ARCHIVUM MATHEMATICUM (BRNO) Tomus 43 (2007), 123 – 132

SYMMETRIES IN HEXAGONAL QUASIGROUPS

VLADIMIR VOLENEC, MEA BOMBARDELLI

ABSTRACT. Hexagonal quasigroup is idempotent, medial and semisymmetric quasigroup. In this article we define and study symmetries about a point, segment and ordered triple of points in hexagonal quasigroups. The main results are the theorems on composition of two and three symmetries.

1. Introduction

Hexagonal quasigroups are defined in [3].

Definition. A quasigroup (Q, \cdot) is said to be *hexagonal* if it is idempotent, medial and semisymmetric, i.e. if its elements a, b, c satisfy:

(id)
$$a \cdot a = a$$

(med)
$$(a \cdot b) \cdot (c \cdot d) = (a \cdot c) \cdot (b \cdot d)$$

(ss)
$$a \cdot (b \cdot a) = (a \cdot b) \cdot a = b.$$

From (id) and (med) easily follows distributivity

(ds)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot (a \cdot c), \quad (a \cdot b) \cdot c = (a \cdot c) \cdot (b \cdot c)$$

When it doesn't cause confusion, we can omit the sign "·", e.g. instead of $(a \cdot b) \cdot (c \cdot d)$ we may write $ab \cdot cd$.

In this article, Q will always be a hexagonal quasigroup.

The basic example of hexagonal quasigroup is formed by the points of Euclidean plane, with the operation \cdot such that the points a, b and $a \cdot b$ form a positively oriented regular triangle. This structure was used for all the illustrations in this article.

Motivated by this example, Volenec in [3] and [4] introduced some geometric terms to any hexagonal quasigroup. Some of these terms can be defined in any idempotent medial quasigroup (see [2]) or even medial quasigroup (see [1]).

The elements of hexagonal quasigroup are called *points*, and pairs of points are called *segments*.

2000 Mathematics Subject Classification: 20N05.

Key words and phrases: quasigroup, hexagonal quasigroup, symmetry.

Received June 12, 2006, revised November 2006.

Definition. We say that the points a, b, c and d form a parallelogram, and we write Par(a, b, c, d) if $bc \cdot ab = d$ holds. (Fig. 1)

FIGURE 1. Parallelogram (definition)

Accordingly to [3], the structure (Q, Par) is a parallelogram space. In other words, Par is a quaternary relation on Q (instead of $(a,b,c,d) \in \operatorname{Par}$ we write $\operatorname{Par}(a,b,c,d)$) such that:

- 1. Any three of the four points a, b, c, d uniquely determine the fourth, such that Par(a, b, c, d).
- 2. If (e, f, g, h) is any cyclic permutation of (a, b, c, d) or (d, c, b, a), then Par (a, b, c, d) implies Par (e, f, g, h).
- 3. From Par (a, b, c, d) and Par (c, d, e, f) it follows Par (a, b, f, e). (Fig. 2)

FIGURE 2. Property 3 of the relation Par

Accordingly to [3]:

Theorem 1. From Par (a_1, b_1, c_1, d_1) and Par (a_2, b_2, c_2, d_2) it follows Par $(a_1a_2, b_1b_2, c_1c_2, d_1d_2)$.

In the rest of this section we present some definitions and results from [5].

Definition. The point m is a *midpoint* of the segment $\{a,b\}$, if Par(a,m,b,m) holds. This is denoted by M(a,m,b).

Remark. For given a, b such m can exist or not; and it can be unique or not.

Theorem 2. Let M(a, m, c). Then M(b, m, d) and Par(a, b, c, d) are equivalent.

Definition. The point m is called a *center of a parallelogram* $\operatorname{Par}(a,b,c,d)$ if $\operatorname{M}(a,m,c)$ and $\operatorname{M}(b,m,d)$.

Definition. The function $T_{a,b}: Q \to Q$,

$$T_{a,b}(x) = ab \cdot xa$$

is called *transfer* by the vector [a, b]. (Fig. 3)

FIGURE 3. Transfer by the vector [a, b]

Lemma 1. For any $a, b, x \in Q$, $Par(x, a, b, T_{a,b}(x))$. The equality $T_{a,b} = T_{c,d}$ is equivalent to Par(a, b, d, c).

