SPECTRAL PROPERTIES OF A CERTAIN CLASS OF CARLEMAN OPERATORS

S. M. BAHRI

ABSTRACT. The object of the present work is to construct all the generalized spectral functions of a certain class of Carleman operators in the Hilbert space $L^2(X,\mu)$ and establish the corresponding expansion theorems, when the deficiency indices are (1,1). This is done by constructing the generalized resolvents of A and then using the Stieltjes inversion formula.

1. Preliminaries

The set of generalized resolvents of a symmetric operator A with defect indices (1, 1) was first derived independently by Naimark [15] and Krein [10]. The case of defect indices $(m, m), m \in \mathbb{N}$ is due to Krein [11]. Saakjan [19] extended Krein's formula to the general case of defect indices $(m, m), m \in \mathbb{N} \cup \{\infty\}$. In another form, the generalized resolvent formula for symmetric operators (including the case of non-densely defined operators) has been obtained by Straus [20, 21].

Let *H* be a Hilbert space endowed with the inner product (\cdot, \cdot) , and let *A*: $D(A) \subset H \longrightarrow H$ be a densely defined closed linear operator whose range is denoted R(A).

1.1. **Basic Spectral Properties.** We say that $\lambda \in \mathbb{C}$ is a regular point of the operator A if the resolvent $R_{\lambda} = (A - \lambda I)^{-1}$ exists and is a bounded operator defined everywhere in H (I denotes the identity operator in H). In this case we say that λ belongs to $\rho(A)$, the resolvent set of A. R_{λ} is an analytic operator function of λ on $\rho(A)$. The number $\lambda \in \mathbb{C}$ is said to be an eigenvalue of A if there exists an $f \in D(A)$ for which $f \neq 0$ and $Af = \lambda f$. In this case, the operator $A - \lambda I$ is not injective, i.e., ker $(A - \lambda I) \neq \{0\}$. The complement of $\rho(A)$, in the complex plane, is denoted by $\sigma(A)$ and is called the spectrum of A.

A resolution of the identity [1] is a one-parameter family $\{E_t\}, -\infty < t < \infty$, of orthogonal projection operators acting on a Hilbert space H, such that

i) $E_s \leq E_t$ if $s \leq t$ (monotonicity);

²⁰⁰⁰ Mathematics Subject Classification: Primary 05C38, 15A15; Secondary 05A15, 15A18. Key words and phrases: spectral theory, integral operator, defect indices. Received June 19, 2006, revised February 2007.

S. M. BAHRI

- ii) E_t is strongly left continuous, i.e. $E_{t-0} = E_t$ for every $t \in \mathbb{R}$;
- iii) $E_t \xrightarrow{s} 0$ as $t \to -\infty$ and $E_t \xrightarrow{s} I$ as $t \to \infty$; here 0 and I are the zero and the identity operator on the space H.

Condition ii) can be replaced by the condition of strong right continuity at every point $t \in \mathbb{R}$.

From this it follows that, for each fixed $f \in H$, the function $\rho_f \colon \mathbb{R} \to [0,1)$ given by

(1.1)
$$\rho_f(t) = (E(t)f, f) = ||E(t)f||^2$$

is is bounded, non-decreasing, left continuous and

(1.2)
$$\lim_{t \to \infty} \rho_f(t) = \|f\|^2, \quad \lim_{t \to -\infty} \rho_f(t) = 0.$$

In [1] is proven that for each resolution of the identity $E_t \ (-\infty \leq t \leq +\infty)$ corresponds a uniquely defined self adjoint operator $\stackrel{\circ}{A}$, admitting the following integral representation

(1.3)
$$\overset{\circ}{A} = \int_{-\infty}^{+\infty} t \, dE_t$$

where the integral is understood as the strong limit of the integral sums for each $\stackrel{\circ}{f \in D(A)}$, and

(1.4)
$$D(\overset{\circ}{A}) = \left\{ f : \int_{-\infty}^{+\infty} t^2 d\left(E_t \ f, f\right) < \infty \right\}$$

is satisfied. The resolvent \ddot{R}_{λ} and the spectral function E_t of a self adjoint operator \ddot{A} are bound by the relation

(1.5)
$$\mathring{R}_{\lambda} = \int_{-\infty}^{+\infty} \frac{dE_t}{t-\lambda}, \quad \lambda \in \rho(\mathring{A}),$$

in the sense of strong limit.

The resolution of the identity given by the operator A completely determines the spectral properties of that operator, namely:

 α) a real number t_0 is a regular point of A if and only if it is a point of constancy, that is, if there is an $\varepsilon > 0$ such that $E_{t_0+\varepsilon} - E_{t_0-\varepsilon} = 0$;

 β) a real number t_0 is an eigenvalue of A if and only if λ is a jump point of E_t , that is, $E_{t_0+0} - E_{t_0} \neq 0$.

Hence the resolution of the identity determined by the operator is also called the spectral function of this operator.

1.2. **Deficiency indices.** The defect number is the dimension of the orthogonal complement to R(A)

$$d_A = \dim \left(H \ominus R(A) \right) = \dim \operatorname{Ker} \left(A^* \right),$$

where A^* is the adjoint operator of A and $\text{Ker}(A^*) = \{f \in D(A^*) : A^*f = 0\}, D(A^*)$ being the domain of A^* .

