
ARCHIVUM MATHEMATICUM (BRNO)

Tomus 42 (2006), Supplement, 119 – 146

LECTURES ON GENERALIZED COMPLEX GEOMETRY

AND SUPERSYMMETRY

MAXIM ZABZINE

Abstract. These are the lecture notes from the 26th Winter School “Ge-
ometry and Physics”, Czech Republic, Srńı, January 14 – 21, 2006. These
lectures are an introduction into the realm of generalized geometry based on
the tangent plus the cotangent bundle. In particular we discuss the rela-
tion of this geometry to physics, namely to two-dimensional field theories.
We explain in detail the relation between generalized complex geometry and
supersymmetry. We briefly review the generalized Kähler and generalized
Calabi-Yau manifolds and explain their appearance in physics.

Introduction

These are the notes for the lectures presented at the 26th Winter School “Ge-
ometry and Physics”, Srńı, Czech Republic, January 14–21, 2006. The principal
aim in these lectures has been to present, in a manner intelligible to both physi-
cists and mathematicians, the basic facts about the generalized complex geometry
and its relevance to string theory. Obviously, given the constraints of time, the
discussion of many subjects is somewhat abbreviated.

In [11] Nigel Hitchin introduced the notion of generalized complex structure
and generalized Calabi-Yau manifold. The essential idea is to take a manifold
M and replace the tangent bundle TM by TM ⊕ T ∗M , the tangent plus the
cotangent bundle. The generalized complex structure is a unification of symplectic
and complex geometries and is the complex analog of a Dirac structure, a concept
introduced by Courant and Weinstein [6], [7]. These mathematical structures can
be mapped into string theory. In a sense they can be derived and motivated from
certain aspects of string theory. The main goal of these lectures is to show the
appearance of generalized geometry in string theory. The subject is still in the
progress and some issues remain unresolved. In an effort to make a self-consistent
presentation we choose to concentrate on Hamiltonian aspects of the world-sheet
theory and we leave aside other aspects which are equally important.

The lectures are organized as follows. In Lecture 1 we introduce the relevant
mathematical concepts such as Lie algebroid, Dirac structure and generalized com-
plex structure. In the next Lecture we explain the appearance of these structures
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in string theory, in particular from the world-sheet point of view. We choose the
Hamiltonian formalism as most natural for the present purpose. In the last Lec-
ture we review more advanced topics, such as generalized Kähler and generalized
Calabi-Yau manifolds. We briefly comment on their appearance in string theory.

Let us make a comment on notation. Quite often we use the same letter for a
bundle morphism and a corresponding map between the spaces of sections. Hope-
fully it will not irritate the mathematicians and will not lead not any confusion.
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Lecture 1

This Lecture is devoted to a review of the relevant mathematical concepts,
such as Lie algebroid, Courant bracket, Dirac structure and generalized complex
geometry (also its real analog). The presentation is rather sketchy and we leave
many technical details aside.

For further reading on the Lie algebroids we recommend [21] and [5]. On details
of generalized complex geometry the reader may consult [10].

1.1. Lie algebroid. Any course on the differential geometry starts from the in-
troduction of TM , the tangent bundle of smooth manifold M . The sections of
TM are the vector fields. One of the most important properties of TM is that
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there exists a natural Lie bracket { , } between vector fields. The existence of
a Lie bracket between vectors fields allows the introduction of many interesting
geometrical structures. Let us consider the example of the complex structure:

Example 1.1. An almost complex structure J on M can be defined as a linear
map (endomorphism) J : TM → TM such that J2 = −1. This allows us to
introduce the projectors

π± =
1

2
(1± iJ) , π+ + π− = 1 ,

which induce a decomposition of complexified tangent space

TM ⊗ C = T 1,0M ⊕ T 0,1M

into a holomorphic and an antiholomorphic part, π−v = v v ∈ T (1,0)M and
π+w = w w ∈ T (0,1)M . The almost complex structure J is integrable if the
subbundles T (1,0)M and T (0,1)M are involutive with respect to the Lie bracket,
i.e. if

π−{π+v, π+w} = 0 , π+{π−v, π−w} = 0

for any v, w ∈ Γ(TM). The manifold M with such an integrable J is called a
complex manifold.

From this example we see that the Lie bracket plays a crucial role in the defi-
nition of integrability of a complex structure J .

TM is vector bundle with a Lie bracket. One can try to define a generalization
of TM as a vector bundle with a Lie bracket. Thus we come now to the definition
of a Lie algebroid

Definition 1.2. A Lie algebroid is a vector bundle L over a manifold M together
with a bundle map (the anchor) ρ : L→ TM and a Lie bracket { , } on the space
Γ(L) of sections of L satisfying

ρ ({v, k}) = {ρ(v), ρ(k)} , v, k ∈ Γ(L)

{v, fk} = f{v, k}+ (ρ(v)f)k , v, k ∈ Γ(L) , f ∈ C∞(M)

In this definition ρ(v) is a vector field and (ρ(v)f) is the action of the vector
field on the function f , i.e. the Lie derivative of f along ρ(v). Thus the set of
sections Γ(L) is a Lie algebra and there exists a Lie algebra homomorphism from
Γ(L) to Γ(TM).

To illustrate the definition 1.2 we consider the following examples

Example 1.3. The tangent bundle TM is a Lie algebroid with ρ = id .

Example 1.4. Any integrable subbundle L of TM is Lie algebroid. The anchor
map is inclusion

L →֒ TM

and the Lie bracket on Γ(L) is given by the restriction of the ordinary Lie bracket
to L.
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The notion of a Lie algebroid can obviously be complexified. For a complex Lie
algebroid L we can use the same definition 1.2 but with L being a complex vector
bundle and the anchor map ρ : L→ TM ⊗ C.

Example 1.5. In example 1.1 for the complex manifold M , T (1,0)M is an example
of a complex Lie algebroid with the anchor given by inclusion

T (1,0)M →֒ TM ⊗ C .

It is instructive to rewrite the definition of Lie algebroid in local coordinates.
On a trivializing chart we can choose the local coordinates Xµ (µ = 1, . . . , dimM)
and a basis eA (A = 1, . . . , rankL) on the fiber. In these local coordinates we
introduce the anchor ρµA and the structure constants according to

ρ(eA)(X) = ρµA(X)∂µ , {eA, eB} = fAB
CeC .

The compatibility conditions from the definition 1.2 imply the following equation

ρνA∂νρµB − ρνB∂νρµA = fAB
CρµC

ρµ[D∂µf
AB]

C + f
[AB

L f
D]L

C = 0

where [ ] stands for the antisymmetrization.
To any real Lie algebroid we can associate a characteristic foliation which is

defined as follows. The image of anchor map ρ

∆ = ρ(L) ⊂ TM

is spanned by the smooth vector fields and thus it defines a smooth distribution.
Moreover this distribution is involutive with the respect to the Lie bracket on TM .
If the rank of this distribution is constant then we can use the Frobenius theorem
and there exists a corresponding foliation on M . However tha rank of D does
not have to be a constant and one should use the generalization of the Frobenius
theorem due to Sussmann [24]. Thus for any real Lie algebroid ∆D = ρ(L) is
integrable distribution in sense of Sussmann and there exists a generalized foliation.

For a complex Lie algebroid the situation is a bit more involved. The image of
the anchor map

ρ(L) = E ⊂ TM ⊗ C

defines two real distribution

E + Ē = θ ⊗ C E ∩ Ē = ∆⊗ C .

If E + Ē = TM ⊗C then ∆ is a smooth real distribution in the sense of Sussmann
which defines a generalized foliation.

