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ON UNIQUE RANGE SETS OF

MEROMORPHIC FUNCTIONS IN Cm

Xiao-Tian Bai and Qi Han

Abstract. By considering a question proposed by F. Gross concerning unique
range sets of entire functions in C, we study the unicity of meromorphic func-
tions in Cm that share three distinct finite sets CM and obtain some results
which reduce 5 ≤ c3(M(Cm)) ≤ 9 to 5 ≤ c3(M(Cm)) ≤ 6.

1. Introduction and main results

Let f be a non-constant meromorphic function in C, and let a ∈ C be a finite
value. Define Ef (a) to be the set of zeros of f −a = 0, each one counted according
to its multiplicity. For a = ∞, we define Ef (∞) := E1/f (0). Let S ⊂ P1 :=
C

⋃{∞} be a non-empty set with distinct elements. Set Ef (S) =
⋃

a∈S Ef (a). If,
for another non-constant meromorphic function g in C, we have Ef (S) = Eg(S),
then we say that f and g share the set S CM. In particular, when S contains only
one element, it coincides with the usual definition of CM shared values. We refer
the reader to books [7] or [11] for more details on Nevanlinna’s value distribution

theory of meromorphic functions with single variable and its applications.

In 1968, it was F. Gross who first studied the uniqueness problem of meromor-
phic functions in C that share distinct sets instead of values in [5]. From then
on, he, as well as many other mathematicians, has studied and obtained a lot of
results on this topic and its related problems (see, e.g., [8] or [11]).

In 1976, F. Gross asked the following two questions.

Question 1 (see [6] or [12]). Can one find two distinct finite sets S1 and S2 such

that any two non-constant entire functions f and g in C sharing them CM will be

identically equal to each other?

Question 2 (see [6] or [12]). If the answer to Question 1 is affirmative, then it

would be interesting to know how large both sets would have to be?
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Questions 1 and 2 have been answered by H.-X. Yi completely in 1998. In fact,
he proved the following two theorems.

Theorem A (see [12]). Let f and g be two non-constant entire functions in C,

and let S1 = {0} and S2 =
{

ω|ω2(ω + a) − b = 0
}

be two sets, where a and b are

two non-zero constants such that 4a3

27 6= b. If f and g share the sets S1 and S2

CM, then f ≡ g.

Theorem B (see [12]). If S1 and S2 are unique range sets of non-constant entire

functions in C, then max
{

ı(S1), ı(S2)
}

≥ 3 and min
{

ı(S1), ı(S2)
}

≥ 1, where

ı(Sj) denotes the cardinality of the set Sj for j = 1, 2.

Here, we say that S1, S2, . . ., Sn are unique range sets of entire or meromor-
phic functions, if the condition that any two non-constant entire or meromorphic
functions f and g sharing S1, S2, . . ., Sn CM implies that f ≡ g. Also, examples
are given in [12] to show that the conclusions of Theorem B is sharp.

P.-C. Hu and C.-C. Yang generalized the above two theorems to holomorphic
functions in Cm, and obtained the following result.

Theorem C (see [8, Theorem 3.42]). Let f and g be two non-constant holomorphic

functions in Cm, and let S1 = {0} and S2 =
{

ω|ωn + aωp − b = 0
}

be two sets,

where n and p are two relatively prime integers such that n > p ≥ 2 and 2p > n,

and a and b are two non-zero constants such that an

bn−p 6= (−1)pnn

pp(n−p)n−p . If f and g

share the sets S1 and S2 CM, then f ≡ g. Obviously, min
{

ı(S2)
}

= 3.

Also, they studied unique range sets of meromorphic functions in Cm, and
obtained the following extension of Theorems A-C.

Theorem D (see [8, Theorem 3.43]). Let f and g be two non-constant mero-

morphic functions in Cm, and let S1 = {0}, S2 =
{

ω|ωn + aωp − b = 0
}

and

S3 = {∞} be three sets, where n and p are two relatively prime integers such that

n > p + 1 ≥ 3 and 2p > n + 2, and a and b are two non-zero constants such that
an

bn−p 6= (−1)pnn

pp(n−p)n−p . If f and g share the sets S1, S2 and S3 CM, then f ≡ g.

