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SPECTRAL PROPERTIES OF A CERTAIN CLASS OF

CARLEMAN OPERATORS

S. M. Bahri

Abstract. The object of the present work is to construct all the generalized
spectral functions of a certain class of Carleman operators in the Hilbert
space L2 (X, µ) and establish the corresponding expansion theorems, when
the deficiency indices are (1,1). This is done by constructing the generalized
resolvents of A and then using the Stieltjes inversion formula.

1. Preliminaries

The set of generalized resolvents of a symmetric operator A with defect indices
(1, 1) was first derived independently by Naimark [15] and Krein [10]. The case of
defect indices (m,m), m ∈ N is due to Krein [11]. Saakjan [19] extended Krein’s
formula to the general case of defect indices (m,m), m ∈ N ∪ {∞}. In another
form, the generalized resolvent formula for symmetric operators (including the
case of non-densely defined operators) has been obtained by Straus [20, 21].

Let H be a Hilbert space endowed with the inner product (·, ·), and let A : D(A)
⊂ H −→ H be a densely defined closed linear operator whose range is denoted
R(A).

1.1. Basic Spectral Properties. We say that λ ∈ C is a regular point of the
operator A if the resolvent Rλ = (A− λI)−1 exists and is a bounded operator
defined everywhere in H (I denotes the identity operator in H). In this case we
say that λ belongs to ρ(A), the resolvent set of A. Rλ is an analytic operator
function of λ on ρ(A). The number λ ∈ C is said to be an eigenvalue of A if
there exists an f ∈ D(A) for which f 6= 0 and Af = λf . In this case, the operator
A− λI is not injective, i.e., ker (A − λI) 6= {0}. The complement of ρ(A), in the
complex plane, is denoted by σ(A) and is called the spectrum of A.
A resolution of the identity [1] is a one-parameter family {Et}, −∞ < t < ∞, of
orthogonal projection operators acting on a Hilbert space H , such that

i) Es ≤ Et if s ≤ t (monotonicity);
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ii) Et is strongly left continuous, i.e. Et−0 = Et for every t ∈ R;

iii) Et
s
→ 0 as t → −∞ and Et

s
→ I as t → ∞; here 0 and I are the zero and

the identity operator on the space H .

Condition ii) can be replaced by the condition of strong right continuity at every
point t ∈ R.

From this it follows that, for each fixed f ∈ H , the function ρf : R → [0, 1)
given by

(1.1) ρf (t) =
(
E(t)f, f

)
= ‖E(t)f‖2

is is bounded, non-decreasing, left continuous and

(1.2) lim
t→∞

ρf (t) = ‖f‖2
, lim

t→−∞
ρf (t) = 0 .

In [1] is proven that for each resolution of the identity Et (−∞ ≤ t ≤ +∞)

corresponds a uniquely defined self adjoint operator
◦

A, admitting the following
integral representation

(1.3)
◦

A =

∫ +∞

−∞

t dEt ,

where the integral is understood as the strong limit of the integral sums for each

f ∈ D
◦

(A), and

(1.4) D
◦

(A) =

{
f :

∫ +∞

−∞

t2d (Et f, f) <∞

}

is satisfied. The resolvent
◦

Rλ and the spectral function Et of a self adjoint operator
◦

A are bound by the relation

(1.5)
◦

Rλ =

∫ +∞

−∞

dEt
t− λ

, λ ∈ ρ
◦

(A) ,

in the sense of strong limit.
The resolution of the identity given by the operator A completely determines the
spectral properties of that operator, namely:
α) a real number t0 is a regular point of A if and only if it is a point of constancy,
that is, if there is an ε > 0 such that Et0+ε − Et0−ε = 0;
β) a real number t0 is an eigenvalue of A if and only if λ is a jump point of Et,
that is, Et0+0 − Et0 6= 0.
Hence the resolution of the identity determined by the operator is also called the
spectral function of this operator.

1.2. Deficiency indices. The defect number is the dimension of the orthogonal
complement to R(A)

dA = dim
(
H ⊖R(A)

)
= dim Ker (A∗) ,

where A∗ is the adjoint operator of A and Ker (A∗) = {f ∈ D(A∗) : A∗f = 0},
D(A∗) being the domain of A∗.
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Let A be a symmetric operator, Ã its symmetric extension, then the following
relation holds

(1.6) A ⊂ Ã ⊂ Ã∗ ⊂ A∗ .

