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A GRAVITATIONAL EFFECTIVE ACTION

ON A FINITE TRIANGULATION AS A DISCRETE

MODEL OF CONTINUOUS CONCEPTS

ALBERT KO AND MARTIN ROČEK

Abstract. We recall how the Gauss-Bonnet theorem can be interpreted as
a finite dimensional index theorem. We describe the construction given in
hep-th/0512293 of a function that can be interpreted as a gravitational ef-
fective action on a triangulation. The variation of this function under local
rescalings of the edge lengths sharing a vertex is the Euler density, and we use
it to illustrate how continuous concepts can have natural discrete analogs.

1. Introduction

We want to study how we can translate concepts from continuum quantum
field theories to discrete models with a finite number of degrees of freedom. The
particular system that we explore is the theory of triangulations of a surface. This
is a context that is well understood in both the discrete [1] and the continuous
cases [2].

A nice example of such a translation is provided by the interpretation of the
Euler character as an index. In the continuous case, we have the exterior derivative:

(1) d : ω0 → ω1 → ω2 ,

where ωp are p-forms, and the dual operator

(2) ∗d∗ : ω2 → ω1 → ω0 .

We now consider the operator D ≡ d + ∗d∗ restricted to

(3) D : ω0 ⊕ ω2 → ω1

as well as its adjoint

(4) D† : ω1 → ω0 ⊕ ω2 .
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The index of D is defined to be difference of the dimensions of the kernels of D
and D†, and is known to be proportional to the Euler character χ of the surface
[3, 2]:

(5) dim
(

Ker(D)
)

− dim
(

Ker(D†)
)

∝ χ = 2(1 − g) .

The discrete version of this well known story is somewhat less familiar. We
consider a triangulation with V vertices vi, E oriented edges eij , and F oriented
faces fijk. The discrete analogs of p-forms ωp are elements of a vector space Ep,
where E0 is associated to the vertices, E1 is associated to the edges, and E2 is
associated to the faces. The sign associated to a edge or face depends on the
orientation. There is an obvious notion of the exterior derivative d which obeys
d2 = 0; the dual operator in general will depend on a choice of metric as described
in [4], but since the index is topological, we can ignore this dependence. Thus we
choose our operators D and D† as follows:

(6) (Dω)ij = (ωi − ωj) ⊕ (ωijk − ωijk′ ) ,

on an oriented edge eij between a vertex vi and a vertex vj or on an edge shared
by oriented triangles fijk and fijk′ . The adjoint operator is defined by, e.g., (see
[4] for further discussion)

(7) (D†ω)i =
∑

j∈<ij>

ωij , (D†ω)ijk = ωij + ωjk + ωki ,

where the sum is over all the edges eij connected to a vertex vi with a positive sign
for edges leaving vi and negative for edges coming into vi, or over all the edges
bounding the triangle fijk with a positive sign if their orientation is compatible
with the orientation of the triangle; D and D† are shown graphically in Figure
1. We may now compute the index of this discrete operator D; since it maps
E0 ⊕ E2 → E1, it is an E × (V + F ) dimensional matrix, and the index is simply

(8) V + F − E = χ = 2(1 − g) .

This is clearly topological, as it does not depend on the values of the entries of D,
only on its dimension.

Not only does the Euler character χ make sense on a triangulation of a surface,
but its density

√
gR, where R

(

g(x)
)

is the scalar curvature1 of the two dimensional

metric gmn, has a sensible analog as well: since χ = 1
2π

∑

i∈{V } ǫi where i runs over

all vertices and ǫi is the defect at the i’th vertex, one can identify the defect ǫi =
− 1

2

√
gRi with the curvature at the vertex [1]. Thus one has the correspondence:

(9) − 1

4π

∫

d2x
√

gR = χ ↔ 1

2π

∑

i∈{V }

ǫi = V − E + F .

Anomalies are generally regarded as arising from the infinite numbers of degrees
of freedom in continuous systems. For example, the action S of a scalar field Φ

1We use the convention that the scalar curvature is minus twice the Gaussian curvature, and
hence is negative on the sphere [2].
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Figure 1. D and D†

coupled to a gravitational background on a two dimensional surface Σ,

(10) S =
1

2

∫

Σ

d2x
√

det(gpq)g
mn∂mΦ∂nΦ ,

has a classical symmetry under rescalings of the metric on Σ: gmn → λ(x)gmn.
This implies

(11) gmn

∂S

∂gmn

= 0 .