Let A be a symmetric operator, \tilde{A} its symmetric extension, then the following relation holds

The interest of (1.6) resides in the following conclusion: all symmetrical extension of A comes of a restriction of the domain of A^* . So $D(\tilde{A})$ is a subspace between D(A) and $D(A^*)$. To construct the extensions \tilde{A} it is therefore well to examine the structure of the space $D(A^*)$. Let's put

$$\mathcal{N}_{\lambda} = \ker (A^* - \lambda I) \text{ and } \mathcal{N}_{\bar{\lambda}} = \ker (A^* - \bar{\lambda}I), \quad (\Im m\lambda > 0),$$

with respective dimensions n_+ , n_- . They are called the deficiency indices of the operator A and will be denoted by the ordered pair (n_+, n_-) . It being, in the Hilbert space $D(A^*)$ we have the following hilbertienne decomposition [4]

(1.7)
$$D(A^*) = D(A) \oplus \mathcal{N}_{\lambda} \oplus \mathcal{N}_{\bar{\lambda}} .$$

A possesses self adjoint extensions [6] if and only if $n_+ = n_-$. We get in this case all self adjoints extensions of A from all isometric Cayley transforms $V = (A - \lambda I)(A - \overline{\lambda}I)^{-1}$ defined from $\mathcal{N}_{\overline{\lambda}}$ to \mathcal{N}_{λ} .

1.3. Generalized resolvents formulas. In the general case, every symmetric operator A can be prolonged in a selfadjoint operator A^+ defined in a wide space H^+ containing H. If E_t^+ (respectively R_λ^+) is the spectral function (respectively the resolvent) of A^+ and P^+ the operator of projection of H^+ on H^- then the functions operators $\mathbf{E}_t = P^+ E_t^+$ and $\mathbf{R}_\lambda = P^+ R_\lambda^+$ are said, respectively, generalized spectral function and generalized resolvent of the operator A. They are joined by the relation

(1.8)
$$\mathbf{R}_{\lambda} = \int_{\alpha}^{\beta} \frac{d\mathbf{E}_{t}}{t-\lambda}, \quad \lambda \in \rho(A) ,$$

in addition, for all real numbers α, β ($\alpha < \beta$), we have the Stieltjes inversion formula

(1.9)
$$([\mathbf{E}_{\alpha} - \mathbf{E}_{\beta}]f, g) = \frac{1}{2\pi i} \lim_{\tau \to \infty} \int_{\alpha}^{\beta} ([\mathbf{R}_{\sigma + i\tau} - \mathbf{R}_{\sigma - i\tau}]f, g) d\sigma, \quad f, g \in H.$$

Moreover, for all f of D(A):

$$Af = \int_{-\infty}^{+\infty} t \, d\mathbf{E}_t f \, .$$

The generalized spectral function \mathbf{E}_t satisfy the same conditions (ii) and (iii) of E_t but the first is replaced by

(i') $\mathbf{E}_{t_2} - \mathbf{E}_{t_1}$, where $t_2 > t_1$, is a bounded positive operator.

The restriction P^+A^+ is said quasi selfadjoint extension of the operator A. It is from this notion that Straus [21] developed his theory of generalized resolvent of a symmetric operator. Let's designate by \mathcal{F}_{λ} the class of all quasi selfadjoint linear operators defined on \mathcal{N}_{λ} and that apply \mathcal{N}_{λ} to $\mathcal{N}_{\bar{\lambda}}$. The set of generalized resolvents is defined by

(1.10)
$$\begin{cases} \mathbf{R}_{\lambda} = \left(A_{F(\lambda)} - \lambda I\right)^{-1} \\ \mathbf{R}_{\bar{\lambda}} = \mathbf{R}_{\lambda}^{*} \end{cases} \Im m\lambda \Im m\lambda_{\circ} > 0 \,,$$

where λ_{\circ} is a non real point, $F(\lambda)$ an analytic function operator in the half plane $(\Im m \lambda \Im m \lambda_{\circ} > 0)$ to value in $\mathcal{F}_{\lambda_{\circ}}$ and $A_{F(\lambda)}$ $(\Im m \lambda \Im m \lambda_{\circ} > 0)$ a quasi selfadjoint extension of the operator A defined by

$$D(A_{F(\lambda)}) = D(A) \oplus [F(\lambda) - I] \mathcal{N}_{\lambda_{\circ}},$$
$$A_{F(\lambda)}(f + F(\lambda)\varphi - \varphi) = Af + \lambda_{\circ}F(\lambda)\varphi - \bar{\lambda_{\circ}}\varphi$$

with $f \in D(A)$ and $\varphi \in \mathcal{N}_{\lambda_{\circ}}$. The adjoint operator $A_{F(\lambda)}^{*}$ is defined by

$$D(A_{F(\lambda)}^{*}) = D(A) \oplus [F^{*}(\lambda) - I] \mathcal{N}_{\overline{\lambda_{o}}},$$
$$A_{F(\lambda)}^{*}(f + F^{*}(\lambda)\psi - \psi) = Af + \overline{\lambda_{o}}F^{*}(\lambda)\psi - \overline{\lambda_{o}}\psi$$

with $f \in D(A)$ and $\psi \in \mathcal{N}_{\overline{\lambda_o}}$.

1.4. Some convergences. We call t a continuity point of E_t if $E_{t+0} - E_t = 0$.

We call [1] convergence in the mean the convergence in the space $L^{2}(X, \mu)$ and we denote by

$$f\left(x\right) = l.i.m.f_{n}\left(x\right) \,,$$

if

$$\lim_{n \to \infty} \int_{X} |f(x) - f_n(x)|^2 dx = 0, \text{ almost everywhere in } X.$$

(*l.i.m.* is an abbreviation for limes in medio, i.e. limit in the mean).