The interest of (1.6) resides in the following conclusion: all symmetrical extension

of A comes of a restriction of the domain of A∗. So D(Ã) is a subspace between

D(A) and D(A∗). To construct the extensions Ã it is therefore well to examine
the structure of the space D(A∗). Let’s put

Nλ = ker (A∗ − λI) and Nλ̄ = ker (A∗ − λ̄I) , (ℑmλ > 0) ,

with respective dimensions n+, n−. They are called the deficiency indices of the
operator A and will be denoted by the ordered pair (n+, n−). It being, in the
Hilbert space D(A∗) we have the following hilbertienne decomposition [4]

(1.7) D(A∗) = D(A) ⊕Nλ ⊕Nλ̄ .

A possesses self adjoint extensions [6] if and only if n+ = n−. We get in this
case all self adjoints extensions of A from all isometric Cayley transforms V =
(A− λI)(A− λ̄I)−1 defined from Nλ̄ to Nλ.

1.3. Generalized resolvents formulas. In the general case, every symmetric
operator A can be prolonged in a selfadjoint operator A+ defined in a wide space
H+ containing H . If E+

t (respectively R+
λ ) is the spectral function (respectively

the resolvent) of A+ and P+ the operator of projection of H+ on H then the
functions operators Et = P+E+

t and Rλ = P+R+
λ are said, respectively, general-

ized spectral function and generalized resolvent of the operator A. They are joined
by the relation

(1.8) Rλ =

∫ β

α

dEt

t− λ
, λ ∈ ρ (A) ,

in addition, for all real numbers α, β (α < β), we have the Stieltjes inversion for-
mula

(1.9)
(
[Eα − Eβ ]f, g

)
=

1

2πi
lim
τ→∞

∫ β

α

(
[Rσ+iτ − Rσ−iτ ]f, g

)
dσ , f, g ∈ H .

Moreover, for all f of D (A):

Af =

∫ +∞

−∞

t dEtf .

The generalized spectral function Et satisfy the same conditions (ii) and (iii) of
Et but the first is replaced by
(i’) Et2 − Et1 , where t2 > t1, is a bounded positive operator.

The restriction P+A+ is said quasi selfadjoint extension of the operator A. It
is from this notion that Straus [21] developed his theory of generalized resolvent
of a symmetric operator. Let’s designate by Fλ the class of all quasi selfadjoint
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linear operators defined on Nλ and that apply Nλ to Nλ̄. The set of generalized
resolvents is defined by

(1.10)

{
Rλ =

(
AF (λ) − λI

)−1

Rλ̄ = R∗
λ

ℑmλℑmλ◦ > 0 ,

where λ◦ is a non real point, F (λ) an analytic function operator in the half plane
(ℑmλℑmλ◦ > 0) to value in Fλ◦

and AF (λ) (ℑmλℑmλ◦ > 0) a quasi selfadjoint
extension of the operator A defined by

D
(
AF (λ)

)
= D (A) ⊕

[
F (λ) − I

]
Nλ◦

,

AF (λ)

(
f + F (λ)ϕ− ϕ

)
= Af + λ◦F (λ)ϕ− λ̄◦ϕ

with f ∈ D (A) and ϕ ∈ Nλ◦
. The adjoint operator A∗

F (λ) is defined by

D
(
A∗

F (λ)

)
= D (A) ⊕

[
F ∗ (λ) − I

]
Nλ̄◦

,

A∗

F (λ)

(
f + F ∗ (λ)ψ − ψ

)
= Af + λ̄◦F

∗ (λ)ψ − λ̄◦ψ

with f ∈ D (A) and ψ ∈ Nλ̄◦

.

1.4. Some convergences. We call t a continuity point of Et if Et+0 − Et = 0.
We call [1] convergence in the mean the convergence in the space L2 (X,µ) and

we denote by

f (x) = l.i.m.fn (x) ,

if

lim
n→∞

∫

X

|f (x) − fn (x)|2 dx = 0 , almost everywhere in X .

(l.i.m. is an abbreviation for limes in medio, i.e. limit in the mean).

