ the multi–index such that αµ = 0, if µ 6= λ, αµ = 1, if µ = λ. We
also set |α| .= α1 + · · · + αn. The charts induced on JrY are denoted by (xλ, yi

α),

with 0 ≤ |α| ≤ r; in particular, we set yi
0
≡ yi. The local bases of vector fields

and 1–forms on JrY induced by the coordinates above are denoted by (∂λ, ∂
α
i )

and (dλ, di
α), respectively.

For r ≥ 1, the contact maps on jet spaces induce the natural complementary
fibered morphisms over the affine fiber bundle JrY → Jr−1Y

(1) Dr : JrY ×X TX → TJr−1Y , ϑr : JrY ×Jr−1Y TJr−1Y → V Jr−1Y ,

with coordinate expressions, for 0 ≤ |α| ≤ r − 1, given by Dr = dλ ⊗Dλ =

dλ⊗(∂λ + yj
α+λ∂

α
j ), ϑr = ϑj

α⊗∂
α
j = (dj

α − yj
α+λd

λ)⊗∂α
j , and the natural fibered

splitting JrY ×Jr−1Y T ∗Jr−1Y = JrY ×Jr−1Y (T ∗X ⊕ V ∗Jr−1Y ).

Definition 1. A connection on the fiber bundle Y → X is defined by the (mutually
dual) linear bundle morphisms over Y : Y ×X TX → TY , V ∗Y → T ∗Y which split
the exact sequences

0 → V Y →֒ TY → Y ×X TX → 0 , 0 → Y ×X T ∗X →֒ T ∗Y → V ∗Y → 0 .

We recall that there is a one–to–one correspondence between the connections Γ
on a fiber bundle Y → X and the global sections Γ : Y → J1Y of the affine jet
bundle J1Y → Y (see e.g. [22]).

In the following a relevant role is played by the composition of fiber bundles

(2) Y → Θ → X ,

where πY X : Y → X , πY Θ : Y → Θ and πΘX : Θ → X are fiber bundles. The
above composition was introduced under the name of composite fiber bundle in
[21, 26] and shown to be useful for physical applications, e.g. for the description
of mechanical systems with time–dependent parameters.
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We shall be concerned here with the description of connections on composite
fiber bundles. We will follow the notation and main results stated in [22]; see also
[2].

We shall denote by J1Θ, JΘ
1 Y and J1Y , the jet manifolds of the fiber bundles

Θ → X , Y → Θ and Y → X respectively.
Let γ be a connection on the composite bundle πY X projectable over a connec-

tion Γ on πΘX , i.e. such J1πY Θ ◦γ = Γ◦πY Θ. Let γΘ be a connection on the fiber
bundle πY Θ. Given a connection Γ on πΘX , there exists [22] a canonical morphism
over Y , ρ : J1Θ ×X JΘ

1 Y → J1Y , which sends (Γ, γΘ), into the composite connec-

tion γ
.
= γΘ◦Γ on πY X , projectable over Γ. Recall that given a composite fiber

bundle (2) and a global section h of the fiber bundle πΘX , then the restriction
Yh

.
= h∗Y of the fiber bundle πY Θ to h(X) ⊂ Θ is a subbundle ih : Yh →֒ Y of the

fiber bundle Y → X [22]. Let then h be a section of πΘX . Every connection γΘ

induces the pull–back connection γh on the subbundle Yh → X . The composite
connection γ = γΘ ◦ Γ is reducible to γh if and only if h is an integral section of
Γ.

We have the following exact sequences of vector bundles over a composite bundle

Y :
(3)
0 → VΘY →֒ V Y → Y ×Θ VΘ → 0 , 0 → Y ×Θ V ∗Θ →֒ V ∗Y → V ∗

ΘY → 0 ,

where VΘY and V ∗

ΘY are the vertical tangent and cotangent bundles to the bundle
πY Θ.

Remark 1. Every connection γΘ on πY Θ provides the dual splittings

(4) V Y = VΘY ⊕Y γΘ(Y ×Θ VΘ) , V ∗Y = Y ×Θ V
∗Θ ⊕Y γΘ(V ∗

ΘY ) ,

of the above exact sequences. By means of these splittings one can easily construct
the vertical covariant differential on the composite bundle πY X , i.e. a first order
differential operator

(5) ∆γΘ
: J1Y → T ∗X ⊕Y V ∗

ΘY .

This operator is characterized by the property that the restriction of ∆γΘ
, induced

by a section h of πΘX , coincides with the covariant differential on Yh relative to
the pull–back connection γh [22].

3. Homogeneus formalism in Field Theory

We recall now that the covariant Hamiltonian Field Theory can be conveniently
formulated in terms of Hamiltonian connections and Hamiltonian forms [26]. Here
we shall construct a Hamiltonian formalism for Field Theory as a theory on the
composite event bundle Y → Θ → X , with πΘX : Θ → X a line bundle having
local fibered coordinates (xλ, τ).