1.2. Geometry of TM ⊕ T ∗M . At this point it would be natural to ask the
following question. How can one generate interesting examples of real and complex
Lie algebroids? In this subsection we consider the tangent plus cotangent bundle
TM ⊕T ∗M or its complexification, (TM ⊕T ∗M)⊗C and later we will show how
one can construct Lie algebroids as subbundles of TM ⊕ T ∗M .

The section of tangent plus cotangent bundle, TM ⊕T ∗M , is a pair of objects,
a vector field v and a one-form ξ. We adopt the following notation for a section:
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v + ξ ∈ Γ(TM ⊕ T ∗M). There exists a natural symmetric pairing which is given
by

(1.1) 〈v + ξ, s + λ〉 =
1

2
(ivλ + isξ) ,

where ivλ is the contraction of a vector field v with one-form λ. In the local
coordinates (dxµ, ∂µ) the pairing (1.1) can be rewritten in matrix form as

(1.2) 〈A, B〉 = 〈v + ξ, s + λ〉 =
1

2

(

v ξ
)

(

0 1
1 0

)(

s

λ

)

= AtIB ,

where

I =
1

2

(

0 1
1 0

)

is a metric in a local coordinates (dxµ, ∂µ). I has signature (d, d) and thus here is
natural action of O(d, d) which preserves the pairing.

The subbundle L ⊂ TM ⊕ T ∗M is called isotropic if 〈A, B〉 = 0 for all A, B ∈
Γ(L). L is called maximally isotropic if

〈A, B〉 = 0 , ∀A ∈ Γ(L)

implies that B ∈ Γ(L).
There is no canonical Lie bracket defined on the sections of TM⊕T ∗M . However

one can introduce the following bracket

(1.3) [v + ξ, s + λ]c = {v, s}+ Lvλ− Lsω −
1

2
d(ivλ− isξ) ,

which is called the Courant bracket. In (1.3) Lv stands for the Lie derivative along
v and d is de Rham differential on the forms. The Courant bracket is antisymmetric
and it does not satisfy the Jacobi identity. Nevertheless it is interesting to examine
how it fails to satisfy the Jacobi identity. Introducing the Jacobiator

(1.4) Jac (A, B, C) =
[

[A, B]c, C
]

c
+
[

[B, C]c, A
]

c
+
[

[C, A]cB
]

c

one can prove the following proposition

Proposition 1.6.

Jac (A, B, C) = d
(

Nij (A, B, C)
)

where

Nij (A, B, C) =
1

3

(

〈[A, B]c, C〉+ 〈[B, C]c, A〉+ 〈[C, A]c, B〉
)

and where A, B, C ∈ Γ(TM ⊕ T ∗M).

Proof. Let us sketch the main steps of the proof. We define the Dorfman bracket

(v + ω) ∗ (s + λ) = {v, s}+ Lvλ− isdω ,

such that its antisymmetrization

[A, B]c = A ∗B −B ∗A
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produces the Courant bracket. From the definitions of the Courant and Dorfman
brackets we can also deduce the following relation

[A, B]c = A ∗B − d〈A, B〉 .

It is crucial that the Dorfman bracket satisfies a kind of Leibniz rule

A ∗ (B ∗C) = (A ∗B) ∗ C + B ∗ (A ∗ C) ,

which can be derived directly from the definition of the Dorfman bracket. The
combination of two last expressions leads to the formula for the Jacobiator in the
proposition. �

Next we would like to investigate the symmetries of the Courant bracket. Recall
that the symmetries of the Lie bracket on TM are described in terms of bundle
automorphism

TM

��

F
// TM

��

M
f

// M

such that

F
(

{v, k}
)

=
{

F (v), F (k)
}

.

For the Lie bracket on TM the only symmetry is diffeomorphism, i.e. F = f∗.
Analogously we look for the symmetries of the Courant bracket as bundle au-

tomorphism

TM ⊕ T ∗M
F

//

��

TM ⊕ T ∗M

��

M
f

// M

such that
[

F (A), F (B)
]

c
= F

(

[A, B]c
)

, A, B ∈ Γ(TM ⊕ T ∗M)

and in addition we require that it preserves the natural pairing 〈 , 〉. Obviously
Diff(M) is the symmetry of the Courant bracket with F = f∗⊕f∗. However there
exists an additional symmetry. For any two-form b ∈ Ω2(M) we can define the
transformation

(1.5) eb(v + λ) ≡ v + λ + ivb ,

which preserves the pairing. Under this transformation the Courant bracket trans-
forms as follows

(1.6)
[

eb(v + ξ), eb(s + λ)
]

c
= eb

(

[v + ξ, s + λ]
)

+ ivisdb .

If db = 0 then we have a an orthogonal symmetry of the Courant bracket. Thus
we arrive to the following proposition [10]:

Proposition 1.7. The group of orthogonal Courant automorphisms of TM⊕T ∗M

is semi-direct product of Diff (M) and Ω2
closed(M).
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TM ⊕ T ∗M equipped with the natural pairing 〈 , 〉 and the Courant bracket
[ , ]c is an example of the Courant algebroid. In general the Courant algebroid is
a vector bundle with the bracket [ , ]c and the pairing 〈 , 〉 which satisfy the same
properties we have described in this subsection.

1.3. Dirac structures. In this subsection we will use the properties of TM⊕T ∗M

in order to construct the examples of real and complex Lie algebroids.
The proposition 1.6 implies the following immediate corollary

Corollary 1.8. For maximally isotropic subbundle L of TM ⊕ T ∗M or (TM ⊕
T ∗M)⊗ C the following three statements are equivalent

* L is involutive
* Nij |L = 0
* Jac |L = 0

Here we call L involutive if for any A, B ∈ Γ(L) the bracket [A, B]c ∈ Γ(L).

Definition 1.9. An involutive maximally isotropic subbundle L of TM ⊕ T ∗M

(or (TM ⊕ T ∗M)⊗ C) is called a real (complex) Dirac structure.

It follows from corollary 1.8 that L is a Lie algebroid with the bracket given by
the restriction of the Courant bracket to L. Since Jac |L = 0 the bracket [ , ]c|L
is a Lie bracket. The anchor map is given by a natural projection to TM .

Let us consider some examples of Dirac structures

Example 1.10. The tangent bundle TM ⊂ TM⊕T ∗M is a Dirac structure since
TM is a maximally isotropic subbundle. Moreover the restriction of the Courant
bracket to TM is the standard Lie bracket on TM and thus it is an involutive
subbundle.

Example 1.11. Take a two-form ω ∈ Ω2(M) and consider the following subbundle
of TM ⊕ T ∗M

L = eω(TM) = {v + ivω, v ∈ TM}.

This subbundle is maximally isotropic since ω is a two-form. Moreover one can
show that L is involutive if dω = 0. Thus if ω is a presymplectic structure1 then
L is an example of a real Dirac structure.

Example 1.12. Instead we can take an antisymmetric bivector β ∈ Γ(∧2TM)
and define the subbundle

L = {iβλ + λ, λ ∈ T ∗M} ,

where iβλ is a contraction of bivector β with one-form λ. L is involutive when β

is a Poisson structure2. Thus for a Poisson manifold L is a real Dirac structure.

1The two-form ω is called a symplectic structure if dω = 0 and ∃ ω−1. If two-form is just
closed then it is called a presymplectic structure.

2The antisymmetric bivector βµν is called Poisson if it satisfies βµν∂νβρσ + βρν∂νβσµ +
βσν∂νβµρ = 0. The name of β is justified by the fact that {f, g} = (∂µf)βµν (∂νg) defines a

Poisson bracket for f, g ∈ C∞(M).
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Example 1.13. Let M to be a complex manifold and consider the following
subbundle of (TM ⊕ T ∗M)⊗ C

L = T (0,1)M ⊕ T ∗(1,0)M

with the sections being antiholomorphic vector fields plus holomorphic forms. L

is maximally isotropic and involutive (this follows immediately when [ , ]c|L is
written explicitly). Thus for a complex manifold, L is an example of a complex
Dirac structure.