2. CARLEMAN OPERATORS

One can find necessary information about Carleman operators, for example, in [5, 9, 22, 23, 24]. In this section we shall present only part of it. Let Xbe an arbitrary set, μ a σ -fini measure on X (μ is defined on a σ -algebra of subsets of X, we don't indicate this σ -algebra), $L_2(X,\mu)$ the Hilbert space of square integrable functions with respect to μ . Instead of writing ' μ -measurable', ' μ -almost everywhere' and ' $(d\mu(x))$ ' we write 'measurable', 'a e' and 'dx'.

Definition 1 ([24]). A linear operator $A: D(A) \longrightarrow L_2(X, \mu)$, where the domain D(A) is a dense linear manifold in $L_2(X, \mu)$, is said to be **integral** if there exists a measurable function K on $X \times X$, a kernel, such that, for every $f \in D(A)$,

(2.1)
$$Af(x) = \int_X K(x, y) f(y) dy \quad a \in \mathcal{A}$$

A kernel K on $X \times X$ is said to be Carleman if $K(x, y) \in L_2(X, \mu)$ for almost every fixed x, that is to say

(2.2)
$$\int_X |K(x,y)|^2 dy < \infty \quad \text{a e.}$$

An integral operator A with a kernel K is called **Carleman operator** if K is a Carleman kernel. Every Carleman kernel K defines a Carleman function k from X to $L_2(X,\mu)$ by $k(x) = \overline{K(x,\cdot)}$ for all x in X for which $K(x,\cdot) \in L_2(X,\mu)$.

Self-adjoint Carleman operators have generalized eigenfunction expansions, which can be used in the study of linear elliptic operators, see [14]. A general reference for Carleman operators on L_2 -spaces is [8]. The notion of a Carleman operator has been extended in many directions. By replacing L_2 by an arbitrary Banach function space one obtains the so-called generalized Carleman operators (see [18]) and by considering Bochner integrals and abstract Banach spaces one is lead to the so-called Carleman and Korotkov operators on a Banach space ([7]).

Now we consider the class of integral operators (2.1) that we go studied here generated by the following symmetric Carleman kernel

(2.3)
$$K(x,y) = \sum_{p=0}^{\infty} a_p \psi_p(x) \overline{\psi_p(y)},$$

where the overbar denotes complex conjugation. $\{\psi_p(x)\}_{p=0}^{\infty}$ is an orthonormal sequence in $L^2(X,\mu)$ such that

(2.4)
$$\sum_{p=0}^{\infty} \left| \psi_p \left(x \right) \right|^2 < \infty \quad \text{a e},$$

and $\{a_p\}_{p=0}^{\infty}$ a real number sequence verifying

(2.5)
$$\sum_{p=0}^{\infty} a_p^2 |\psi_p(x)|^2 < \infty \quad \text{a e}$$

We called $\{\psi_p(x)\}_{p=0}^{\infty}$ a Carleman sequence. Let $L(\psi)$ be the closed set of linear combinations of elements of the orthogonal sequence $\{\psi_p(x)\}_{p=0}^{\infty}$. It is lucid that the orthogonal complement $L^{\perp}(\psi) = L_2(X,\mu) \ominus L(\psi)$ is contained in D(A) and annul the operator A.

The following lemma [3] tells us when the Carleman operator A possesse equal deficiency indices.

Lemma 1 ([3]). The operator A possesses equal deficiency indices $n_+(A) = n_-(A) = m$, $(m < \infty)$, if and only if there exist sequences $\left\{\gamma_p^{(k)}\right\}_{p=0}^{\infty}$, $(k = 1, 2, \ldots, m)$, verifying

1) For all k

(2.6)
$$\theta_k(x) = \sum_{p=0}^{\infty} \gamma_p^{(k)} \psi_p(x) \in L^{\perp}(\psi) \quad (k = 1, 2, \dots, m)$$

2) For all λ ($\Im m \lambda \neq 0$)

(2.7)
$$\sum_{p=0}^{\infty} \left| \frac{\gamma_p^{(k)}}{a_p - \lambda} \right|^2 < \infty, \quad (k = 1, 2, \dots, m)$$

3) The linear space of the sequences $\left\{\gamma_p^{(k)}\right\}_{p=0}^{\infty}$, (k = 1, 2, ..., m), verifying 1) and 2) is *m* dimension.

3. Generalized resolvents

We first prove the following important lemma.

Lemma 2. Let *B* be a closed symmetric operator, ψ the eigenvector of *B* belonging to the eigenvalue *b*. Then $\psi \in D(B)$ if and only if for a certain λ ($\Im m \lambda \neq 0$) and for all φ_{λ} and $\varphi_{\overline{\lambda}}$

$$(\varphi_{\lambda},\psi) = (\varphi_{\bar{\lambda}}, \psi) = 0,$$

where φ_{λ} and $\varphi_{\bar{\lambda}}$ belong respectively to the defect spaces $\mathcal{N}_{\bar{\lambda}}$ and \mathcal{N}_{λ} .

Proof. Let $\psi \in D(B)$ and $\varphi_{\lambda} \in \mathcal{N}_{\overline{\lambda}} \ (\Im m \lambda \neq 0)$, then

$$(b\psi,\varphi_{\lambda}) = (B\psi,\varphi_{\lambda}) = (\psi,B^*\varphi_{\lambda}) = \overline{\lambda}(\psi,\varphi_{\lambda}).$$

Therefore,

$$(b - \bar{\lambda})(\psi, \varphi_{\lambda}) = 0$$

and as $b - \bar{\lambda} \neq 0$, it follows that $(\psi, \varphi_{\lambda}) = 0$. Now let *h* be an arbitrary element of $D(B^*)$. By the hilbertienne decomposition we have

$$h = f + \alpha \varphi_{\lambda} + \beta \varphi_{\bar{\lambda}} \,,$$

with $f \in D(B)$, $\varphi_{\lambda} \in \mathcal{N}_{\overline{\lambda}}$, $\varphi_{\overline{\lambda}} \in \mathcal{N}_{\lambda}$, and α, β two complex numbers. Then,

$$(B^*h,\psi) = (Bf,\psi) = (f,b\psi) = (h,b\psi)$$

that is to say $\psi \in D(B)$.