Obviously, min
{

ı(S2)
}

= 7.

Remark. Please see Section 2 for the definition of meromorphic functions of
several variables and that of the corresponding CM shared sets.

Example. Let f and g be two non-constant distinct meromorphic functions in
Cm with the following expressions

f = −aeα(enα − 1)

e(n+1)α − 1
and g = − a(enα − 1)

e(n+1)α − 1
.

Then f/g = eα, where α is a non-constant entire function in Cm. So, f and g
share the values 0, ∞ CM. Also, fn(f + a) ≡ gn(g + a), which means f and g
sharing the set S =

{

ω|ωn(ω + a) − b = 0
}

CM for any n ∈ N and any a(6= 0),
b ∈ C.
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Hence, the above example shows that the assumption “n > p + 1” in Theorem
D is sharp. Further, it also shows that, in order to reduce the cardinality of the
set S2, we may have to increase the cardinalities of the sets S1 or S3.

Define (S)n := {S1, S2, . . ., Sn}, where the non-empty sets Sj ⊂ P1 are of
distinct elements for j = 1, 2, . . . , n, and Sj

⋂Sk = ∅ whenever j 6= k. Define
ı
(

(S)n

)

:=
∑n

j=1 ı(Sj) to be the total cardinality of the sets Sj for 1, 2, . . . , n. If

the sets Sj (j = 1, 2, . . . , n) are unique range sets of meromorphic functions in Cm,
then we define cn

(

M(Cm)
)

:= min
{

ı
(

(S)n

)}

, where M(Cm) denotes the set of
meromorphic functions in Cm and obviously, is a field.

Apparently, c3

(

M(Cm)
)

≥ 5, since, under some trivial transformation, any
three non-intersecting sets containing four pairwise distinct elements totally will
assume the form S1 = {0}, S2 =

{

ω|ω(ω + a) − b = 0
}

and S3 = {∞} for two

constants a and b(6= 0) such that a2

4 + b 6= 0. If a = 0, then f = −g will be in our
benefit, while if a 6= 0, then our aforesaid Example will help to this purpose.

In this paper, we shall reduce the upper bound 5 ≤ c3

(

M(Cm)
)

≤ 9 to 5 ≤
c3

(

M(Cm)
)

≤ 6. For admissible meromorphic functions in the unit disc △ ⊂ C,
the corresponding result has been obtained by M.-L. Fang in [2], where he stated
that the same conclusion holds well for meromorphic functions in C. In this paper,
by employing his main ideas, we shall prove the following two theorems.

Theorem 1. Let f and g be two non-constant meromorphic functions in Cm, and

let S1 = {0, c}, S2 =
{

ω|ωn(ω + a)− b = 0
}

and S3 = {∞} be three sets, where n
is a positive integer such that n ≥ 2, and a, b and c are three non-zero constants

such that c = − na
n+1 ,

(−1)nnnan+1

(n+1)n+1 6= b, 2b, and
(−1)nnn(n+2)an+1

2n+1(n+1)n+1 6= b. If f and g

share the sets S1, S2 and S3 CM, then f ≡ g. Obviously, min
{

ı(S2)
}

= 3.

Theorem 2. Let f and g be two non-constant meromorphic functions in Cm, and

let S1 = {0}, S2 =
{

ω|ω(ωn + a)− b = 0
}

and S3 = {∞, c} be three sets, where n
is a positive integer such that n ≥ 2, and a, b and c are three non-zero constants

such that c = (n+1)b
na , nnan+1

(n+1)n+1bn 6= −1, −2, and
nn(n+2)an+1

2n+1(n+1)n+1bn 6= −1. If f and g

share the sets S1, S2 and S3 CM, then f ≡ g. Obviously, min
{

ı(S2)
}

= 3.

2. Preliminaries and some lemmas

If f is a holomorphic function on an open connected neighborhood of z0 ∈ Cm

and f 6≡ 0, then a series

f(z) =

∞
∑

j=ν

Pj(z − z0)

converges uniformly on some neighborhood of z0 and represents f on this neigh-
borhood. Here, Pj denotes a homogeneous polynomial of degree j and Pν 6≡ 0.
The non-negative integer ν, uniquely determined by f and z0, is called the zero

multiplicity (or order) of f at z0 and denoted by D0
f (z0).