1.4. Generalized complex structures. In this subsection we present the central
notion for us, a generalized complex structure. We will present the different but
equivalent definitions and discuss some basic examples of a generalized complex
structure.

We have defined all basic notions needed for the definition of a generalized
complex structure

Definition 1.14. The generalized complex structure is a complex Dirac structure
L ⊂ (TM ⊕ T ∗M)⊗ C such that L ∩ L̄ = {0} .

In other words a generalized complex structure gives us a decomposition

(TM ⊕ T ∗M)⊗ C = L⊕ L̄

where L and L̄ are complex Dirac structures.
There exist an alternative definition however. Namely we can mimic the stan-

dard description of the usual complex structure which can be defined as an endo-
morphism J : TM → TM with additional properties, see Example 1.1.

Thus in analogy we define the endomorphism

J : TM ⊕ T ∗M → TM ⊕ T ∗M ,

such that

(1.7) J 2 = −12d .

There exist projectors

Π± =
1

2
(12d ± iJ )

such that Π+ is projector for L̄ and Π− is the projector for L. However L (L̄) is
a maximally isotropic subbundle of (TM ⊕ T ∗M) ⊗ C. Thus we need to impose
a compatibility condition between the natural pairing and J in order to insure
that L and L̄ are maximally isotropic spaces. Isotropy of L implies that for any
sections A, B ∈ Γ((T ⊕ T ∗)⊗ C)

〈Π−A, Π−B〉 = AtΠt
−IΠ−B =

1

4
At(I + iJ tI + iIJ − J tIJ )B = 0

which produces the following condition

(1.8) J tI = −IJ .
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If there exists a J satisfying (1.7) and (1.8) then we refer to J as an almost
generalized complex structure. Next we have to add the integrability conditions,
namely that L and L̄ are involutive with respect to the Courant bracket, i.e.

(1.9) Π∓[Π±A, Π±B]c = 0

for any sections A, B ∈ Γ(TM ⊕ T ∗M). Thus L is +i-egeinbundle of J and L̄

is −i-egeinbundle of J . To summarize a generalized complex structure can be
defined as an endomorphism J with the properties (1.7), (1.8) and (1.9).

An endomorphism J : TM⊕T ∗M → TM⊕T ∗M satisfying (1.8) can be written
in the form

(1.10) J =

(

J P

L −J t

)

with J : TM → TM , P : T ∗M → TM , L : TM → T ∗M and J t : T ∗M → TM .
Indeed J can be identified with a (1, 1)-tensor, L with a two-form and P with an
antisymmetric bivector. Imposing further the conditions (1.7) and (1.9) we arrive
to the set of algebraic and differential conditions on the tensors J , L and P which
were first studied in [17].

To illustrate the definition of a generalized complex structure we consider a few
examples.

Example 1.15. Consider J of the following form

J =

(

J 0
0 −J t

)

.

Such J is a generalized complex structure if and only if J is a complex structure.
The corresponding Dirac structure is

L = T (0,1)M ⊕ T ∗(1,0)M

as in example 1.13.

Example 1.16. Consider a J of the form

J =

(

0 −ω−1

ω 0

)

.

Such J is a generalized complex structure if and only if ω is a symplectic structure.
The corresponding Dirac structure is defined as follows

L = {v − i(ivω), v ∈ TM ⊗ C} .

Example 1.17. Consider a generic generalized complex structure J written in the
form (1.10). Investigation of the conditions (1.7) and (1.9) leads to the fact that
P is a Poisson tensor. Furthermore one can show that locally there is a symplectic
foliation with a transverse complex structure. Thus locally a generalized complex
manifold is a product a symplectic and complex manifolds [10]. The dimension of
the generalized complex manifold is even.
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1.5. Generalized product structure. Both complex structure and generalized
complex structures have real analogs. In this subsection we will discuss them
briefly. Some of the observations presented in this subsection are original. However
they follow rather straightforwardly from a slight modification of the complex case.

The complex structure described in the example 1.1 has a real analog which is
called a product structure [25].

Example 1.18. An almost product structure Π on M can be defined as a map
Π : TM → TM such that Π2 = 1. This allows us to introduce the projectors

π± =
1

2
(1±Π) , π+ + π− = 1 ,

which induce the decomposition of real tangent space

TM = T +M ⊕ T−M

into two parts, π−v = v v ∈ T +M and π+w = w w ∈ T−M . The dimension of
T +M can be different from the dimension of T−M and thus the manifold M does
not have to be even dimensional. The almost product structure Π is integrable if
the subbundles T +M and T−M are involutive with respect to the Lie bracket, i.e.

π−{π+v, π+w} = 0 , π+{π−v, π−w} = 0

for any v, w ∈ Γ(TM). We refer to an integrable almost product structure as
product structure. A manifold M with such integrable Π is called a locally product
manifold.

There exists always the trivial example of such structure Π = id .
Obviously the definition 1.14 of generalized complex structure also has a real

analog.

Definition 1.19. A generalized product structure is a pair of real Dirac structures
L± such that L+ ∩ L− = {0}. In other words

TM ⊕ T ∗M = L+ ⊕ L−

Indeed the definitions 1.14 and 1.19 are examples of complex and real Lie bial-
gebroids [19]. However we will not discuss this structure here.

Analogously to the complex case we can define an almost generalized product
structure by means of an endomorphims

R : TM ⊕ T ∗M → TM ⊕ T ∗M

such that

R2 = 12d ,(1.11)

and

RtI = −IR .(1.12)
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The corresponding projectors

p± =
1

2
(12d ±R)

define two maximally isotropic subspaces L+ and L−. The integrability conditions
are given by

(1.13) p∓[p±A, p±B]c = 0 ,

where A and B are any sections of TM ⊕ T ∗M . In analogy with (1.10) we can
write an endormorphism which satisfies (1.12) as follows

(1.14) R =

(

Π P̃

L̃ −Πt

)

,

where Π is a (1, 1)-tensor, P̃ is an antisymmetric bivector and L̃ is a two-form.
The conditions (1.11) and (1.13) imply similar algebraic and the same differential

conditions for the tensors Π, L̃ and P̃ as in [17].
Let us give a few examples of a generalized product structure.

Example 1.20. Consider R of the following form

R =

(

Π 0
0 −Πt

)

.

Such an R is a generalized product structure if and only if Π is a standard prod-
uct structure. This example justifies the name, we have proposed: a generalized
product structure. The Dirac structure L+ is

L+ = T +M ⊕ T ∗−M ,

where λ ∈ T ∗−M if π+λ = λ, see Example 1.18.

Example 1.21. Consider an R of the form

R =

(

0 ω−1

ω 0

)

.

Such an R is a generalized product structure if and only if ω is a symplectic
structure.

For the generic generalized product structure R (1.14) P̃ is a Poisson structure.
Generalizing the complex case one can show that locally there is a symplectic
foliation with a transverse product structure. Thus locally a generalized product
manifold is a product of symplectic and locally product manifolds.

1.6. Twisted case. Indeed one can construct on TM ⊕ T ∗M more than one
bracket with the same properties as the Courant bracket. Namely the different
brackets are parametrized by a closed three form H ∈ Ω3(M), dH = 0 and are
defined as follows

(1.15) [v + ξ, s + λ]H = [v + ξ, s + λ]c + ivisH .
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We refer to this bracket as the twisted Courant bracket. This bracket has the same
properties as the Courant bracket. If H = db then the last term on the right hand
side of (1.15) can be generated by non-closed b-transform, see (1.6).