Now we suppose that the symmetric Carleman operator A (2.1) - (2.3) possesse equal deficiency indices $n_+(A) = n_-(A) = 1$. By Lemma 1 there exist a sequence $\{\gamma_p\}_{p=0}^{\infty}$ such that:

$$\sum_{p=0}^{\infty} |\gamma_p|^2 = \infty$$

and verifying the three conditions of the quoted lemma. By (2.6) and (2.7) we conclude that the function

(3.1)
$$\varphi_{\lambda}(x) = \sum_{p=0}^{\infty} \frac{\gamma_p}{a_p - \lambda} \psi_p(x)$$

belongs to the defect space $\mathcal{N}_{\overline{\lambda}}$ of the operator A. In what follows, to facilitate the writing, we will designate by A the restriction of A on the subspace $L(\psi)$.

Now we consider the following integral equation

(3.2)
$$\int_{X} \sum_{p=0}^{\infty} a_p \psi_p(x) \overline{\psi_p(y)} Y(y) \, dy - \lambda Y(x) = f(x) \; .$$

Let $f(x) = \sum_{p=0}^{\infty} c_p \psi_p(x) \left(\sum_{p=0}^{\infty} |c_p|^2 < \infty \right)$, then the solution of the equation (3.2) will be the function

(3.3)
$$Y(x,\lambda) = \sum_{p=0}^{\infty} \frac{c_p}{a_p - \lambda} \psi_p(x) .$$

Let's notice that the formula (3.3) gives the resolvent of the self-adjoint extension $\overset{\circ}{A}$ of the operator A which possesses a complete system of eigenfunctions $\{\psi_k(x)\}$ of the space $L(\psi)$. The resolvent $\overset{\circ}{R}_{\lambda}$ of the operator $\overset{\circ}{A}$ is an integral operator defined on the space $L(\psi)$:

(3.4)
$$\overset{\circ}{R}_{\lambda}f = \int_{X}\overset{\circ}{K}(x,y;\lambda) f(y) \, dy \, ,$$

where

$$\overset{\circ}{K}(x,y;\lambda) = \sum_{p=0}^{\infty} \frac{1}{a_p - \lambda} \psi_p(x) \overline{\psi_p(y)}$$

Any solution of the equation (3.2) in $D(A^*)$ admits the following representation

(3.5)
$$Y(x,\lambda) = \overset{\circ}{R}_{\lambda}f(x) + c\varphi_{\lambda}(x)$$

where c is an any complex number.

Let's put $\lambda_{\circ} = i$, then $F(\lambda)$ (subsection 1.3) can be given by the formula

$$F\left(\lambda\right)\varphi_{-i}=\omega\left(\lambda\right)\varphi_{i}$$

with $\omega(\lambda)$ an analytic function in the upper half plan and $|\omega(\lambda)| \leq 1$. The operator $A_{F(\lambda)}$ is defined on the set $D(A_{F(\lambda)})$ as

(3.6)
$$\begin{cases} f = x + \omega(\lambda) \varphi_i - \varphi_{-i} (x \in D(A)), \\ A_{F(\lambda)} f = Ax + i\omega(\lambda) \varphi_i + \varphi_{-i}, \end{cases}$$

then

$$D(A_{F(\lambda)}) = \left\{ g \in L(\psi) : g = f + \left[\omega(\lambda) \varphi_i - \varphi_{-i} \right] c, \ f \in D(A) \right\},$$
(3.7)

$$D(A_{F(\lambda)}^{*}) = \left\{ h \in L(\psi) : g = f + \left\lfloor \omega(\lambda)\varphi_{-i} - \varphi_{i} \right\rfloor c, \ f \in D(A) \right\}.$$

We introduce the following function

$$\nu_{\lambda} = \overline{\omega(\lambda)} \varphi_{-i} - \varphi_i,$$

then $D(A_{F(\lambda)})$ is defined as the set of $y \in D(A^*)$ for which

$$(A^*y,\nu_\lambda) = (y,A^*\nu_\lambda)$$

S. M. BAHRI

While choosing in (3.5) for all $\lambda (\Im m \lambda > 0) \ c = C(\lambda)$, as we have the equality

(3.8)
$$(A^*Y,\nu_\lambda) = (Y,A^*\nu_\lambda) ,$$

we get a formula giving the set of generalized resolvents in terms of analytic functions $\omega(\lambda)$. By (3.8) we have

(3.9)
$$C(\lambda) = \frac{\left[1 - \omega(\lambda)\right](f, \varphi_{\bar{\lambda}})}{\left[\omega(\lambda)\chi(\lambda) - 1\right](\lambda + i)(\varphi_{\lambda}, \varphi_{i})} \quad (\Im m\lambda > 0) ,$$

where

(3.10)
$$\chi(\lambda) = \frac{\lambda - i}{\lambda + i} \frac{(\varphi_{\lambda}, \varphi_{-i})}{(\varphi_{\lambda}, \varphi_{i})}$$

denote the characteristic function [1] of operator A. If we substitute (3.9) in (3.5), we get the formula of generalized resolvents