2. Carleman operators

One can find necessary information about Carleman operators, for example,
in [5, 9, 22, 23, 24]. In this section we shall present only part of it. Let X
be an arbitrary set, µ a σ-fini measure on X ( µ is defined on a σ-algebra of
subsets of X , we don’t indicate this σ-algebra), L2 (X,µ) the Hilbert space of
square integrable functions with respect to µ. Instead of writing ‘µ-measurable’,
‘µ-almost everywhere’ and ‘(dµ (x))’ we write ‘measurable’, ‘a e’ and ‘dx’.

Definition 1 ([24]). A linear operator A : D (A) −→ L2 (X,µ), where the domain
D (A) is a dense linear manifold in L2 (X,µ), is said to be integral if there exists
a measurable function K on X ×X , a kernel, such that, for every f ∈ D (A),

(2.1) Af (x) =

∫

X

K (x, y) f (y)dy a e .
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A kernel K on X × X is said to be Carleman if K (x, y) ∈ L2 (X,µ) for almost
every fixed x, that is to say

(2.2)

∫

X

|K (x, y)|2 dy <∞ a e .

An integral operator A with a kernel K is called Carleman operator if K is a
Carleman kernel. Every Carleman kernel K defines a Carleman function k from
X to L2 (X,µ) by k (x) = K (x, ·) for all x in X for which K (x, ·) ∈ L2 (X,µ).

Self-adjoint Carleman operators have generalized eigenfunction expansions, which
can be used in the study of linear elliptic operators, see [14]. A general reference
for Carleman operators on L2-spaces is [8]. The notion of a Carleman operator
has been extended in many directions. By replacing L2 by an arbitrary Banach
function space one obtains the so-called generalized Carleman operators (see [18])
and by considering Bochner integrals and abstract Banach spaces one is lead to
the so-called Carleman and Korotkov operators on a Banach space ([7]).

Now we consider the class of integral operators (2.1) that we go studied here
generated by the following symmetric Carleman kernel

(2.3) K (x, y) =

∞∑

p=0

apψp (x)ψp (y) ,

where the overbar denotes complex conjugation.
{
ψp (x)

}∞

p=0
is an orthonormal

sequence in L2 (X,µ) such that

(2.4)

∞∑

p=0

∣∣ψp (x)
∣∣2 <∞ a e ,

and {ap}
∞

p=0 a real number sequence verifying

(2.5)

∞∑

p=0

a2
p

∣∣ψp (x)
∣∣2 <∞ a e .

We called {ψp (x)}∞
p=0 a Carleman sequence. Let L (ψ) be the closed set of linear

combinations of elements of the orthogonal sequence {ψp (x)}∞
p=0 . It is lucid that

the orthogonal complement L⊥ (ψ) = L2 (X,µ) ⊖ L (ψ) is contained in D(A) and
annul the operator A.
The following lemma [3] tells us when the Carleman operator A possesse equal
deficiency indices.

Lemma 1 ([3]). The operator A possesses equal deficiency indices n+(A) =

n−(A) = m, (m < ∞), if and only if there exist sequences
{
γ

(k)
p

}∞

p=0
, (k =

1, 2, . . . ,m), verifying
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1) For all k

(2.6) θk (x) =
∞∑

p=0

γ(k)
p ψp (x) ∈ L⊥ (ψ) (k = 1, 2, . . . ,m)

2) For all λ (ℑmλ 6= 0)

(2.7)

∞∑

p=0

∣∣∣∣∣
γ

(k)
p

ap − λ

∣∣∣∣∣

2

<∞ , (k = 1, 2, . . . ,m)

3) The linear space of the sequences
{
γ

(k)
p

}∞

p=0
, (k = 1, 2, . . . ,m), verifying 1)

and 2) is m dimension.

3. Generalized resolvents

We first prove the following important lemma.

Lemma 2. Let B be a closed symmetric operator, ψ the eigenvector of B belong-
ing to the eigenvalue b. Then ψ ∈ D (B) if and only if for a certain λ (ℑmλ 6= 0)
and for all ϕλ and ϕλ̄

(ϕλ, ψ) = (ϕλ̄, ψ) = 0 ,

where ϕλ and ϕλ̄ belong respectively to the defect spaces Nλ̄ and Nλ.