Upon quantization, this symmetry is anomalous; that is, if one defines the quantum
effective action Γ as

(12) e−Γ[g] =

∫

[dΦ] e−S[Φ,g] ,

then one finds [3, 2]

(13) gmn

∂Γ

∂gmn

= − 1

24π

√

det(gmn)R
(

g(x)
)

,

If one integrates this over the surface, one finds

(14)

∫

d2x gmn

∂Γ

∂gmn

= − 1

24π

∫

d2x
√

det(gmn)R
(

g(x)
)

=
1

6
χ .
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In [5], we extended this correspondence to the anomaly (13): we found an analog
of the effective action Γ on a triangulation. That is, we found a function Γ(lij) of
the edge lengths lij such that

(15)
∑

j∈<ij>

lij
∂Γ

∂lij
=

1

12π
ǫi

for all vertices i (the sum is over all edges with one end at i).
We now present our construction; the remainder of the manuscript is taken

verbatim from [5]. Our main result is

(16) Γ =
1

12π

[

∑

∠ijk

∫ αijk

π
2

(y − π

3
) cot(y)dy +

∑

<ij>

2kijπ ln
( lij

l0

)]

,

where the first sum is over all internal angles αijk , second sum is over all edges
<ij> with lengths lij (the explicit factor of two arises because every edge is shared
by two triangles), l0 is a scale that we set to equal to one from now on, and the
kij are constants associated to the edges that satisfy

(17)
∑

j∈<ij>

kij = 1 − ni

6
, ni =

∑

j∈<ij>

1

at every vertex i; here ni is the number of neighbors of the i’th vertex. Note that
the conditions (17) do not in general determine the constants kij uniquely; one
could add a subsidiary condition, e.g., that

∑

k2
ij is minimized, to remove this

ambiguity. Note also that the total Euler character, which comes from a uniform

scaling of all lengths and thus does not change the angles αijk, comes entirely from
the last term, i.e., from ∂Γ/∂l0.

The strategy that we use to find this solution is as follows: we first consider
the simplest case, a triangulation of the sphere with three vertices, three edges,
and two faces, and prove the integrability conditions needed for Γ to exist are
satisfied. We then find Γ for this case and show that it immediately generalizes to
all triangulations with a certain homogeneity property, and finally generalize Γ to
an arbitrary triangulation.

It would be interesting to complete the correspondence, and find a way to com-
pute the result (16) as the anomalous effective action corresponding to a discrete
analog of, e.g., the scalar action (10); a promising approach might be the work of
S. Wilson on triangulated manifolds [4].

2. Integrability

We begin with a triangulation of the sphere with three vertices, three edges, and
two (identical) faces (a triangular “pillow”); we label the edges by their lengths
a, b, c and the opposite internal angles of the triangles by α, β and γ, respectively.
We also abbreviate

(18) a
∂Γ

∂a
≡ Da(Γ) , etc.,
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and, for simplicity, drop an overall factor of 1/(12π) in Γ. The defect at the vertex
α in this case is just 2(π−α), etc. Using this notation, the equations that we want
Γ to satisfy in the triangle are:

Da(Γ) + Db(Γ) = 2(π − γ) ,

Da(Γ) + Dc(Γ) = 2(π − β) ,

Db(Γ) + Dc(Γ) = 2(π − α) .(19)

If we add the first two equations, and subtract the third, we get Da(Γ) = (π− γ−
β + α). Since γ + β + α is π, we get

(20) Da(Γ) = 2α , Db(Γ) = 2β , Dc(Γ) = 2γ .

The function Γ can exist only if

(21) Db

(

Da(Γ)
)

= Da

(

Db(Γ)
)

.

Using

(22) α = arccos

(−a2 + b2 + c2

2bc

)

, β = arccos

(

a2 − b2 + c2

2ac

)

,

it is easy to see that (21) is satisfied. Thus the integrability conditions are satisfied
for the triangle.