Thus we can define a twisted Dirac structure, a twisted generalized complex
structure and a twisted generalized product structure. In all definitions the Courant
bracket [ , ]c should be replaced by the twisted Courant bracket [ , ]H . For exam-
ple, a twisted generalized complex structure J satisfies (1.7) and (1.8) and now
the integrability is defined with respect to twisted Courant bracket as

(1.16) Π∓

[

Π±(v + ξ), Π±(s + λ)
]

H
= 0 .

There is a nice relation of the twisted version to gerbes [10, 13]. However due
to lack of time we will have to leave it aside.

Lecture 2

In this Lecture we turn our attention to physics. In particular we would like to
show that the mathematical notions introduced in Lecture 1 appear naturally in
the context of string theory. Here we focus on the classical aspect of the hamil-
tonian formalism for the world-sheet theory.

2.7. String phase space T ∗LM . A wide class of sigma models share the follow-
ing phase space description. For the world-sheet Σ = S1×R the phase space can be
identified with a cotangent bundle T ∗LM of the loop space LM = {X : S1 →M}.
Using local coordinates Xµ(σ) and their conjugate momenta pµ(σ) the standard
symplectic form on T ∗LM is given by

(2.17) ω =

∫

S1

dσ δXµ ∧ δpµ,

where δ is de Rham differential on T ∗LM and σ is a coordinate along S1. The
symplectic form (2.17) can be twisted by a closed three form H ∈ Ω3(M), dH = 0
as follows

(2.18) ω =

∫

S1

dσ (δXµ ∧ δpµ + Hµνρ∂XµδXν ∧ δXρ) ,

where ∂ ≡ ∂σ is derivative with respect to σ. For both symplectic structures the
following transformation is canonical

(2.19) Xµ → Xµ , pµ → pµ + bµν∂Xν

associated with a closed two form, b ∈ Ω2(M), db = 0. There are also canonical
transformations which correspond to Diff(M) when X transforms as a coordinate
and p as a section of the cotangent bundle T ∗M . In fact the group of local canonical
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transformations3 for T ∗LM is a semidirect product of Diff(M) and Ω2
closed(M).

Therefore we come to the following proposition

Proposition 2.22. The group of local canonical transformations on T ∗LM is
isomorphic to the group of orthogonal automorphisms of Courant bracket.

See the proposition 1.7 and the discussion of the symmetries on the Courant
bracket in the previous Lecture. The proposition 2.22 is a first indication that the
geometry of T ∗LM is related to the generalized geometry of TM ⊕ T ∗M .

2.8. Courant bracket and T ∗LM . Indeed the Courant bracket by itself can be
“derived” from T ∗LM . Here we present a nice observation on the relation between
the Courant bracket and the Poisson bracket on C∞(T ∗LM) which is due to [1].

Let us define for any section (v + ξ) ∈ Γ(TM ⊕ T ∗M) (or its complexified
version) a current (an element of C∞(T ∗LM)) as follows

(2.20) Jǫ(v + ξ) =

∫

S1

dσ ǫ(vµpµ + ξµ∂Xµ) ,

where ǫ ∈ C∞(S1) is a test function. Using the symplectic structure (2.17) we can
calculate the Poisson bracket between two currents

(2.21)
{

Jǫ1(A), Jǫ2(B)
}

= −Jǫ1ǫ2

(

[A, B]c
)

+

∫

S1

dσ (ǫ1∂ǫ2 − ǫ2∂ǫ1)〈A, B〉 ,

where A, B ∈ Γ(TM ⊕ T ∗M). On the right hand side of (2.21) the Courant
bracket and natural pairing on TM ⊕ T ∗M appear. It is important to stress that
the Poisson bracket { , } is associative while the Courant bracket [ , ]c is not.

If we consider L to be a real (complex) Dirac structure (see definition 1.9) then
for A, B ∈ Γ(L)

(2.22)
{

Jǫ1(A), Jǫ2(B)
}

= −Jǫ1ǫ2

(

[A, B]c|L
)

,

where [ , ]c|L is the restriction of the Courant bracket to L. Due to the isotropy
of L the last term on the right hand side of (2.21) vanishes and [ , ]c|L is a Lie
bracket on Γ(L). Thus there is a natural relation between the Dirac structures
and the current algebras.

For any real (complex) Dirac structure L we can define the set of constraints in
T ∗LM

(2.23) vµpµ + ξµ∂Xµ = 0 ,

where (v + ξ) ∈ Γ(L). The conditions (2.23) are first class constraints due to
(2.22), i.e. they define a coisotropic submanifold of T ∗LM . Moreover the number of
independent constraints is equal to dim L = dimM and thus the constraints (2.23)

3By local canonical transformation we mean those canonical transformations where the new
pair (X̃, p̃) is given as a local expression in terms of the old one (X, p). For example, in the dis-

cussion of T-duality one uses non-local canonical transformations, i.e. X̃ is a non-local expression
in terms of X.
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correspond to a topological field theory (TFT). Since L is maximally isotropic it
then follows from (2.23) that

(2.24)

(

∂X

p

)

∈ X∗(L) ,

i.e. ∂X + p take values in the subbundle L (more precisely, in the pullback of
L). The set (2.24) is equivalent to (2.23). Thus with any real (complex) Dirac
structure we can associate a classical TFT.

Also we could calculate the bracket (2.21) between the currents using the sym-
plectic structure (2.18) with H . In this case the Courant bracket should be replaced
by the twisted Courant bracket. Moreover we have to consider the twisted Dirac
structure instead of a Dirac structure. Otherwise all statement will remain true.

2.9. String super phase space T ∗LM . Next we would like to extend our con-
struction and add odd partners to the fields (X, p). This will allow us to introduce
more structure.

Let S1,1 be a “supercircle” with coordinates (σ, θ), where σ is a coordinate along
S1 and θ is odd parter of σ such that θ2 = 0. Then the corresponding superloop
space is the space of maps, LM = {Φ : S1,1 → M}. The phase space is given by
the cotangent bundle ΠT ∗LM of LM , however with reversed parity on the fibers.
In what follows we use the letter “Π” to describe the reversed parity on the fibers.
Equivalently we can describe the space ΠT ∗LM as the space of maps

ΠTS1 → ΠT ∗M ,

where the supermanifold ΠTS1 (≡ S1,1) is the tangent bundle of S1 with reversed
parity of the fiber and the supermanifold ΠT ∗M is the cotangent bundle of M

with reversed parity on the fiber.
In local coordinates we have a scalar superfield Φµ(σ, θ) and a conjugate mo-

mentum, spinorial superfield Sµ(σ, θ) with the following expansion

(2.25) Φµ(σ, θ) = Xµ(σ) + θλµ(σ) , Sµ(σ, θ) = ρµ(σ) + iθpµ(σ) ,

where λ and ρ are fermions. S is a section of the pullback X∗(ΠT ∗M) of the cotan-
gent bundle of M , considered as an odd bundle. The corresponding symplectic
structure on ΠT ∗LM is

(2.26) ω = i

∫

S1,1

dσdθ (δSµ ∧ δΦµ −HµνρDΦµδΦν ∧ δΦρ) ,

such that after integration over θ the bosonic part of (2.26) coincides with (2.18).
The above symplectic structure makes C∞(ΠT ∗LM) (the space of smooth func-

tionals on ΠT ∗LM) into superPoisson algebra. The space C∞(ΠT ∗LM) has a
natural Z2 grading with |F | = 0 for even and |F | = 1 for odd functionals. For a
functional F (S, φ) we define the left and right functional derivatives as follows

(2.27) δF =

∫

dσdθ

(

F
←−
δ

δSµ

δSµ +
F
←−
δ

δφµ
δφµ

)

=

∫

dσdθ

(

δSµ

−→
δ F

δSµ

+ δφµ

−→
δ F

δφµ

)

.
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Using this definition the Poisson bracket corresponding to (2.26) with H = 0 is
given by

{F, G} = i

∫

dσdθ

(

F
←−
δ

δSµ

−→
δ G

δφµ
−

F
←−
δ

δφµ

−→
δ G

δSµ

)

.(2.28)

and with H 6= 0

{F, G}H = i

∫

dσdθ

(

F
←−
δ

δSµ

−→
δ G

δφµ
−

F
←−
δ

δφµ

−→
δ G

δSµ

+ 2
F
←−
δ

δSν

HµνρDφµ

−→
δ G

δSρ

)

.(2.29)

These brackets { , } and { , }H satisfy the appropriate graded versions of anti-
symmetry, of the Leibnitz rule and of the Jacobi identity

{F, G} =− (−1)|F ||G|{G, F} ,(2.30)

{F, GH} = {F, G}H + (−1)|F ||G|G{F, H} ,(2.31)

(−1)|H||F |{F, {G, H}} + (−1)|F ||G|{G, {H, F}}+ (−1)|G||H|{H, {F, G}} = 0 .