Let f be a non-constant meromorphic function in Cm. Then, for each z ∈ Cm,
there exists an open connected neighborhood Uz of z and two holomorphic functions
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g 6≡ 0 and h 6≡ 0 on Uz, coprime at z (i.e., the germs of g and h have no common
factors in the local ring of germs of holomorphic functions at z), such that hf ≡ g
on Uz. Then, in Uz and for a ∈ P1,

Da
f (z) := D0

g−ah(z) (a ∈ C) ,

D∞
f (z) := D0

h(z) (a = ∞)

is well defined and called the a-multiplicity of f . The function

Da
f : C

m → Z
+

is called the a-divisor of f , where Z+ denotes the set of non-negative integers. If f
is a meromorphic function in C

m, then it is considered as a holomorphic map into
the Riemann sphere P1 outside its set of indeterminacy that is usually denoted by
If . For a ∈ P1, we define

f−1(a) := supp (Da
f ) ,

where supp(Da
f ) is the support of Da

f , defined as the closed set (Da
f )−1

(

Z+\{0}
)

.

Define the differential form

η := ddc|z|2,
where d := ∂ + ∂̄ and dc :=

1

4πi
(∂ − ∂̄). For a meromorphic function f in Cm and

a ∈ P1, we define the counting function of the a-divisor of f as

na
f (r) :=

∑

|z|≤r

Da
f (z) for m = 1 ,

and

na
f (r) := r2−2m

∫

|z|≤r

Da
f (z)ηm−1 for m > 1 .

Write n
(

r, 1
f−a

)

= na
f (r) for a ∈ C, and n(r, f) = n∞

f (r) for a = ∞. Define the

valence function of the a-divisor of f to be

N
(

r,
1

f − a

)

:=

∫ r

ro

n
(

r, 1
f−a

)

t
dt , a ∈ C, r ≥ r0 > 0 ;

N(r, f) :=

∫ r

ro

n(r, f)

t
dt , a = ∞, r ≥ r0 > 0 .

The compensation function of f − a for a ∈ P1 is defined as

m
(

r,
1

f − a

)

:=
1

Vm(r)

∫

Sm(r)

log
1

‖f(z) , a‖ dσr , a ∈ C ,

m(r, f) :=
1

Vm(r)

∫

Sm(r)

log
√

1 + |f(z)|2 dσr , a = ∞ ,

where ‖f(z), a‖ is the chordal distance between f(z) and a in the Riemann sphere

P1
(

for a = ∞, it is 1√
1+|f(z)|2

)

, Vm(r) = 2πmr2m−1

(m−1)! , Sm(r) =
{

z ∈ Cm
∣

∣ |z| = r
}

,

and dσr is the positive element of volume on Sm(r) such that
∫

Sm(r) dσr = Vm(r).



ON UNIQUE RANGE SETS OF MEROMORPHIC FUNCTIONS IN C
m 189

As for the sphere Sm(r), it is considered as a (2m − 1)-dimensional real manifold
that orients to the exterior of the ball Bm(r) =

{

z ∈ Cm
∣

∣|z| < r
}

.

The Nevanlinna characteristic function of f is defined as

T (r, f) := m(r, f) + N(r, f) .

In particular, when m = 1, the difference between this definition and that in [7]
or [11] is an O(1), i.e., a bounded quantity.

Nevanlinna’s first main theorem states that for any a ∈ C,

T (r, f) − m(r0, f) = T
(

r,
1

f − a

)

− m
(

r0,
1

f − a

)

,

i.e., T (r, f) = T
(

r, 1
f−a

)

+ O(1).

For k ∈ Z+\{0}, define the truncated a-divisor of f as

Da
f,k(z) := min

{

Da
f (z), k

}

,

and define the truncated counting function nk

(

r, 1
f−a

)

(a ∈ C), nk(r, f) (a =

∞), and the truncated valence function Nk

(

r, 1
f−a

)

(a ∈ C), Nk(r, f) (a = ∞)

generated by Da
f,k(z) similarly.