Let us now consider the extended homogeneous Legendre bundle ZY
.
= T ∗Y ∧

(ΛnT ∗Θ) → X . It is the trivial one-dimensional bundle κ : ZY → ΠΘ, where
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ΠΘ
.
= V ∗Y ∧ (ΛnT ∗Θ) → X is extended Legendre bundle. There exists a canonical

isomorphism

(6) ΠΘ ≃ Λn+1T ∗Θ⊗Y V
∗Y ⊗Y TΘ .

Definition 2. We call the fiber bundle πY Θ : Y → Θ the abstract event space of
the field theory. The configuration space of the Field Theory is then the first order
jet manifold JΘ

1 Y . The abstract Legendre bundle of the field theory is the fiber
bundle ΠΘ → Θ.

Let now γΘ be a connection on πY Θ and ΓΘ be a connection on πΘX . We have
the following non–canonical isomorphism

(7) ΠΘ ≃(γΘ,ΓΘ) Λn+1T ∗Θ⊗Y [(Y ⊕Θ V
∗Θ) ⊕Y γΘ(V ∗

ΘY )]⊗Y (VΘ ⊕Θ HΘ) .

In this perspective, we consider the canonical bundle monomorphism over Y
providing the tangent–valued Liouville form on ΠΘ, i.e.

(8) ϑY : ΠΘ →֒ Λn+2T ∗Y ⊗Y (VΘ ⊕Θ HΘ) ,

where HΘ is the horizontal subbundle.

Let now (xµ̂) = (xµ, τ), ω̂ = dµ1 ∧ dµ2 ∧ . . . ∧ dµn ∧ dτ , ∂µ̂ = (∂µ, ∂τ ) be,
respectively, local coordinates on Θ, the induced volume form, local generators of
tangent vector fields and put ω̂

λ̂

.
= ∂

λ̂
⌋ω̂.

Inspired by [18] we set p̄i
.
= pµ̂

i ⊗∂µ̂ and obtain

(9) ϑY = p̄id
i ∧ ω̂ .

The polysymplectic form ΩY on ΠΘ is then intrinsically defined by ΩY ⌋ψ =
d(ϑY ⌋ψ), where ψ is an arbitrary 1–form on Θ; its coordinate expression is given
by

ΩY = dp̄i ∧ di ∧ ω̂ ≃ dp̄i ∧ di ∧ dτ .(10)

Let J1ΠΘ be the first order jet manifold of the extended Legendre bundle
ΠΘ → X . A connection γ on the extended Legendre bundle is then in one–to–one
correspondence with a global section of the affine bundle J1ΠΘ → ΠΘ. Such a
connection is said to be a Hamiltonian connection iff the exterior form γ⌋ΩY is
closed.

A Hamiltonian H on ΠΘ is defined as a section p̄ = −H of the bundle κ. Let γ be
a Hamiltonian connection on ΠΘ and U be an open subset of ΠΘ. Locally, we have
γ⌋ΩY = (dp̄i∧di−dH)∧ ω̂ ≃ (dp̄i∧di−dH)∧dτ .

= dH , where H : U ⊂ ΠΘ → VΘ
and d = ∂id

i + ∂̄idp̄i + ∂τdτ is the total differential on V ΘΠΘ.
The local mapping H : U ⊂ ΠΘ → VΘ is called a Hamiltonian. The form

H on the extended Legendre bundle ΠΘ is called a Hamiltonian form. Every
Hamiltonian form H admits a Hamiltonian connection γH such that the following
holds: γH⌋ΩY = dH .

We define the abstract covariant Hamilton equations to be the kernel of the first
order differential operator ∆γ̃Θ

defined as the vertical covariant differential (see
Eq. 5) relative to the connection γ̃Θ on the abstract Legendre bundle ΠΘ → Θ.
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In the following a ‘dot’ stands for £∂τ
, i.e. the Lie derivative along ∂τ . In

this case the Hamiltonian form H is the Poincaré–Cartan form of the Lagrangian

LH = (p̄iẏ
i − H) dτ on V ΘΠΘ, with values in VΘ. Furthermore, the Hamilton

operator for H is defined as the Euler–Lagrange operator associated with LH ,
namely EH : V ΘΠΘ → T ∗ΠΘ ∧ Λn+1T ∗X .

We state then the following.

Proposition 1. The kernel of the Hamilton operator, i.e. the Euler–Lagrange

equations for LH , is an affine closed embedded subbundle of V ΘΠΘ → ΠΘ, locally

given by the covariant formal Hamilton equations on the extended Legendre bundle

ΠΘ → X

ẏi = ∂̄iH ,(11)

˙̄pi = −∂iH ,(12)

Ḣ = ∂τH .(13)

These latter results could be compared with [13, Sec.4]. However, within the
limits of the purpose of this note, in the following we just recall the relation with
the standard polysymplectic approach (for a review of the topic see e.g. [4, 13, 15,
18, 20] and references quoted therein) and provide an example of application.