Proof. Let ψ ∈ D (B) and ϕλ ∈ Nλ̄ (ℑmλ 6= 0), then

(bψ, ϕλ) = (Bψ,ϕλ) = (ψ,B∗ϕλ) = λ̄ (ψ, ϕλ) .

Therefore, (
b− λ̄

)
(ψ, ϕλ) = 0

and as b − λ̄ 6= 0, it follows that (ψ, ϕλ) = 0. Now let h be an arbitrary element
of D (B∗). By the hilbertienne decomposition we have

h = f + αϕλ + βϕλ̄ ,

with f ∈ D (B), ϕλ ∈ Nλ̄, ϕλ̄ ∈ Nλ, and α, β two complex numbers. Then,

(B∗h, ψ) = (Bf, ψ) = (f, bψ) = (h, bψ) ,

that is to say ψ ∈ D (B).

Now we suppose that the symmetric Carleman operator A (2.1) −− (2.3) pos-
sesse equal deficiency indices n+(A) = n−(A) = 1. By Lemma 1 there exist a
sequence {γp}

∞

p=0 such that:
∞∑

p=0

|γp|
2

= ∞

and verifying the three conditions of the quoted lemma. By (2.6) and (2.7) we
conclude that the function

(3.1) ϕλ (x) =

∞∑

p=0

γp
ap − λ

ψp (x)
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belongs to the defect space Nλ̄ of the operator A. In what follows, to facilitate
the writing, we will designate by A the restriction of A on the subspace L (ψ).

Now we consider the following integral equation

(3.2)

∫

X

∞∑

p=0

apψp (x)ψp (y)Y (y) dy − λY (x) = f (x) .

Let f (x) =
∞∑
p=0

cpψp (x)
( ∞∑
p=0

|cp|
2
< ∞

)
, then the solution of the equation (3.2)

will be the function

(3.3) Y (x, λ) =

∞∑

p=0

cp
ap − λ

ψp (x) .

Let’s notice that the formula (3.3) gives the resolvent of the self-adjoint extension
◦

A of the operator A which possesses a complete system of eigenfunctions {ψk (x)}

of the space L (ψ). The resolvent
◦

Rλ of the operator
◦

A is an integral operator
defined on the space L (ψ) :

(3.4)
◦

Rλf =

∫

X

◦

K (x, y;λ) f (y) dy ,

where
◦

K (x, y;λ) =

∞∑

p=0

1

ap − λ
ψp (x)ψp (y) .

Any solution of the equation (3.2) in D (A∗) admits the following representation

(3.5) Y (x, λ) =
◦

Rλf (x) + cϕλ (x) ,

where c is an any complex number.
Let’s put λ◦ = i, then F (λ) (subsection 1.3) can be given by the formula

F (λ)ϕ−i = ω (λ)ϕi

with ω (λ) an analytic function in the upper half plan and |ω (λ)| ≤ 1.
The operator AF (λ) is defined on the set D

(
AF (λ)

)
as

(3.6)

{
f = x+ ω (λ)ϕi − ϕ−i

(
x ∈ D(A)

)
,

AF (λ)f = Ax+ iω (λ)ϕi + ϕ−i ,

then

(3.7)
D

(
AF (λ)

)
=

{
g ∈ L (ψ) : g = f + [ω (λ)ϕi − ϕ−i] c, f ∈ D (A)

}
,

D
(
A∗

F (λ)

)
=

{
h ∈ L (ψ) : g = f +

[
ω (λ)ϕ−i − ϕi

]
c, f ∈ D (A)

}
.

We introduce the following function

νλ = ω (λ)ϕ−i − ϕi ,

then D
(
AF (λ)

)
is defined as the set of y ∈ D (A∗) for which

(A∗y, νλ) = (y,A∗νλ) .
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While choosing in (3.5) for all λ (ℑmλ > 0) c = C (λ) , as we have the equality

(3.8) (A∗Y, νλ) = (Y,A∗νλ) ,

we get a formula giving the set of generalized resolvents in terms of analytic func-
tions ω (λ). By (3.8) we have

(3.9) C (λ) =
[1 − ω (λ)] (f, ϕλ̄)

[ω (λ)χ (λ) − 1] (λ+ i) (ϕλ, ϕi)
(ℑmλ > 0) ,

where

(3.10) χ (λ) =
λ− i

λ+ i

(ϕλ, ϕ−i)

(ϕλ, ϕi)

denote the characteristic function [1] of operator A. If we substitute (3.9) in (3.5),
we get the formula of generalized resolvents

(3.11) Rλf =
◦

Rλf +
1 − ω (λ)

ω (λ)χ (λ) − 1

(f, ϕλ̄)

(λ+ i) (ϕλ, ϕi)
ϕλ (ℑmλ > 0) .