(3.11)
$$\mathbf{R}_{\lambda}f = \overset{\circ}{R}_{\lambda}f + \frac{1-\omega(\lambda)}{\omega(\lambda)\chi(\lambda)-1}\frac{(f,\varphi_{\bar{\lambda}})}{(\lambda+i)(\varphi_{\lambda},\varphi_{i})}\varphi_{\lambda} \quad (\Im m\lambda > 0) .$$

While taking account that $\mathbf{R}_{\bar{\lambda}} = \mathbf{R}^*_{\lambda}$, it is easy to have

(3.12)
$$\mathbf{R}_{\bar{\lambda}}f = \overset{\circ}{R}_{\bar{\lambda}}f + \frac{1-\omega(\lambda)}{\omega(\lambda)\chi(\lambda)-1}\frac{(f,\varphi_{\lambda})}{(\overline{\lambda}-i)(\varphi_{\overline{\lambda}},\varphi_{-i})}\varphi_{\overline{\lambda}} \quad (\Im m\lambda > 0) .$$

So we have demonstrated

Theorem 1. Formulas (3.11) and (3.12) establish a bijective correspondence between the set of generalized resolvents of the operator A and the set of the analytic functions $\omega(\lambda)$ as $|\omega(\lambda)| \leq 1$ ($\Im m \lambda > 0$). These formulas define the resolvent of a selfadjoint extension of A in the space $L(\psi)$ if and only if, $\omega(\lambda) = \varkappa(\text{constant})$, $|\varkappa| = 1$.

4. Generalized spectral functions

Let's consider the function $\chi(\lambda)$ given by the formula (3.10):

$$\chi\left(\lambda\right) = \frac{\lambda - i}{\lambda + i} \frac{\sum_{p=0}^{\infty} \frac{\gamma_p^2}{(a_p - \lambda)(a_p - i)}}{\sum_{p=0}^{\infty} \frac{\gamma_p^2}{(a_p - \lambda)(a_p + i)}},$$

it's an analytic function in the half plane $\Pi^+ = \{\lambda \in \mathbb{C} : \Im m \lambda \ge 0\}$ and take its values on the unit disk $D = \{\zeta \in \mathbb{C} : |\zeta| \le 1\}$, so that the real axis \mathbb{R} turns into the unit circle $C = \{\zeta \in \mathbb{C} : |\zeta| = 1\}$. Thus, for all $p = 0, 1, 2, \ldots, \chi(a_p) = 1$. Let's put

$$\zeta = \frac{\lambda - i}{\lambda + i} \,.$$

We can write [1] $\chi(\lambda)$ under the form

$$\chi\left(\lambda\right) = \chi\left(i\frac{1+\zeta}{1-\zeta}\right) = \omega(\zeta) = \frac{\zeta((\overset{\circ}{U}-\zeta I)^{-1}\varphi_i,\varphi_i)}{((\overset{\circ}{U}-\zeta I)^{-1}\overset{\circ}{U}\varphi_i,\varphi_i)} = \frac{\Phi\left(\zeta\right) - \|\varphi_i\|^2}{\Phi\left(\zeta\right) + \|\varphi_i\|^2},$$

where

$$\overset{\rm o}{U}=(\overset{\rm o}{A}-iI)(\overset{\rm o}{A}+iI^{-1})$$

is the unitary Cayley transform of the self-adjoint operator A and

$$\Phi(\zeta) = \int_0^{2\pi} \frac{e^{is} + \zeta}{e^{is} - \zeta} \, d(\overset{\circ}{E}_s \varphi_i, \varphi_i) \,,$$

 $\overset{\circ}{E}_s$ being the resolution of the identity of the unitary operator $\overset{\circ}{U}.$ For $|\zeta|=1,$ we have

(4.1)
$$\Re e \left[\Phi \left(\zeta \right) \right] = 0$$

From the equality

(4.2)
$$(\varphi_{\lambda}, \varphi_{i}) = \frac{i}{\lambda + i} \left[\Phi\left(\zeta\right) + \left\|\varphi_{i}\right\|^{2} \right]$$

we conclude that

$$(\varphi_{\lambda}, \varphi_i) \neq 0 \ \forall \ \lambda \ , \quad \Im m \lambda \ge 0 \ .$$

Formulas (4.1) and (4.2) imply that

(4.3)
$$\Im m \left[(\sigma + i) \left(\varphi_{\sigma}, \varphi_{i} \right) \right] = \left\| \varphi_{i} \right\|^{2} \quad (\Im m \sigma = 0)$$

Now, we introduce the following useful lemmas:

Lemma 3. For all $f, g \in H$, the functions $(\overset{\circ}{R_{\lambda}}f, g), (\varphi_{\lambda}, \varphi_i), (f, \varphi_{\overline{\lambda}})$ and (φ_{λ}, g) are regular on all the complex plane except to points a_p (p = 0, 1, 2, ...), where they admit simple poles. Besides, the following equalities are true:

$$\operatorname{res}_{\lambda=a_{p}}(\overset{\circ}{R_{\lambda}}f,g) = \operatorname{res}_{\lambda=a_{p}}\frac{\left(f,\varphi_{\overline{\lambda}}\right)\left(\varphi_{\lambda},g\right)}{\left(\lambda-i\right)\left(\varphi_{\lambda},\varphi_{-i}\right)} = \left(f,\psi_{p}\right)\left(\psi_{p},g\right),$$
$$\operatorname{res}_{\lambda=a_{p}}\frac{\left(f,\varphi_{\overline{\lambda}}\right)\left(\varphi_{\lambda},g\right)}{\left(\lambda-i\right)\left(\varphi_{\lambda},\varphi_{-i}\right)} = \operatorname{res}_{\lambda=a_{p}}\frac{\left(f,\varphi_{\lambda}\right)\left(\varphi_{\overline{\lambda}},g\right)}{\left(\overline{\lambda}-i\right)\left(\varphi_{\overline{\lambda}},\varphi_{i}\right)} = \left(f,\psi_{p}\right)\left(\psi_{p},g\right).$$