Theorem 3. The set of all transfers is a commutative group. Specially, the composition of two transfers is a transfer. The inverse of $T_{a,b}$ is $T_{b,a}$.

2. Symmetries in hexagonal quasigroup

Lemma 2. For any points $a, b, c, x \in Q$, the following equalities hold

$$(xa \cdot a)a = a(a \cdot ax) = xa \cdot ax$$
$$(xa \cdot b)a = a(b \cdot ax) = xa \cdot bx = xb \cdot ax = b(a \cdot bx) = (xb \cdot a)b$$
$$(xa \cdot b)c = a(b \cdot cx) = (x \cdot ac) \cdot bx = xb \cdot (ac \cdot x)$$

Proof. Since Q is semisymmetric quasigroup, pq = r is equivalent to qr = p. First, we prove the last set of equalities.

From $(b \cdot cx) \cdot (xa \cdot b)c \stackrel{\text{(med)}}{=} b(xa \cdot b) \cdot (cx \cdot c) \stackrel{\text{(ss)}}{=} xa \cdot x \stackrel{\text{(ss)}}{=} a$, it follows $a(b \cdot cx) = (xa \cdot b)c$.

From $(ac \cdot x) \cdot (x(ac) \cdot bx) \stackrel{\text{(med)}}{=} (ac \cdot x(ac))(x \cdot bx) \stackrel{\text{(ss)}}{=} xb$, it follows $(x \cdot ac) \cdot bx = xb \cdot (ac \cdot x)$.

From $((x \cdot ac) \cdot bx)(xa \cdot b) \stackrel{\text{(med)}}{=} ((x \cdot ac) \cdot xa)(bx \cdot b) \stackrel{\text{(med)}}{=} ((xx) \cdot (ac)a)(bx \cdot b) \stackrel{\text{(id,ss)}}{=} (xc)x \stackrel{\text{(ss)}}{=} c$, it follows $(xa \cdot b)c = (x \cdot ac) \cdot bx$.

Now putting a=b=c we obtain the first line of equalities, and putting a=c the second line. \Box

Definition. Symmetry with respect to the point a is the function $\sigma_a:Q\to Q$ defined by (see Fig. 4)

$$\sigma_a(x) = a(a \cdot ax) = (xa \cdot a)a = xa \cdot ax$$
.

FIGURE 4. Symmetry with respect to the point a

From $\sigma_a(x) = xa \cdot ax$ it follows $\operatorname{Par}(a, x, a, \sigma_a(x))$, so we have:

Corollary 1. The equality $\sigma_m(a) = b$ is equivalent to M(a, m, b).

FIGURE 5. Symmetry with respect to the line segment $\{a,b\}$

The function $\sigma_a(x) = xa \cdot ax$ can be generalised this way:

Definition. The function $\sigma_{a,b}:Q\to Q$ defined by

$$\sigma_{a,b}(x) = xa \cdot bx,$$

is called symmetry with respect to the segment $\{a,b\}$. (Fig. 5)

It follows immediately:

Corollary 2. For any $a, b, x \in Q$

$$\sigma_{a,a} = \sigma_a \,, \qquad \sigma_{a,b} = \sigma_{b,a} \,, \qquad \operatorname{Par} \left(a, x, b, \sigma_{a,b}(x) \right).$$

Theorem 4. The equality $\sigma_{a,b} = \sigma_m$ is equivalent to M(a, m, b).

Proof. Let M(a, m, b) and let $x \in Q$. From Par $(a, x, b, \sigma_{a,b}(x))$ and M(a, m, b) and Theorem 2 we obtain $M(x, m, \sigma_{a,b}(x))$, and now from Corollary 1 $\sigma_m(x) = \sigma_{a,b}(x)$.

Inversely, from $\sigma_{a,b} = \sigma_m$ it follows $\sigma_m(a) = \sigma_{a,b}(a) = aa \cdot ba = b$, and now Corollary 1 implies M (a, m, b).