(2.32)

Next on ΠTS1 we have two natural operations, D and Q. The derivative D is
defined as

D =
∂

∂θ
+ iθ∂(2.33)

and the operator Q as

Q =
∂

∂θ
− iθ∂ .(2.34)

D and Q satisfy the following algebra

D2 = i∂ , Q2 = −i∂ , DQ + QD = 0 .(2.35)

Here ∂ stands for the derivative along the loop, i.e. along σ.
Again as in the purely bosonic case (see the proposition 2.22) the group of

local canonical transformations of ΠT ∗LM is a semidirect product of Diff(M) and
Ω2(M). The b-transform now is given by

(2.36) Φµ → Φµ , Sµ → Sµ − bµνDΦν ,

with b ∈ Ω2
closed(M). Moreover the discussion from subsection 2.8 can be general-

ized to the supercase.
Consider first C∞(ΠT ∗LM) with { , }. By construction of ΠT ∗LM there exists

the following generator

(2.37) Q1(ǫ) = −

∫

S1,1

dσ dθ ǫSµQΦµ ,
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where Q is the operator introduced in (2.34) and ǫ is an odd parameter (odd test
function). Using (2.26) we can calculate the Poisson brackets for these generators

(2.38)
{

Q1(ǫ),Q1(ǫ̃)
}

= P(2ǫǫ̃) ,

where P is the generator of translations along σ

(2.39) P(a) =

∫

S1,1

dσ dθ aSµ∂Φµ

with a being an even parameter. In physics such a generator Q1(ǫ) is called a su-
persymmetry generator and it has the meaning of a square root of the translations,
see (2.38). Furthermore we call it a manifest supersymmetry since it exits as part
of the superspace formalism. One can construct a similar generator of manifest
supersymmetry on C∞(ΠT ∗LM) with { , }H .

2.10. Extended supersymmetry and generalized complex structure. Con-
sider C∞(ΠT ∗LM) with { , }. We look for a second supersymmetry generator.
The second supersymmetry should be generated by some Q2(ǫ) such that it satis-
fies the following brackets

(2.40)
{

Q1(ǫ),Q2(ǫ̃)
}

= 0 ,
{

Q2(ǫ),Q2(ǫ̃)
}

= P(2ǫǫ̃) .

If on
(

C∞(ΠT ∗LM), { , }
)

there exist two generators which satisfy (2.38) and
(2.40) then we say that there exists an N = 2 supersymmetry.

By dimensional arguments, there is a unique ansatz for the generator Q2(ǫ) on
ΠT ∗LM which does not involve any dimensionful parameters

(2.41) Q2(ǫ) = −
1

2

∫

S1,1

dσ dθ ǫ
(

2DΦρSνJν
ρ + DΦνDΦρLνρ + SνSρP

νρ
)

.

We can combine DΦ and S into a single object

(2.42) Λ =

(

DΦ
S

)

,

which can be thought of as a section of the pullback of X∗(Π(TM ⊕ T ∗M)). The
tensors in (2.41) can be combined into a single object

(2.43) J =

(

−J P

L J t

)

,

which is understood now as J : TM ⊕ T ∗M → TM ⊕ T ∗M . With this new
notation we can rewrite (2.41) as follows

(2.44) Q2(ǫ) = −
1

2

∫

S1,1

dσdθ ǫ〈Λ,JΛ〉 ,

where 〈 , 〉 is understood as the induced pairing on X∗(Π(TM ⊕ T ∗M)). The
following proposition from [26] tells us when there exists N = 2 supersymmetry.

Proposition 2.23. ΠT ∗LM admits N = 2 supersymmetry if and only if M is a
generalized complex manifold.
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Proof. We have to impose the algebra (2.40) on Q2(ǫ). The calculation of the
second bracket is lengthy but straightforward and the corresponding coordinate
expressions are given in [17]. Therefore we give only the final result of the calcu-
lation. Thus the algebra (2.40) satisfied if and only if

(2.45) J 2 = −12d Π∓[Π±(X + η), Π±(Y + η)]c = 0 ,

where Π± = 1
2 (12d ± iJ ). Thus (2.45) together with the fact that J (see (2.43))

respects the natural pairing (J tI = −IJ ) implies that J is a generalized complex
structure. Π± project to two maximally isotropic involutive subbundles L and L̄

such that (T ⊕T ∗)⊗C = L⊕ L̄. Thus we have shown that ΠT ∗LM admits N = 2
supersymmetry if and only if M is a generalized complex manifold. Our derivation
is algebraic in nature and does not depend on the details of the model. �

The canonical transformations of ΠT ∗LM cannot change any brackets. Thus
the canonical transformation corresponding to a b-transform (2.36)

(2.46)

(

DΦ
S

)

→

(

1 0
−b 1

)(

DΦ
S

)

induces the following transformation of the generalized complex structure

(2.47) Jb =

(

1 0
b 1

)

J

(

1 0
−b 1

)

and thus gives rise to a new extended supersymmetry generator. Therefore Jb

is again the generalized complex structure. This is a physical explanation of the
behavior of generalized complex structure under b-transform.

Using δi(ǫ)• = {Qi(ǫ), •} we can write down the explicit form for the second
supersymmetry transformations as follows

δ2(ǫ)Φ
µ = iǫDΦνJµ

ν − iǫSνPµν(2.48)

δ2(ǫ)Sµ = iǫD(SνJν
µ)−

i

2
ǫSνSρP

νρ
,µ + iǫD(DΦνLµν)(2.49)

+ iǫSνDΦρJν
ρ,µ −

i

2
ǫDΦνDΦρLνρ,µ.

Indeed it coincides with the supersymmetry transformation analyzed in [17].
Also we could look for N = 2 supersymmetry for C∞(ΠT ∗LM) with { , }H .

Indeed the result is exactly the same but now we have to have a twisted generalized
complex manifold.

Another comment: We may change the N = 2 supersymmetry algebra (2.38)
and (2.40) slightly. Namely we can replace the last bracket in (2.40) by

(2.50)
{

Q2(ǫ),Q2(ǫ̃)
}

= −P(2ǫǫ̃) .

This new algebra is sometimes called N = 2 pseudo-supersymmetry. In this case
we still use the ansatz (2.41) for Q2. However now we get

Proposition 2.24. ΠT ∗LM admits N = 2 pseudo-supersymmetry if and only if
M is a generalized product manifold.
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The proof of this statement is exactly the same as before. The only difference
is that the condition J 2 = −12d get replaced by J 2 = 12d.

2.11. BRST interpretation. Alternatively we can relate the generalized com-
plex structure to an odd differential s on C∞(ΠT ∗LM) and thus we enter the
realm of Hamiltonian BRST formalism. This formalism was developed to quan-
tize theories with the first-class constraints.