Proof. The fact that the mentioned functions are regular on the complex plane except to poles a_p (p = 0, 1, 2, ...) result from formulas (3.1) and

$$(\overset{\circ}{R_{\lambda}}f,g) = \sum_{p=0}^{\infty} \frac{(f,\psi_p)(\psi_p,g)}{a_p - \lambda}$$

Furthermore we have:

$$\operatorname{res}_{\lambda=a_p}(\overset{\circ}{R_{\lambda}}f,g) = (f,\psi_p)(\psi_p,g) ,$$

it is easy to see that the function

$$\frac{\left(f,\varphi_{\overline{\lambda}}\right)\left(\varphi_{\lambda},g\right)}{\left(\lambda-i\right)\left(\varphi_{\lambda},\varphi_{-i}\right)} = \frac{\left[\sum_{p=0}^{\infty}\frac{\gamma_{p}\left(f,\psi_{p}\right)}{a_{p}-\lambda}\right]\left[\sum_{p=0}^{\infty}\frac{\gamma_{p}\left(\psi_{p},g\right)}{a_{p}-\lambda}\right]}{\left(\lambda-i\right)\sum_{p=0}^{\infty}\frac{\gamma_{p}^{2}}{\left(a_{p}-\lambda\right)\left(a_{p}-i\right)}},$$

admits the same residue to the point $\lambda = a_p$. The second equality can be verified in the same way.

(

S. M. BAHRI

Lemma 4 ([21]). Let $\varphi(\lambda)$ an analytic function in the half-plane Π^+ with a positive imaginary part and $\psi(\lambda)$ an analytic function in a certain domain containing the interval $[\alpha, \beta]$. Then we have the formula

$$\frac{1}{2\pi i} \lim_{\tau \to +0} \int_{\alpha}^{\beta} \left[\varphi\left(\lambda\right) \psi\left(\lambda\right) - \overline{\varphi\left(\lambda\right)} \psi\left(\lambda\right) \right] d\sigma = \int_{\alpha}^{\beta} \psi\left(\sigma\right) \, d\rho\left(\sigma\right) \quad \left(\lambda = \sigma + i\tau\right) \,,$$

with

$$\rho\left(\sigma\right) = \frac{1}{\pi} \lim_{\tau \to +0} \int_{0}^{\sigma} \Im m\varphi\left(t + i\tau\right) \, dt \, .$$

Let $\omega(\lambda)$ be an arbitrary analytic function who applies the half-plane Π^+ on the unit disk D. It is known that the spectral function \mathbf{E}_t is uniform and that we can get it by the formula of Stieltjes (1.9):

for all f(s) and g(s) of L and for all reals α and β ($\alpha < \beta$) we have the equality

$$\left(\mathbf{E}_{\alpha,\beta}f,g\right) = \frac{1}{2\pi i} \lim_{\tau \to +0} \int_{\alpha}^{\beta} \left(\left[\mathbf{R}_{\sigma+i\tau} - \mathbf{R}_{\sigma-i\tau}\right]f,g \right) d\sigma$$

with

$$\mathbf{E}_{\alpha,\beta} = \left(\mathbf{E}_{\beta} + \mathbf{E}_{\beta+0}\right)/2 - \left(\mathbf{E}_{\alpha} + \mathbf{E}_{\alpha+0}\right)/2$$

Let's consider the difference

(4.4)
$$\mathbf{R}_{\lambda}f - \mathbf{R}_{\bar{\lambda}}f = \begin{bmatrix} \overset{\circ}{R}_{\lambda}f - \overset{\circ}{R}_{\bar{\lambda}}f \end{bmatrix} + \begin{bmatrix} C(\lambda)\varphi_{\lambda} - C(\bar{\lambda})\varphi_{\bar{\lambda}} \end{bmatrix}.$$

While holding in account (3.3) and (3.4), we get

$$\lim_{\tau \to +0} \int_{\alpha}^{\beta} \begin{bmatrix} \stackrel{\circ}{R}_{\lambda}f - \stackrel{\circ}{R}_{\bar{\lambda}}f \end{bmatrix} d\sigma = \sum_{\alpha_k \in (\alpha,\beta)}^{\infty} c_k \psi_k \left(s \right) \quad \left(\lambda = \sigma + i\tau \right) \,,$$

where

(4.5)
$$f(s) = \sum_{k=0}^{\infty} c_k \psi_k(s) .$$

Let's consider the second member of (4.4):

$$C(\lambda) \varphi_{\lambda} - C(\bar{\lambda}) \varphi_{\overline{\lambda}} = \frac{-i}{\omega(\lambda) \chi(\lambda) - 1} \left[\frac{1}{(\lambda - i) (\varphi_{\lambda}, \varphi_{-i})} - \frac{1}{(\lambda + i) (\varphi_{\lambda}, \varphi_{i})} \right] \\ \times \frac{1}{i} (f, \varphi_{\overline{\lambda}}) \varphi_{\lambda} - \frac{i}{\omega(\lambda) \chi(\lambda) - 1} \left[\frac{1}{(\overline{\lambda} - i) (\varphi_{\overline{\lambda}}, \varphi_{-i})} - \frac{1}{(\overline{\lambda} + i) (\varphi_{\overline{\lambda}}, \varphi_{i})} \right] \\ \times \frac{1}{i} (f, \varphi_{\lambda}) \varphi_{\overline{\lambda}} - \left[\frac{(f, \varphi_{\overline{\lambda}}) \varphi_{\lambda}}{(\lambda - i) (\varphi_{\lambda}, \varphi_{-i})} - \frac{(f, \varphi_{\lambda}) \varphi_{\overline{\lambda}}}{(\overline{\lambda} + i) (\varphi_{\overline{\lambda}}, \varphi_{i})} \right].$$