The function $\sigma_a(x) = a(a \cdot ax)$ can be generalised in another way:

Definition. The function $\sigma_{a,b,c}(x) = (xa \cdot b)c$ is called *symmetry with respect to the ordered triple of points* (a,b,c). (Fig. 6)

FIGURE 6. Symmetry with respect to the ordered triple of points (a, b, c)

Lemma 2 implies

$$\sigma_{a,b,c}(x) = (xa \cdot b)c = a(b \cdot cx) = (x \cdot ac) \cdot bx = xb \cdot (ac \cdot x) \,.$$

It immediately follows:

Corollary 3. For any $a, b, c, x \in Q$

$$\sigma_a = \sigma_{a,a,a}, \quad \sigma_{a,b} = \sigma_{a,b,a} = \sigma_{b,a,b}, \quad \sigma_{a,b,c} = \sigma_{ac,b}, \quad \operatorname{Par}\left(ac, x, b, \sigma_{a,b,c}(x)\right).$$

Note that different order of points (e.g. (b, a, c)) produces different symmetry.

Theorem 5. The symmetry $\sigma_{a,b,c}$ is an involutory automorphism of the hexagonal quasigroup (Q,\cdot) .

Proof. We first show that $\sigma_{a,b,c} \circ \sigma_{a,b,c}$ is identity:

$$\sigma_{a,b,c}\big(\sigma_{a,b,c}(x)\big) = \sigma_{a,b,c}\big((xa \cdot b)c\big) = a \cdot b\big(c \cdot (xa \cdot b)c\big) \stackrel{\text{(ss)}}{=} a \cdot b(xa \cdot b) \stackrel{\text{(ss)}}{=} a \cdot xa \stackrel{\text{(ss)}}{=} x.$$

It follows that $\sigma_{a,b,c}$ is a bijection. Further:

$$\begin{split} \sigma_{a,b,c}(xy) &= (xy \cdot a)b \cdot c \overset{\text{(ds)}}{=} (xa \cdot ya)b \cdot c \\ \overset{\text{(ds)}}{=} (xa \cdot b)(ya \cdot b) \cdot c \overset{\text{(ds)}}{=} (xa \cdot b)c \cdot (ya \cdot b)c = \sigma_{a,b,c}(x) \cdot \sigma_{a,b,c}(y) \,, \end{split}$$

so $\sigma_{a,b,c}$ is an automorphism.

From Theorem 5 and Corollary 3, it follows:

Corollary 4. Symmetries σ_a and $\sigma_{a,b}$ are involutory automorphisms of the hexagonal quasigroup (Q, \cdot) .

FIGURE 7. Theorem 6

Theorem 6. The equality $\sigma_{a,b,c} = \sigma_m$ is equivalent to M (ac, m, b). (Fig. 7)

Proof. The statement follows immediately from $\sigma_{a,b,c} = \sigma_{ac,b}$ (Corollary 3) and Theorem 4.

The following two theorems are about the compositions of two and three symmetries.

Theorem 7. The composition of two symmetries is a transfer (Fig. 8). More precisely, for any $a_1, a_2, a_3, b_1, b_2, b_3$

$$\sigma_{b_1,b_2,b_3} \circ \sigma_{a_1,a_2,a_3} = T_{a_1a_3,b_1b_3} \circ T_{a_2,b_2}$$
.

Proof. Since composition of two transfers is a transfer (Theorem 3), it's enough to prove the above equality.

Let $x \in Q$ be any point, and let $y = \sigma_{a_1,a_2,a_3}(x)$, $z = \sigma_{b_1,b_2,b_3}(y)$, and $w = T_{a_2,b_2}(x)$. We need to prove that $T_{a_1a_3,b_1b_3}(w) = z$.

Lemma 1 implies $Par(x, a_2, b_2, w)$, and from Corollary 3 it follows $Par(a_1a_3, x, a_2, y)$ and $Par(b_1b_3, y, b_2, z)$.

FIGURE 8. Theorem 7

Property 2 of Par implies $Par(b_2, w, x, a_2)$ and $Par(x, a_2, y, a_1a_3)$, and now from Property 3 it follows $Par(b_2, w, a_1a_3, y)$.