Indeed the supersymmetry generators (2.37) and (2.41) can be thought of as
odd transformations (by putting formally ǫ = 1) which square to the translation
generator. Thus we can define the odd generator

(2.51) q = Q1(1) + iQ2(1) =

−

∫

S1,1

dσdθ (SµQΦµ + iDΦρSνJν
ρ +

i

2
DΦνDΦρLνρ +

i

2
SνSρP

νρ) ,

which is called the BRST generator. The odd generator q generates to the follow-
ing transformation s

sΦµ = {q, Φµ} = QΦµ + iDΦνJµ
ν − iSνPµν ,(2.52)

sSµ = {q, Sµ} = QSµ + iD(SνJν
µ)−

i

2
SνSρP

νρ
,µ(2.53)

+ iD(DΦνLµν) + iSνDΦρJν
ρ,µ −

i

2
DΦνDΦρLνρ,µ ,

which is nilpotent due the properties of manifest and nonmanifest supersymmetry
trasnformations. Thus s2 = 0 if and only if J defined in (2.43) is a generalized
complex structure. In doing the calculations one should remember that now s is
odd operation and whenever it passes through an odd object (e.g., D, Q and S)
there is extra minus. The existence of odd nilpotent operation (2.52)-(2.53) is
typical for models with an N = 2 supersymmetry algebra and corresponds to a
topological twist of the N = 2 algebra.

We can also repeat the argument for the N = 2 pseudo-supersymmetry algebra
and now define the odd BRST generator as follows

(2.54) q = Q1(1) + Q2(1) .

This q generates an odd nilpotent symmetry if there exists a generalized product
structure.

We can equally well work with the twisted bracket { , }H and all results will
be still valid provided that we insert the word ”twisted” in appropriate places. We
can summarize our discussion in the following proposition.

Proposition 2.25. The superPoisson algebra C∞(ΠT ∗LM) with { , } ({ , }H)
admits odd derivation s if and only if there exists on M either (twisted) generalized
complex or (twisted) generalized product structures.
In other words the existence of an odd derivation s on C∞(ΠT ∗LM) is related to
real (complex) Lie bialgebroid structure on TM ⊕ T ∗M .
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The space ΠT ∗LM with odd nilpotent generator q can be interpreted as an
extended phase space for a set of the first-class constraints in T ∗LM . The ap-
propriate linear combinations of ρ and λ are interpreted as ghosts and antighosts.
The differential s on C∞(ΠT ∗LM) induces the cohomology H•

s
which is also a

superPoisson algebra.
It is instructive to expand the transformations (2.52)-(2.53) in components. In

particular if we look at the bosonic fixed points of the BRST action we arrive at
the following constraint

(12d + iJ )

(

∂X

p

)

= 0 ,

which is exactly the same as the condition (2.24). Thus we got the BRST complex
for the first-class constraints given by (2.23). These constraints correspond to
TFTs as we have discussed, although the BRST complex above requires more
structure than just simply a (twisted) Dirac structure.

2.12. Generalized complex submanifolds. So far we have discussed the hamil-
tonian formalism for two dimensional field theory without boundaries. All previous
discussion can be generalized to the case hamiltonian system with boundaries.

We start from the notion of a generalized submanifold. Consider a manifold M

with a closed three form H which specifies the Courant bracket.

Definition 2.26. The data (D, B) is called a generalized submanifold if D is a
submanifold of M and B ∈ Ω2(D) is a two-from on D such that H |D = dB. For
any generalized submanifold we define a generalized tangent bundle

τB
D = {v + ξ ∈ TD ⊕ T ∗M |D, ξ|D = ivB} .

Example 2.27. Consider a manifold M with H = 0, then any submanifold D

of M is a generalized submanifold with B = 0. The corresponding generalized
tangent bundle is

τ0
D = {v + ξ ∈ TD⊕N∗D}

with N∗D being a conormal bundle of D. Also we can consider (D, B), a sub-
manifold with a closed two-form on it, B ∈ Ω2(D), dB = 0. Such a pair (D, B) is
a generalized submanifold with generalized tangent bundle

τB
D = eBτ0

D ,

where the action of eB is defined in (1.5).

The pure bosonic model is defined as follows. Instead of the loop space LM we
now consider the path space

PM =
{

X : [0, 1]→M, X(0) ∈ D0, X(1) ∈ D1

}

where the end points are confined to prescribed submanifolds of M . The phase
space will be the cotangent bundle T ∗PM of path space. However to write down a
symplectic structure on T ∗PM we have to require that D0 and D1 give rise to gen-
eralized submanifolds, (D0, B

0) and (D1, B
1), respectively. Thus the symplectic
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structure on T ∗PM is

ω =

1
∫

0

dσ (δXµ ∧ δpµ + Hµνρ∂XµδXν ∧ δXρ)

+ B0
µν(X(0))δXµ(0) ∧ δXν(0)−B1

µν(X(1))δXµ(1) ∧ δXν(1) ,

where δ is de Rham differential on T ∗PM . It is crucial that (D0, B
0) and (D1, B

1)
are generalized submanifolds for ω to be closed.

Next we have to introduce the super-version of T ∗PM . This can be done
in different ways. For example we can define the cotangent bundle ΠT ∗PM of
superpath space as the set of maps

ΠTP → ΠT ∗M

with the appropriate boundary conditions which can be written as

Λ(1) ∈ X∗(ΠτB1

D1
) , Λ(0) ∈ X∗(ΠτB0

D0
)

with Λ defined in (2.42). These boundary conditions are motivated by the cancel-
lation of unwanted boundary terms in the calculations [26].

Next we define a natural class of submanifold of a (twisted) generalized complex
submanifold M .

Definition 2.28. A generalized submanifold (D, B) is called a generalized com-
plex submanifold if τB

D is stable under J , i.e. if

J τB
D ⊂ τB

D .

Finally we would like to realize the N = 2 supersymmetry algebra which has
been discussed in previous subsections. The most of the analysis is completely
identical to the previous discussion. The novelty is the additional boundary terms
in the calculations. We present the final result and skip all technicalities.

Proposition 2.29. ΠT ∗PM admits N = 2 supersymmetry if and only if M is
a (twisted) generalized complex manifold and (Di, B

i) are generalized complex
submanifolds of M .

It is quite easy to generalize this result to the real case when we talk about
N = 2 pseudo-supersymmetry. The correct notion would be a generalized product
submanifold, i.e. such generalized submanifold (D, B) when τB

D is stable under R
(see the definition 1.19 and the discussion afterwards). This is quite straightfor-
ward and we will not discuss it here.

Lecture 3

In this Lecture we review more advanced topics such as (twisted) generalized
Kähler geometry and (twisted) generalized Calabi-Yau manifolds. In our presen-
tation we will be rather sketchy and give some of the statement without much
elaboration. We concentrate only on the complex case, although obviously there
exists a real version [2].
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On physics side we would like to explain briefly that the generalized Kähler
geometry naturally arises when we specify the model, i.e. we choose a concrete
Hamiltonian in C∞(ΠT ∗LM), while the generalized Calabi-Yau conditions arise
when one tries to quantize this model.

3.13. Generalized Kähler manifolds. TM ⊕ T ∗M has a natural pairing 〈 , 〉.
However one can introduce the analog of the usual positive definite metric.

Definition 3.30. A generalized metric is a subbundle C+ ⊂ TM ⊕ T ∗M of rank
d (dim M = d) on which the induced metric is positive definite

In other words we have splitting

TM ⊕ T ∗M = C+ ⊕ C− ,

such that there exists a positive metric on TM ⊕ T ∗M given by

〈 , 〉|C+
− 〈 , 〉|C

−

.