Lemma 1. Let γH be a Hamiltonian connection on ΠΘ → X. Let γ̃Θ and Γ be

connections on ΠΘ → Y and Θ → X, respectively. Let σ and h be sections of the

bundles πY Θ and πΘX , respectively.

Then the standard Hamiltonian connection on ΠΘ → X turns out to be the

pull–back connection γ̃φ induced on the subbundle ΠΘ φ →֒ ΠΘ → X by the section

φ = h◦σ of Y → X.

Proof. The abstract Legendre bundle is in fact a composite bundle ΠΘ → Y → Θ.
Our claim then follows for any section φ of the composite bundle Y → Θ → X of
the type φ = h◦σ, since the extended Legendre bundle ΠΘ → X can be also seen
as the composite bundle ΠΘ → Y → X . �

As a straightforward consequence we can state the following [7]

Proposition 2. Let ∆γ̃ ,φ be the covariant differential on the subbundle ΠΘ φ →֒
ΠΘ → X relative to the pull–back connection γ̃φ. The kernel of ∆γ̃ ,φ coincides

with the Hamilton–De Donder equations of the standard polysymplectic approach

to field theories.

Example 1 (Formal gravitational energy). Let us now specify the above for-
malism for an extended version of the Hilbert–Einstein Lagrangian, i.e. essentially
the Hilbert–Einstein Lagrangian for a metric g parametrized by the line coordi-
nate τ .

Let then dimX = 4 and X be orientable. Consider the configuration composite
bundle Lor(X)Θ → Θ → X coordinated by (gµν , τ, xλ), where (τ, xλ) are coordi-
nates of the line bundle Θ and gµν are Lorentzian metrics onX (provided that they
exist), i.e. sections of Lor(X) → X . We call Lor(X)Θ the bundle of Lorentzian
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metrics (on X) parametrized by τ . The bundle Lor(X)Θ → Θ is not necessarily
trivial; it is characterized as follows. Every section h of the line bundle Θ defines
the restriction h∗Lor(X)Θ of Lor(X)Θ → Θ to h(X) ⊂ Θ, which is a subbundle of
Lor(X)Θ → X . One can think of h∗Lor(X)Θ → X as being the bundle Lor(X) of
Lorentzian metrics on X with the background parameter function h(xµ) (similar
considerations can be found in parametrized Mechanics, see e.g. [22]). However in
what follows we will not fix such a section.

The extended Hilbert–Einstein Lagrangian is the form λHE = LHE ω̂ , were
LHE = r

√
g. Here r : JΘ

2 (Lor(X)Θ) → IR is the function such that, for any

parametrized Lorentz metric g, we have r ◦ jΘ2 g = s, being s the scalar curvature
associated with g, and g is the determinant of g.

Put πµν =
√
ggµν and φρ̂λ̂

µν
.
= ∂LHE/∂π̇

µν

ρ̂λ̂
.

Now, consider that

(14) LHE = πµνR̂µγ = φ̄µν π̇
µν −H ,

where R̂µγ = R̂λ
µλγ denotes the components of the Ricci tensor of the Lie-dragged

metric and φ̄µν ≡ φρ̂λ̂
µν⊗∂ρ̂λ̂

. Hence the formal Hamiltonian turns out to be

(15) H = (−πµγR̂µγ + φ̄µν π̇
µν) .

Notice that the formal Hamiltonian does not depend explicitly on τ . From
the covariant Hamilton equations, in particular from Eq. (13), we have Ḣ = 0;
thus the formal Hamiltonian turns out to be a conserved quantity. In fact we can
interprete it as a conserved formal energy for the gravitational field (compare with
[10] where an analogous approach is followed by defining the Cauchy data on a
three-dimensional submanifold of space-time).

We stress that, as far as a section h(xµ) of Θ → X has not been fixed a

priori, our approach provides an appropriate covariant Hamiltonian description of
gravitation, which does not require neither a (3 + 1) splitting of space-time - as it
is done in the ADM-like formalisms - nor the fixing of a background connection
- as it is done whitin the Palatini-like approaches. Both of the latter approaches
we mentioned, in fact, can provide Hamiltonian descriptions of gravitation, which
however loose the required genuine covariance.

We finally notice that this formal approach stresses the underlying algebraic
structure of Field Theory, which was shown to be related with a new K–theory
for vector bundles carrying the same kind of ‘special’ multisymplectic structure
[29] (related multisymplectic 3-forms on manifolds have been also studied e.g. in
[1, 23]).
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