Let's put

$$\frac{(f,\varphi_{\bar{\lambda}})\varphi_{\lambda}}{(\lambda-i)(\varphi_{\lambda},\varphi_{-i})} = f_1(\lambda) ; \quad \frac{(f,\varphi_{\lambda})\varphi_{\bar{\lambda}}}{(\bar{\lambda}+i)(\varphi_{\bar{\lambda}},\varphi_i)} = f_2(\lambda) \qquad (\Im m\lambda > 0)$$

Then $(\lambda = \sigma + i\tau)$

$$\frac{1}{2\pi i} \lim_{\tau \to +0} \int_{\alpha}^{\beta} \left[f_1\left(\lambda\right) - f_2\left(\lambda\right) \right] d\sigma = \frac{1}{2\pi i} \int_{\alpha}^{\beta} \frac{2i\Im m \left[\left(\sigma + i\right) \left(\varphi_{\sigma}, \varphi_i\right) \right] \left(f, \varphi_{\sigma}\right)}{\left(\sigma^2 + 1\right) \left| \left(\varphi_{\sigma}, \varphi_i\right) \right|^2} d\sigma + \sum_{\alpha_k \in (\alpha, \beta)}^{\infty} c_k \psi_k\left(s\right) ,$$

 c_k being coefficients in the development (4.5).

Now, we notice that for all analytic function $\omega(\lambda)$ in the half-plane Π^+ as $|\omega(\lambda)| \leq 1$, we obtain

$$\Im m \frac{i}{\omega(\lambda) \chi(\lambda) - 1} > 0 \quad (\Im m \lambda > 0) .$$

After this, while using the Lemma 2 and the equality (4.3), we get

(4.6)
$$\mathbf{E}_{\alpha,\beta}f = \frac{1}{2\pi i} \lim_{\tau \to +0} \int_{\alpha}^{\beta} \left[\mathbf{R}_{\lambda} - \mathbf{R}_{\bar{\lambda}}\right] f \, d\sigma = \int_{\alpha}^{\beta} \frac{(f,\varphi_{\sigma}) \,\varphi_{\sigma}}{(\sigma^2 + 1) \, |(\varphi_{\sigma}, \overset{\circ}{\varphi_{i}})|^2} \, d\rho\left(\sigma\right) \, d\sigma$$

with

(4.7)
$$\rho(\sigma) = \frac{1}{\pi} \lim_{\tau \to +0} \int_0^{\sigma} \left[\Im m \frac{-2i}{\omega(\lambda) \chi(\lambda) - 1} - 1 \right] dt, \quad (\lambda = t + i\tau)$$

and

$$\overset{\circ}{\varphi_i}(s) = \frac{\varphi_i(s)}{\|\varphi_i\|}.$$

The function $\rho(\sigma)$ is decreasing because

$$\Re e \frac{1}{\omega(\lambda) \chi(\lambda) - 1} \ge \frac{1}{1 + |\omega(\lambda) \chi(\lambda)|} \ge \frac{1}{2}.$$

Thus, we have demonstrated the theorem

Theorem 2. Let $\omega(\lambda)$ be an analytic function in the half-plane Π^+ and E_t ($-\infty < t < +\infty$) the spectral function of the operator A. Then for all f(s) of $L(\psi)$ and for all reals α and β ($\alpha < \beta$) we have the relation (4.6) and the following equalities

$$(E_{\alpha,\beta}f,f) = \int_{\alpha}^{\beta} \frac{|(f,\varphi_{\sigma})|^2}{(\sigma^2+1)|(\varphi_{\sigma},\mathring{\varphi_i})|^2} d\rho(\sigma),$$

$$f(s) = \lim_{\substack{\alpha \to -\infty \\ \beta \to +\infty}} \int_{\alpha}^{\beta} \frac{(f,\varphi_{\sigma})\varphi_{\sigma}(s)}{(\sigma^2+1) \left| \left(\varphi_{\sigma},\mathring{\varphi_i}\right) \right|^2} d\rho(\sigma),$$

$$(f,f) = \int_{-\infty}^{+\infty} \frac{|(f,\varphi_{\sigma})|^2}{(\sigma^2+1) \left| \left(\varphi_{\sigma},\mathring{\varphi_i}\right) \right|^2} d\rho(\sigma),$$

where $\rho(\sigma)$ is defined by the formula (4.7) for $\lambda = \sigma + i\tau$, $\Im m\lambda > 0$.

Corollary 1. In order that $t \ (-\infty < t < +\infty)$ be a continuity point of the spectral function E_t of the operator A it is necessary and sufficient that it is a continuity point of the function $\rho(\sigma)$.

Let's consider the formula (4.7). The function $\chi(\lambda)$ applies all interval $(a_{p_k}, a_{p_{k+1}})$ (we suppose that a_{p_k} and $a_{p_{k+1}}$ are neighboring points) in the unit disk. The homographic transform $\frac{1+z}{1-z}$ applies the circle $|z| = r \leq 1$ in the not euclidean circle of center *i* such that the image of r = 0 will be the point *i* and the image of r = 1 will be the real axis \mathbb{R} . Therefore, for $\omega(\lambda) = 1$, $\rho(\sigma)$ is a jumps function with points jumps a_{p_k} and for $\omega(\lambda) = \varkappa(\varkappa = \text{ constant with } |\varkappa| < 1)$, $\rho(\sigma)$ is absolutely continuous.