The tetrahedron and octahedron give results similar to those of the triangle.
However, for a general triangulation, it is not easy to decouple the integrability
conditions and reduce them to equations that may be checked straightforwardly.
Instead, we construct Γ explicitly.

3. The effective action

Because the triangle is the simplest case, and can be related to any other system,
we have examined it in detail. As noted above, in this case the defect at a vertex
is directly related to the internal angle at that vertex; this suggests that in the
general case, where the defect is related to the sum of the internal angles at a
vertex, Γ should be just the sum of the Γ for each triangle. This is almost correct.

The basic strategy for the triangle was to rewrite the differential equations for
Γ in terms of new variables: the angles α, β, and the edge length c between them.
One can integrate some of the equations and finally arrive at Γ on a single triangle
∆:

(23) Γ∆ =
∑

i

[

(αi −
π

3
) ln

(

sin(αi)
)

−
∫ αi

π
2

ln
(

sin(y)
)

dy + kiπ ln(ai)
]

,

where {a1, a2, a3; α1, α2, α3} = {a, b, c; α, β, γ}, and ki are constants associated to
each edge. This can be simplified by integration by parts:

(24) Γ∆ =
∑

i

[

∫ αi

π
2

(y − π

3
) cot(y)dy + kiπ ln(ai)

]

.
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Note that all terms are expressed in terms of the internal angles αi except for
the last term, which explicitly involves ai. To prove that this is correct (and to
determine ki), we differentiate Γ:

ai

∂Γ

∂ai

≡ Dai
Γ =

∑

j

[

(αj −
π

3
) cot(αj)Dai

αj

]

+ kiπ

=
∑

j

[

− (αj −
π

3
)
cos(αj)Dai

cos(αj)

1 − cos2(αj)

]

+ kiπ .(25)

Then the contribution of one triangle to the defect at vertex 1 is given by

(Db+Dc)Γ = −(α− π

3
)
cos(α)(Db+Dc) cos(α)

1− cos2(α)
− (β − π

3
)
cos(β)(Db+Dc) cos(β)

1− cos2(β)

− (γ − π

3
)
cos(γ)(Db + Dc)cos(γ)

1 − cos2(γ)
+ (kb + kc)π

which can be explicitly evaluated using γ = π − α − β and (22), and gives:

(26) (Db + Dc)Γ =
π

3
− α + kbπ + kcπ .

This calculation works just as well for any triangle in a general triangulation to
give Γ on any surface.

The constants ki are assigned to every edge i. Clearly, in the case of the
triangular pillow, there is a trivial solution to ki = 1

3 for all i (recall that π − α is
half the defect at the vertex, but there are two triangles meeting at each vertex to
sum over in this case). More generally, for any locally homogeneous triangulation
in which all vertices have n nearest neighbors, we can choose

(27) ki =
1

n
− 1

6
.

However, for a general triangulation, the edge may connect vertices with different
numbers of edges connecting to them. In this case, it is not necessarily trivial to
find the appropriate values for all the ki.

4. A Problem in Graph Theory

On a general triangulated surface, the we have the condition

(28)
∑

j∈<ij>

kij = 1 − ni

6

at every vertex, where ni is the number of neighbors of the i’th vertex. This means
we want to find labels for the edges of a graph such that the sum at each vertex is
the same. The equations (28) are a system V linear equations on the E variables
kij , where V is the total number of vertices and E is the total number of edges;
note that E ≥ V for all triangulations. We can rewrite this in terms of the V ×E
dimensional matrix that describes the connections between vertices. This matrix
has exactly two ones, which correspond to two vertices, in each column, which
corresponds to the edge connecting the vertices.
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We are happy to thank L. Motl [6] for the following proof that a solution to these
equations always exists. The system of equations would not have a solution only if
there were a linear combination of the rows that vanishes, that is, if there existed
a vector that is perpendicular to all the columns. Because every column contains
exactly two ones, it suffices to consider a submatrix that defines a triangle:

(29)





1 1 0
1 0 1
0 1 1



 .

Since this matrix is nondegenerate, no nontrivial vector is annihilated by it. Since
every edge sits on a triangle, no such vector can exist for the whole triangulation.
Therefore, there must always be at least one way to label the edges.
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