While taking account that Rλ̄ = R∗
λ, it is easy to have

(3.12) Rλ̄f =
◦

Rλ̄f +
1 − ω (λ)

ω (λ)χ (λ) − 1

(f, ϕλ)(
λ− i

) (
ϕλ, ϕ−i

)ϕλ (ℑmλ > 0) .

So we have demonstrated

Theorem 1. Formulas (3.11) and (3.12) establish a bijective correspondence be-

tween the set of generalized resolvents of the operator A and the set of the analytic

functions ω (λ) as |ω (λ)| ≤ 1 (ℑmλ > 0). These formulas define the resolvent of

a selfadjoint extension of A in the space L (ψ) if and only if, ω (λ) = κ(constant),
|κ| = 1.

4. Generalized spectral functions

Let’s consider the function χ (λ) given by the formula (3.10):

χ (λ) =
λ− i

λ+ i

∞∑
p=0

γ2
p

(ap−λ)(ap−i)

∞∑
p=0

γ2
p

(ap−λ)(ap+i)

,

it’s an analytic function in the half plane Π+ = {λ ∈ C : ℑmλ ≥ 0} and take its
values on the unit disk D = {ζ ∈ C : |ζ| ≤ 1}, so that the real axis R turns into
the unit circle C = {ζ ∈ C : |ζ| = 1}. Thus, for all p = 0, 1, 2, . . . , χ (ap) = 1.
Let’s put

ζ =
λ− i

λ+ i
.

We can write [1] χ (λ) under the form

χ (λ) = χ
(
i
1 + ζ

1 − ζ

)
= ω(ζ) =

ζ
◦

((U − ζI)−1ϕi, ϕi)
◦

((U − ζI)−1
◦

Uϕi, ϕi)

=
Φ (ζ) − ‖ϕi‖

2

Φ (ζ) + ‖ϕi‖
2 ,
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where
◦

U = (
◦

A− iI)(
◦

A+ iI−1)

is the unitary Cayley transform of the self-adjoint operator
◦

A and

Φ(ζ) =

∫ 2π

0

eis + ζ

eis − ζ
d(

◦

Esϕi, ϕi) ,

◦

Es being the resolution of the identity of the unitary operator
◦

U . For |ζ| = 1, we
have

(4.1) ℜe [Φ (ζ)] = 0 .

From the equality

(4.2) (ϕλ, ϕi) =
i

λ+ i

[
Φ (ζ) + ‖ϕi‖

2 ]

we conclude that
(ϕλ, ϕi) 6= 0 ∀ λ , ℑmλ ≥ 0 .

Formulas (4.1) and (4.2) imply that

(4.3) ℑm [(σ + i) (ϕσ, ϕi)] = ‖ϕi‖
2 (ℑmσ = 0) .

Now, we introduce the following useful lemmas:

Lemma 3. For all f , g ∈ H , the functions (
◦

Rλf, g), (ϕλ, ϕi) ,
(
f, ϕλ

)
and (ϕλ, g)

are regular on all the complex plane except to points ap (p = 0, 1, 2, . . . ), where
they admit simple poles. Besides, the following equalities are true:

res
λ=ap

(
◦

Rλf, g) = res
λ=ap

(
f, ϕλ

)
(ϕλ, g)

(λ− i) (ϕλ, ϕ−i)
= (f, ψp) (ψp, g) ,

res
λ=ap

(
f, ϕλ

)
(ϕλ, g)

(λ− i) (ϕλ, ϕ−i)
= res

λ=ap

(f, ϕλ)
(
ϕλ, g

)
(
λ− i

) (
ϕλ, ϕi

) = (f, ψp) (ψp, g) .