With the help of the self-adjoints extensions $(\omega(\lambda) = \varkappa = \exp(i\varphi)) \rho(\sigma)$ will be a jumps function with points jumps σ_p for whom $\chi(\sigma_p) = \exp(-i\varphi)$.

Of the pace of the function $\rho(\sigma)$ we are convinced of the following findings.

Corollary 2. The quasi-self-adjoint extension associated to the analytical function $\omega(\lambda) (|\omega(\lambda)| \leq 1 \text{ in } \Pi^+ \text{ and } |\omega(\sigma)| = 1 \text{ for } \Im m\sigma = 0)$ admits a merely point spetrum.

Corollary 3. The interval (c, d) $(-\infty \le c < d \le +\infty)$ doesn't contain the spectrum points of the self-adjoint extension of the operator A generated by the functions $\omega(\lambda)$ if and only if $\omega(\lambda)$ verify the following conditions:

- a) $\omega(\lambda)$ is analytic in Π^+ and $|\omega(\lambda)| \leq 1 (\Im m \lambda > 0);$
- b) $\omega(\lambda)$ admits an extension by continuity from Π^+ on (c, d);
- c) $|\omega(\sigma)| = 1$, if $\sigma \in (c, d)$;
- d) $\omega(\sigma) \neq \overline{\chi(\sigma)}$ for $\sigma \in (c, d)$.

If we suppose in (2.3) that $a_p > 0$, then A will be a positive operator. Thus the Corollary 3 give the criteria to get the positive spectral functions. In particular self-adjoint extension possessed a positive spectral function if it is generated by functions $\omega(\lambda) = \varkappa = \exp(i\varphi), \ 0 \le \varphi \le \varphi_0, \ \chi(0) = \exp(-i\varphi_0).$

References

- Akhiezer, N. I., Glazman, I. M., Theory of Linear Operators in Hilbert Space, Dover, New York (1993).
- [2] Alexandrov, E. L., On the generalized resolvents of symmetric operators, Izv. Vizov Math. N° 7, 1970.
- [3] Bahri, S. M., On the extension of a certain class of Carleman operators, EMS, Z. Anal. Anwend. 26 (2007), 57–64.
- [4] Buchwalter, H., Tarral, D., Théorie spectrale, Nouvelle série N° 8/C, 1982.
- [5] Carleman, T., Sur les équations intégrales singulières à noyau réel et symétrique, Uppsala Almquwist Wiksells Boktryckeri, 1923.
- [6] Chatterji, S. D., Cours d'analye T3, Presses polytechniques et universitaires romandes, 1998.
- [7] Gretsky, N., Uhl, J. J., Carleman and Korotkov operators on Banach spaces, Acta Sci. Math. 43 (1981), 111–119.

CARLEMAN OPERATORS

- [8] Halmos, P. R., Sunder, V. S., Bounded integral operators on L₂-spaces, Ergeb. Math. Grenzgeb. 96, Springer 1978.
- [9] Korotkov, V. B., On characteristic properties of Carleman operators, Sib. Math. J. 11, N°1 (1970), 103-127.
- [10] Krein, M. G., On Hermitian operators with deficiency indices one, Dokl. Akad. Nauk SSSR 43 (1944), 339–342. (Russian)
- [11] Krein, M. G., Resolvents of a Hermitian operator with defect index (m, m), Dokl. Akad. Nauk SSSR 52 (1946), 657–660. (Russian)
- [12] Krein, M. G., Saakjan, S. N., Some new results in the theory of resolvents of Hermitian operators, Sov. Math. Dokl. 7 (1966), 1086–1089.
- [13] Malamud, M. M., On a formula of the generalized resolvents of a nondensely defined Hermitian operator, Ukrain. Math. J. 44 (1992), 1522–1547.
- [14] Maurin, K., Methods of Hilbert spaces, PWN, 1967.
- [15] Naimark, M. A., On spectral functions of a symmetric operator, Izv. Akad. Nauk SSSR 7 (1943), 285–296. (Russian)
- [16] von Neumann, J., Allgemeine Eigenwerttheorie hermitescher Funktionaloperatoren, Math. Ann. 102 (1929–30), 49–131.
- [17] Reed, M. and Simon, B., Methods of Modern Mathematical Physics IV, Analysis of Operators, Academic Press, New York, 1978.
- [18] Schep, A. R., Generalized Carleman operators, Indag. Math. 42 (1980), 49–59.
- [19] Saakjan, Sh. N., On the theory of the resolvents of a symmetric operator with infinite deficiency indices, Dokl. Akad. Nauk Arm. SSR 44 (1965), 193–198. (Russian)
- [20] Straus, A. V., Construction of the generalized spectral functions of a Sturm-Liouville differential operator on a half-axis, Izv. Akad. Nauk SSSR Ser. Mat. 19 (1955), 201–220. (Russian)
- [21] Straus, A. V., Extensions and generalized resolvents of a non-densely defined symmetric operator, Math. USSR Izv. 4 (1970), 179–208.
- [22] Targonski, G. I., On Carleman integral operators, Proc. Amer. Math. Soc. 18, N°3 (1967).
- [23] Weidman, J., Carleman Operators, Manuscripts, Math. N°2 (1970), 1-38.
- [24] Weidman, J., *Linear Operators in Hilbert Spaces*, Spring Verlag, New-York Heidelberg Berlin, 1980.

Department of Mathematics, University of Mostaganem BP 227, Mostaganem, 27000, Algeria

E-mail: bahrisidimohamed@univ-mosta.dz