Similarly, Property 2 implies $Par(w, a_1a_3, y, b_2)$ and $Par(y, b_2, z, b_1b_3)$, and because of Property 3 it follows $Par(w, a_1a_3, b_1b_3, z)$.

From this relation and Lemma 1 it finally follows $z = T_{a_1 a_3, b_1 b_3}(w)$.

Figure 9. Corollary 5

Using Corollary 3 we obtain (see Fig. 9):

Corollary 5. For $a, b \in Q$, $\sigma_b \circ \sigma_a = T_{a,b} \circ T_{a,b}$. For $a_1, a_2, b_1, b_2 \in Q$, $\sigma_{b_1, b_2} \circ \sigma_{a_1, a_2} = T_{a_1, b_1} \circ T_{a_2, b_2}$. Corollary 6. The equation $\sigma_{a_1,a_2,a_3} = \sigma_{b_1,b_2,b_3}$ is equivalent to $\operatorname{Par}(a_1a_3,b_1b_3,a_2,b_2)$.

Proof. By Theorem 5, $\sigma_{a_1,a_2,a_3} = \sigma_{b_1,b_2,b_3}$ is equivalent to $\sigma_{b_1,b_2,b_3} \circ \sigma_{a_1,a_2,a_3} =$ identity. From Theorem 7 we know $\sigma_{b_1,b_2,b_3} \circ \sigma_{a_1,a_2,a_3} = T_{a_1a_3,b_1b_3} \circ T_{a_2,b_2}$, so the initial equality is equivalent to $T_{a_1a_3,b_1b_3} \circ T_{a_2,b_2} =$ identity. Because of Theorem 3 this is equivalent to $T_{a_1a_3,b_1b_3} = T_{b_2,a_2}$, and further because of Lemma 1 to $T_{a_1a_3,b_1b_3,a_2,b_2}$.

Theorem 8. The composition of three symmetries is a symmetry. More precisely, for any $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3$, and for d_1, d_2, d_3 such that $Par(a_i, b_i, c_i, d_i)$, for i = 1, 2, 3,

$$\sigma_{c_1,c_2,c_3} \circ \sigma_{b_1,b_2,b_3} \circ \sigma_{a_1,a_2,a_3} = \sigma_{d_1,d_2,d_3}$$
.

FIGURE 10. Corollary 7

Proof. Let $x \in Q$ be any point, and let $y, z, t \in Q$ be such that

$$y = \sigma_{a_1,a_2,a_3}(x)$$
 i.e. $Par(a_1a_3, x, a_2, y)$
 $z = \sigma_{b_1,b_2,b_3}(y)$ i.e. $Par(b_1b_3, y, b_2, z)$
 $t = \sigma_{c_1,c_2,c_3}(z)$ i.e. $Par(c_1c_3, z, c_2, t)$

and let $w \in Q$ be such that $Par(d_2, a_2, y, w)$. We need to prove that $\sigma_{d_1, d_2, d_3}(x) = t$, i.e. $Par(d_1d_3, x, d_2, t)$.

From Par (a_1, b_1, c_1, d_1) and Par (a_3, b_3, c_3, d_3) , because of Theorem 1 we get Par $(a_1a_3, b_1b_3, c_1c_3, d_1d_3)$.

Now we use Property 3 of the relation Par to conclude:

The relations on the left hand side are valid because of the assumptions, previous conclusions and Property 2 of Par .

The last obtained relation is equivalent to $Par(d_1d_3, x, d_2, t)$.

Corollary 7. For any $a_i, b_i, c_i \in Q$, i = 1, 2, 3 (see Fig. 10)

$$\sigma_{a_1,a_2,a_3} \circ \sigma_{b_1,b_2,b_3} \circ \sigma_{c_1,c_2,c_3} = \sigma_{c_1,c_2,c_3} \circ \sigma_{b_1,b_2,b_3} \circ \sigma_{a_1,a_2,a_3}.$$

Corollary 8. For any $a, b, c \in Q$, $\sigma_a \circ \sigma_b \circ \sigma_c = \sigma_c \circ \sigma_b \circ \sigma_a$.