Proof. The fact that the mentioned functions are regular on the complex plane
except to poles ap (p = 0, 1, 2, . . . ) result from formulas (3.1) and

(
◦

Rλf, g) =

∞∑

p=0

(f, ψp) (ψp, g)

ap − λ
.

Furthermore we have:

res
λ=ap

(
◦

Rλf, g) = (f, ψp) (ψp, g) ,

it is easy to see that the function
(
f, ϕλ

)
(ϕλ, g)

(λ− i) (ϕλ, ϕ−i)
=

[∑∞

p=0
γp(f,ψp)

ap−λ̄

][ ∑∞

p=0
γp(ψp,g)
ap−λ

]

(λ− i)
∞∑
p=0

γ2
p

(ap−λ)(ap−i)

,

admits the same residue to the point λ = ap.
The second equality can be verified in the same way.
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Lemma 4 ([21]). Let ϕ (λ) an analytic function in the half-plane Π+ with a posi-
tive imaginary part and ψ (λ) an analytic function in a certain domain containing
the interval [α, β]. Then we have the formula

1

2πi
lim
τ→+0

∫ β

α

[
ϕ (λ)ψ (λ) − ϕ (λ)ψ (λ)

]
dσ =

∫ β

α

ψ (σ) dρ (σ) (λ = σ + iτ) ,

with

ρ (σ) =
1

π
lim
τ→+0

∫ σ

0

ℑmϕ (t+ iτ) dt .

Let ω (λ) be an arbitrary analytic function who applies the half-plane Π+ on
the unit disk D. It is known that the spectral function Et is uniform and that we
can get it by the formula of Stieltjes (1.9):
for all f (s) and g (s) of L and for all reals α and β (α < β) we have the equality

(Eα,βf, g) =
1

2πi
lim
τ→+0

∫ β

α

(
[Rσ+iτ − Rσ−iτ ] f, g

)
dσ

with

Eα,β = (Eβ + Eβ+0) /2 − (Eα + Eα+0) /2.

Let’s consider the difference

(4.4) Rλf − Rλ̄f =
[ ◦

Rλf −
◦

Rλ̄f
]
+

[
C (λ)ϕλ − C

(
λ
)
ϕλ

]
.

While holding in account (3.3) and (3.4), we get

lim
τ→+0

∫ β

α

[ ◦

Rλf −
◦

Rλ̄f
]
dσ =

∞∑

αk∈(α,β)

ckψk (s) (λ = σ + iτ) ,

where

(4.5) f (s) =

∞∑

k=0

ckψk (s) .

Let’s consider the second member of (4.4):

C (λ)ϕλ − C
(
λ̄
)
ϕλ =

−i

ω (λ)χ (λ) − 1

[ 1

(λ− i) (ϕλ, ϕ−i)
−

1

(λ+ i) (ϕλ, ϕi)

]

×
1

i

(
f, ϕλ

)
ϕλ −

i

ω (λ)χ (λ) − 1

[ 1(
λ− i

) (
ϕλ, ϕ−i

) −
1(

λ+ i
) (
ϕλ, ϕi

)
]

×
1

i
(f, ϕλ)ϕλ −

[ (
f, ϕλ

)
ϕλ

(λ− i) (ϕλ, ϕ−i)
−

(f, ϕλ)ϕλ(
λ+ i

) (
ϕλ, ϕi

)
]
.

Let’s put

(f, ϕλ̄)ϕλ
(λ− i) (ϕλ, ϕ−i)

= f1 (λ) ;
(f, ϕλ)ϕλ(

λ̄+ i
)
(ϕλ̄, ϕi)

= f2 (λ) (ℑmλ > 0) .
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Then (λ = σ + iτ)

1

2πi
lim
τ→+0

∫ β

α

[
f1 (λ) − f2 (λ)

]
dσ =

1

2πi

∫ β

α

2iℑm [(σ + i) (ϕσ, ϕi)] (f, ϕσ)

(σ2 + 1) |(ϕσ, ϕi)|
2 dσ

+

∞∑

αk∈(α,β)

ckψk (s) ,

ck being coefficients in the development (4.5).