Alternatively the splitting into C± can be described by an endomorphims

G : TM ⊕ T ∗M → TM ⊕ T ∗M , G2 = 1 , GtI = IG ,

such that 1
2 (12d ± G) projects out C±. In order to write G explicitly we need the

following proposition [10]:

Proposition 3.31. C± is the graph of (b ± g) : T → T ∗ where g is Riemannian
metric and b is two form.

As a result G is given by

(3.55) G =

(

1 0
b 1

)(

0 g−1

g 0

)(

1 0
−b 1

)

=

(

−g−1b g−1

g − bg−1b bg−1

)

.

Thus the standard metric g together with the two-form b give rise to a generalized
metric as in the definition 3.30.

Now we can define the following interesting construction.

Definition 3.32. A (twisted) generalized Kähler structure is a pair J1, J2 of
commuting (twisted) generalized complex structures such that G = −J1J2 is a
positive definite metric (generalized metric) on TM ⊕ T ∗M .

Indeed this is the generalization of the Kähler geometry as can been seen from
the following example.

Example 3.33. A Kähler manifold is a complex hermitian manifold (J, g) with
a closed Kähler form ω = gJ . A Kähler manifold is an example of a generalized
Kähler manifold where J1 is given by example 1.15 and J2 by example 1.16.
Since the corresponding symplectic structure ω is a Kähler form, two generalized
complex structures commute and their product is

G = −J1J2 =

(

0 g−1

g 0

)

.

This example justifies the name, a generalized Kähler geometry.
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For (twisted) generalized Kähler manifold there are the following decomposi-
tions of complexified tangent and cotangent bundle

(TM ⊕ T ∗M)⊗ C = L1 ⊕ L̄1 = L2 ⊕ L̄2 ,

where the first decomposition corresponds to J1 and second to J2. Since [J1,J2] =
0 we can do both decompositions simultaneously

(TM ⊕ T ∗M)⊗ C = L
+
1 ⊕ L

−
1 ⊕ L̄

+
1 ⊕ L̄

−
1 ,

where the space L1 (+i-egeinbundle of J1) can be decomposed into L
±
1 , ±i-

egeinbundle of J2. In its turn the generalized metric subbundles are defined as

C± ⊗ C = L
±
1 ⊗ L̄

±
1 .

One may wonder if there exists an alternative geometrical description for a
(twisted) generalized Kähler manifolds. Indeed there is one.

Definition 3.34. The Gates-Hull-Roček geometry is the following geometrical
data: two complex structures J±, metric g and closed three form H which satisfy

J t
±gJ± = g

∇(±)J± = 0

with the connections defined as Γ(±) = Γ ± g−1H , where Γ is a Levi-Civita con-
nection for g.

This geometry was originally derived by looking at the general N = (2, 2)
supersymmetric sigma model [8]. In [10] the equivalence of these two seemingly
unrelated descriptions has been proven.

Proposition 3.35. The Gates-Hull-Roček geometry is equivalent to a twisted
generalized Kähler geometry.

As we have discussed briefly a generalized complex manifold locally looks like
a product of symplectic and complex manifolds. The local structure of (twisted)
generalized Kähler manifolds is somewhat involved. Namely the local structure is
given by the set of symplectic foliations arising from two real Poisson structures [20]
and holomorphic Poisson structure [12]. Moreover one can show that in analogy
with Kähler geometry there exists a generalized Kähler potential which encodes
all local geometry in terms of a single function [18].

3.14. N = (2, 2) sigma model. In the previous Lecture we have discussed the re-
lation between (twisted) generalized complex geometry and N = 2 supersymmetry
algebra on ΠT ∗LM . Our discussion has been model independent. A choice of con-
crete model corresponds to a choice of Hamiltonian function H(a) ∈ C∞(ΠT ∗LM)
which generates a time evolution of a system. Then the natural question to ask if
the model is invariant under the N = 2 supersymmetry, namely

(3.56)
{

Q2(ǫ),H(a)
}

= 0 ,

where Q2(ǫ) is defined in (2.41) with the corresponding (twisted) generalized com-
plex structure J .
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To be concrete we can choose the Hamiltonian which corresponds to N = (2, 2)
sigma model used by Gates, Hull and Roček in [8]

H(a) =
1

2

∫

dσ dθ a
(

i∂φµDφνgµν + SµDSνgµν + SσDφνSγgλγΓσ
νλ

−
1

3
HµνρSµSνSρ + DφµDφνSρH

ρ
µν ) ,(3.57)

where a is just an even test function. This Hamiltonian has been derived in [3].
This Hamiltonian is invariant under the N = 2 supersupersymmetry if

J1 = J , J2 = JG

is a (twisted) generalized Kähler structure, see the definition 3.32. For the Hamil-
tonian (3.57) G is defined by (3.55) by g and b = 0, H corresponds the closed
three-form which is used in the definition of the twisted Courant bracket. Indeed
on a (twisted) generalized Kähler manifold H is invariant under supersymmetries
corresponding to both (twisted) generalized complex structures, J1 and J2.

Also the Hamiltonian (3.57) can be interpreted in the context of TFTs. Namely
H is the gauge fixed Hamiltonian for the TFT we have discussed in subsection 2.11
with s being the BRST-transformations defined in (2.52)-(2.53). The Hamiltonian
(3.57) is BRST-exact

H = s

(

i

4

∫

dσdθ 〈Λ,JGΛ〉

)

= s

(

i

4

∫

dσdθ 〈Λ,J2Λ〉

)

.

Moreover the translation operator P is given by

P = s

(

i

4

∫

dσdθ 〈Λ,JΛ〉

)

= s

(

i

4

∫

dσdθ 〈Λ,J1Λ〉

)

.

The N = (2, 2) theory (3.57) is invariant under two extended supersymmetries
associated to generalized complex structures, J1 and J2. Thus there are two
possible BRST symmetries and correspondingly two TFTs associated either to J1

or to J2. In the literature these two TFTs are called either A or B topological
twists of the N = (2, 2) supersymmetric theory.

Indeed one can choose a different Hamiltonian function on ΠT ∗LM and arrive
to different geometries which involve the generalized complex structure, e.g. see
[4].

3.15. Generalized Calabi-Yau manifolds. In this subsection we define the no-
tion of generalized Calabi-Yau manifold. To do this we have to introduce a few
new concepts.

We can define the action of a section (v + ξ) ∈ Γ(TM ⊕ T ∗M) on a differential
form φ ∈ Ω(M) = ∧•T ∗M

(v + ξ) · φ ≡ ivρ + ξ ∧ φ .

Using this action we arrive at the following identity

{A, B}+ · φ ≡ A · (B · φ) + B · (A · φ) = 2〈A, B〉φ ,
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which gives us the representation of Clifford algebra, Cl(TM ⊕ T ∗M), on the
differential forms. Thus we can view differential forms as spinors for TM ⊕ T ∗M

and moreover there are no topological obstructions for their existence. In further
discussion we refer to a differential form as a spinor.

The decomposition for spinors corresponds to decomposing forms into even and
odd degrees,

Ω(M) = ∧•T ∗M = ∧evenT ∗M ⊕ ∧oddT ∗M .

We would like to stress that in all present discussion we do not consider a form a
definite degree, we may consider a sum of the forms of different degrees. Also on
Ω(M) there exists Spin (d, d)-invariant bilinear form ( , ),

(3.58) (φ, r) = [φ ∧ σ(r)]|top ,

where φ, r ∈ Ω(M) and σ is anti-automorphism which reverses the wedge product.
In the formula (3.58) [. . . ]|top stands for the projection to the top form.

Definition 3.36. For any form φ ∈ Ω(M) we define a null space

Lφ =
{

A ∈ Γ(TM ⊕ T ∗M), A · φ = 0
}

Indeed the null space Lφ is isotropic since

2〈A, B〉φ = A · (B · φ) + B · (A · φ) = 0 .