Figure 11. Corollary 9

Corollary 9. For $a, b, c, d \in Q$, if Par(a, b, c, d) then $\sigma_c \circ \sigma_b \circ \sigma_a = \sigma_d$. (Fig. 11)

It is known (in Euclidean geometry) that midpoints of sides of any quadrilateral form a parallelogram. We can state the same fact in terms of hexagonal quasigroup in the following way:

Theorem 9. From M(x, a, y), M(y, b, z), M(z, c, t) and Par(a, b, c, d) it follows M(x, d, t).

Proof. M (x, a, y), M (y, b, z) and M (z, c, t) are equivalent to $\sigma_a(x) = y$, $\sigma_b(y) = z$ and $\sigma_c(z) = t$ respectively. Therefore, the three assumptions can be written as: $\sigma_c(\sigma_b(\sigma_a(x))) = t$. From the preceding corollary it follows $\sigma_d(x) = t$, i.e. M (x, d, t).

Theorem 10. Let a_i, b_i, c_i, d_i , i = 1, 2, 3 be points such that $Par(a_i, b_i, c_i, d_i)$, for i = 1, 2, 3, and a, b, c, d points satisfying Par(a, b, c, d). Then

Par
$$(\sigma_{a_1,a_2,a_3}(a), \sigma_{b_1,b_2,b_3}(b), \sigma_{c_1,c_2,c_3}(c), \sigma_{d_1,d_2,d_3}(d))$$
.

Proof. From Par (a_1, b_1, c_1, d_1) and Par (a_3, b_3, c_3, d_3) and Theorem 1 it follows Par $(a_1a_3, b_1b_3, c_1c_3, d_1d_3)$, and from Par (a, b, c, d) and Par (a_2, b_2, c_2, d_2) it follows Par (a_2a, b_2b, c_2c, d_2d) . Similarly we obtain Par $(a \cdot a_1a_3, b \cdot b_1b_3, c \cdot c_1c_3, d \cdot d_1d_3)$, and finally Par $((a \cdot a_1a_3) \cdot a_2a, (b \cdot b_1b_3) \cdot b_2b, (c \cdot c_1c_3) \cdot c_2c, (d \cdot d_1d_3) \cdot d_2d)$, which proves the Theorem.

We immediately have:

Corollary 10. From Par (a, b, c, d) and Par (p, q, r, s) it follows

Par
$$(\sigma_p(a), \sigma_q(b), \sigma_r(c), \sigma_s(d))$$
.

Corollary 11. For $p, q, r \in Q$, from Par(a, b, c, d) it follows

$$\operatorname{Par}\left(\sigma_{p,q,r}(a),\sigma_{p,q,r}(b),\sigma_{p,q,r}(c),\sigma_{p,q,r}(d)\right).$$

Corollary 12. For $p \in Q$, from Par (a, b, c, d) it follows

Par
$$(\sigma_p(a), \sigma_p(b), \sigma_p(c), \sigma_p(d))$$
.

Corollary 13. For $p, q, r \in Q$, from M(a, b, c) it follows

$$M\left(\sigma_{p,q,r}(a),\sigma_{p,q,r}(b),\sigma_{p,q,r}(c)\right).$$

Corollary 14. For $p \in Q$, from M(a,b,c) it follows $M(\sigma_p(a),\sigma_p(b),\sigma_p(c))$.

References

- [1] Volenec, V., Geometry of medial quasigroups, Rad Jugoslav. Akad. Znan. Umjet. [421] 5 (1986), 79–91.
- [2] Volenec, V., Geometry of IM quasigroups, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. [456] 10 (1991), 139–146.
- [3] Volenec, V., Hexagonal quasigroups, Arch. Math. (Brno), 27a (1991), 113-122.
- [4] Volenec, V., Regular triangles in hexagonal quasigroups, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. [467] 11 (1994), 85–93.
- [5] Bombardelli, M., Volenec, V., Vectors and transfers in hexagonal quasigroups, to be published in Glas. Mat. Ser. III.

DEPARTMENT OF MATHEMATICS BIJENIČKA 30, ZAGREB, CROATIA

 $E\text{-}mail\colon {\tt volenec@math.hr}$

Mea.Bombardelli@math.hr