Now, we notice that for all analytic function ω (λ) in the half-plane Π+ as
|ω (λ)| ≤ 1, we obtain

ℑm
i

ω (λ)χ (λ) − 1
> 0 (ℑmλ > 0) .

After this, while using the Lemma 2 and the equality (4.3), we get

(4.6) Eα,βf =
1

2πi
lim
τ→+0

∫ β

α

[Rλ − Rλ̄] f dσ =

∫ β

α

(f, ϕσ)ϕσ

(σ2 + 1) |(ϕσ,
◦
ϕi)|2

dρ (σ) ,

with

(4.7) ρ (σ) =
1

π
lim
τ→+0

∫ σ

0

[
ℑm

−2i

ω (λ)χ (λ) − 1
− 1

]
dt, (λ = t+ iτ)

and
◦
ϕi (s) =

ϕi (s)

‖ϕi‖
.

The function ρ (σ) is decreasing because

ℜe
1

ω (λ)χ (λ) − 1
≥

1

1 + |ω (λ)χ (λ)|
≥

1

2
.

Thus, we have demonstrated the theorem

Theorem 2. Let ω (λ) be an analytic function in the half-plane Π+ and Et (−∞ <
t < +∞) the spectral function of the operator A. Then for all f (s) of L (ψ) and

for all reals α and β (α < β) we have the relation (4.6) and the following equalities

(Eα,βf, f) =

∫ β

α

|(f, ϕσ)|2

(σ2 + 1)|(ϕσ,
◦
ϕi)|2

dρ(σ) ,

f(s) = l.i.m.
α → −∞

β → +∞

∫ β

α

(f, ϕσ)ϕσ (s)

(σ2 + 1)
∣∣∣
(
ϕσ,

◦
ϕi

)∣∣∣
2 dρ (σ) ,

(f, f) =

∫ +∞

−∞

|(f, ϕσ)|
2

(σ2 + 1)
∣∣∣
(
ϕσ,

◦
ϕi

)∣∣∣
2 dρ (σ) ,

where ρ (σ) is defined by the formula (4.7) for λ = σ + iτ, ℑmλ > 0.
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Corollary 1. In order that t (−∞ < t < +∞) be a continuity point of the spectral

function Et of the operator A it is necessary and sufficient that it is a continuity

point of the function ρ (σ).

Let’s consider the formula (4.7) . The function χ (λ) applies all interval (apk
,

apk+1
) (we suppose that apk

and apk+1
are neighboring points) in the unit disk.

The homographic transform 1+z
1−z applies the circle |z| = r ≤ 1 in the not euclidean

circle of center i such that the image of r = 0 will be the point i and the image of
r = 1 will be the real axis R. Therefore, for ω (λ) = 1, ρ (σ) is a jumps function
with points jumps apk

and for ω (λ) = κ (κ = constant with |κ| < 1), ρ (σ) is
absolutely continuous.

With the help of the self-adjoints extensions (ω (λ) = κ = exp (iϕ)) ρ (σ) will
be a jumps function with points jumps σp for whom χ (σp) = exp (−iϕ).

Of the pace of the function ρ (σ) we are convinced of the following findings.

Corollary 2. The quasi-self-adjoint extension associated to the analytical function

ω (λ) (|ω (λ)| ≤ 1 in Π+and |ω (σ)| = 1 for ℑmσ = 0) admits a merely point

spetrum.

Corollary 3. The interval (c, d) (−∞ ≤ c < d ≤ +∞) doesn’t contain the spec-

trum points of the self-adjoint extension of the operator A generated by the func-

tions ω (λ) if and only if ω (λ) verify the following conditions:

a) ω (λ) is analytic in Π+ and |ω (λ)| ≤ 1 (ℑmλ > 0);
b) ω (λ) admits an extension by continuity from Π+ on (c, d);
c) |ω (σ)| = 1, if σ ∈ (c, d);

d) ω (σ) 6= χ (σ) for σ ∈ (c, d).

If we suppose in (2.3) that ap > 0, then A will be a positive operator. Thus the
Corollary 3 give the criteria to get the positive spectral functions. In particular
self-adjoint extension possessed a positive spectral function if it is generated by
functions ω (λ) = κ = exp (iϕ), 0 ≤ ϕ ≤ ϕ0, χ (0) = exp(−iϕ0).
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