Definition 3.37. A spinor φ ∈ Ω(M) is called pure when Lφ is a maximally
isotropic subbundle of TM ⊕ T ∗M (or its complexification).

Proposition 3.38. Lφ and Lr satisfy Lφ ∩ Lr = 0 if and only if

(φ, r) 6= 0 ,

where ( , ) is bilinear form defined in (3.58).

Obviously all this can be complexified.
If we take a pure spinor φ on (TM ⊕ T ∗M) ⊗ C such that (φ, φ̄) 6= 0 then

the complexified tangent plus cotangent bundle can be decomposed into the cor-
responding null spaces

(TM ⊕ T ∗M)⊗ C = Lφ ⊕ Lφ̄ = Lφ ⊕ L̄φ .

Therefore we have an almost generalized complex structure.
The following definition is due to Hitchin [11]. However we follow the terminol-

ogy proposed in [15].

Definition 3.39. A weak generalized Calabi-Yau manifold is a manifold with a
pure spinor φ such that (φ, φ̄) 6= 0 and dφ = 0.

A weak generalized Calabi-Yau manifold is generalized complex manifold since
Lφ and Lφ̄ are complex Dirac structures. The condition dφ = 0 implies the
involutivity of Lφ. There is also a twisted weak generalized Calabi-Yau manifold
where in the definition 3.39 the condition dφ = 0 is replaced by the condition
dφ + H ∧ φ = 0. The twisted weak generalized Calabi-Yau manifold is a twisted
generalized complex manifold.
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Example 3.40. In Example 1.16 we have considered the symplectic manifold
and have argued that there exists the generalized complex structure. Indeed a
symplectic manifold is a weak generalized Calabi-Yau manifold with a pure spinor
given by

φ = eiω = 1 + iω +
i2

2
ω ∧ ω + · · ·+

in

n!
ω ∧ · · · ∧ ω

with the last term on the right hand side corresponding to a top form.

Example 3.41. A complex manifold is a generalized complex manifold, see exam-
ple 1.15. However it is not a weak generalized Calabi-Yau manifold automatically.
We have to require the existence of a closed holomorphic volume form (the same
as a closed holomorphic top form nowhere vanishing)

φ = Ω(n,0)

which corresponds to a pure spinor.

We would like to stress that any weak generalized Calabi-Yau manifold is a
generalized complex manifold, but not vice versa.

Definition 3.42. A generalized Calabi-Yau manifold is a manifold with two closed
pure spinors, φ1 and φ2 such that

(φ1, φ̄1) = c(φ2, φ̄2) 6= 0

and they give rise to a generalized Kähler structure.

Also we can define a twisted Calabi-Yau manifold where in the above definitions
the spinors satisfy (d+H∧)φi = 0 and they give rise to a twisted generalized Kähler
geometry.

Definition 3.43. A standard Calabi-Yau manifold is a Kähler manifold (see the
example 3.33) with a closed holomorphic volume form Ω(n,0). This gives us an
example of generalized Calabi-Yau manifold with φ1 = eiω and φ2 = Ω(n,0).

3.16. Quantum N = (2, 2) sigma model. In this subsection we would like to
discuss very briefly the quantization of N = (2, 2) sigma model given by (3.57) and
its corresponding TFTs cousins. In all generality this problem is a hard one and
remains unresolved. Although it is always simpler to quantize TFTs. However
by now we understand that for a N = (2, 2) sigma model to make sense at the
quantum level we have to require the generalized Calabi-Yau conditions. We are
going briefly sketch the argument which was presented essentially in [14].

We start our discussion from the TFT associated to a generalized complex
structure. It is not simple to quantize a theory in all generality. However it is
convenient to look first at the semiclassical approximation. It means that we can
ignore σ dependence and all loops collapse to a point on M . Thus we replace4

ΠT ∗LM by T ∗(ΠTM) ≈ T (ΠT ∗M) and try to quantize this simpler theory. In
particular we have to interpret the generator q (2.51) restricted to T ∗(ΠTM). For

4ΠT ∗LM collapses to T ∗(ΠTM) since σ dependence disappear but θ-dependence is still there.
See [23] for the detailed discussion of T ∗(ΠTM) and related matters.
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this we have to expand the generator q (2.51) in components and drop all terms
which contain the derivatives with respect to σ. Moreover it is useful to rotate odd
basis (λµ, ρµ) ∈ Γ

(

Π(TM ⊕ T ∗M)
)

to a new one (ξA, ξ̄A) ∈ Γ
(

Π(L⊕ L̄)
)

which is

adopted to ±i-egeinbundles of J . ξA correspond to ghosts and ξ̄A to antighosts.
After these manipulations q can be written as follows

(3.59) q ∼ pµρµA(X)ξA + fAB
C(X)ξAξB ξ̄C ,

where we have ignored the irrelevant overall numerical factor. Now in new odd
basis our phase space is T ∗(ΠL) ≈ T ∗(ΠL̄). We remember that L is a Lie algebroid
and thus ρµA(X) and fAB

C(X) are the anchor map and structure constants defined
in subsection 1.1. This reduced q acts naturally on ∧•L̄ = C∞(ΠL) and gives rise
to so-called Lie algebroid cohomology H(dL). In TFT we would associate the set
of local observables to the elements of H(dL).

Also in any quantum field theory we have to build a Hilbert space of states.
If we regard (λµ, ρµ) as a set of creation and annihilation operators then the
corresponding Fock space will be given by Ω(M). Alternatively we could choose
(ξA, ξ̄A) as a set of creation and annihilation operators. This choice would induce
the natural grading

Ω(M) = U0 ⊕ (L̄ · U0)⊕ (∧2
L̄ · U0)⊕ · · · ⊕ (∧d

L̄ · U0) ,

where U0 is a vacuum state over which we build the Fock space. Mathematically
we could choose U0 to be a pure spinor line (i.e., we use the existence of pure
spinor only locally). The operator q now acts on Ω(M) and it induces another
cohomohology H(∂̄), which corresponds to a Hilbert space.

Next we cite the following theorem without a proof.

Proposition 3.44. For a (twisted) weak generalized Calabi-Yau manifold we have
an isomorphism of two cohomologies

H(dL) ∼ H(∂̄)

For the TFT the isomorphism of these two cohomologies is interpreted as
operator-state correspondence, for each local observable we can associate a state
in a Hilbert space and vice versa. Thus if we want to have the operator-state
correspondence the corresponding TFT should be defined over a (twisted) weak
Calabi-Yau manifold. Indeed there are more interesting structures in this TFT
about which we do not have time to talk, see [15], [22].

Let us finish with a few comments about the N = (2, 2) sigma model. The
above analysis of states in TFT corresponds to analysis of the ground states in
the N = (2, 2) sigma model. At the level of ground states there should be also the
operator-state correspondence and thus we have to require a (twisted) weak Calabi-
Yau structure for both J1 and J2. Since J1 and J2 correspond to a (twisted)
generalized Kähler structure we arrive to the definition of (twisted) generalized
Calabi-Yau manifold. Thus we can conclude with the following proposition.

Proposition 3.45. The quantum N = (2, 2) sigma model requires M to be a
(twisted) generalized Calabi-Yau manifold, see the definition 3.42.
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3.17. Summary. In these lecture notes we made an attempt to introduce the
concepts of the generalized geometry and its relevance for the string theory. We
concentrated our attention on the Hamiltonian approach to the world-sheet theory.
Due to lack of time we did not discuss other important issues within the world-
sheet theory, see the contribution [16] to the same volume for a review and the
references.

Another topic which we did not touch at all concerns the space-time aspects
of the generalized geometry, see [9] for the review and references. Eventually the
world-sheet point of view is ultimately related to the space-time aspects of the
problem.

Finally we have to stress that presently the subject is actively developing and
there are still many unresolved problems.
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