Nevanlinna’s second main theorem states that for pairwise distinct values aj ∈
C (j = 1, 2, . . . , q),

(q − 1)T (r, f) ≤
q

∑

j=1

N
(

r,
1

f − aj

)

+ N(r, f) − NRam(r, f)

+ O
(

log
ρ2m−1T (R, f)

r2m−1(ρ − r)

)

≤
q

∑

j=1

N1

(

r,
1

f − aj

)

+ N1(r, f) + O
(

log
ρ2m−1T (R, f)

r2m−1(ρ − r)

)

,

where NRam(r, f) is called the ramification term and r0 < r < ρ < R < +∞.

Let f and g be two non-constant meromorphic functions in Cm, and let a be a
value in P1. If Da

f (z) ≡ Da
g(z) for all z ∈ Cm \ If ∪ Ig, then we say that f and g

share the value a CM. For a non-empty set S ⊂ P
1, define

DS
f (z) :=

∑

a∈S

Da
f (z) .

If DS
f (z) ≡ DS

g (z) for all z ∈ Cm \ If ∪ Ig, then we say that f and g share the set
S CM.

We refer the reader to [1] or [8] for details on Nevanlinna’s value distribution

theory of meromorphic functions with several variables.

Now, let’s introduce several lemmas.

Lemma 1 (see [4] or [8, Theorem 1.26]). Let f be a non-constant meromorphic

function in Cm, and let P (z) and Q(z) be two coprime polynomials with constant
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coefficients and of degrees p and q, respectively. Write

R(f) :=
P (f)

Q(f)
=

apf
p + ap−1f

p−1 + · · · + a0

bqf q + bq−1f q−1 + · · · + b0
apbq 6= 0 .

Then, we have

T
(

r, R(f)
)

= max{p, q}T (r, f) + O(1) .

Lemma 2 (see [8, Lemma 1.39] or [10, Equation (5.1)]). Let f0, f1, . . . , fn be

n+1 meromorphic functions in Cm such that they are linearly independent. Write

f := (f0, f1, . . . , fn). Then, there are multi-indices νj ∈ Zm
+ (j = 1, 2, . . . , n) such

that 0 < |νj | ≤ j and f, ∂ν1f, ∂ν2f, . . . , ∂νnf are linearly independent over Cm,

where Zm
+ denotes the m-th Descartes’ product of Z+.

Lemma 3 (see [3] or [9]). Let f and g be two non-constant meromorphic functions

in Cm, and let aj ∈ P1 (j = 1, 2, 3, 4) be four distinct values. If f and g share aj

(j = 1, 2, 3, 4) CM, then f is some Möbius transformation of g.

Remark. Since only Borel’s Lemma was involved in [3] and [9] for the proof of
their main results, it’s straightforward to get the conclusions of our Lemma 3.

Lemma 4 (see [8, Lemma 3.36]). Let f and g be two non-constant meromorphic

functions in Cm such that they share the value 1 CM. If there exists a real number

λ ∈ [0, 1
2 ) such that

‖ N2

(

r,
1

f

)

+ N2

(

r,
1

g

)

+ N2(r, f) + N2(r, g) ≤
(

λ + o(1)
)(

T (r, f) + T (r, g)
)

,

then we have either f ≡ g or fg ≡ 1.

Here and in the following, the notation “ ‖ ” denotes that an (in)equality holds
as r → +∞ outside a possible set of finite linear measure.

3. Proof of Theorem 1

Define

F :=
fn(f + a)

b
and G :=

gn(g + a)

b
.

Then, from the assumptions of Theorem 1, we know that F and G share the values
1 and ∞ CM. By Lemma 1, we have

T (r, F ) = (n + 1)T (r, f) + O(1)

and

T (r, G) = (n + 1)T (r, g) + O(1) .(3.1)

We now distinguish the following two cases for discussions.

Case 1. F − 1 and G − 1 are linearly dependent. Then, there exists a non-zero
constant k ∈ C such that

F − 1 ≡ k(G − 1) ,
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which implies that

fn(f + a) − b ≡ k
(

gn(g + a) − b
)

.(3.2)

Set E(f, g) =
{

z| either f(z) = g(z) = 0 or f(z) = g(z) = c
}

⊂ Cm \ If ∪ Ig.

Subcase 1.1. E(f, g) 6= ∅.
By (3.2), noting b 6= 0 and b 6= (−1)nnnan+1

(n+1)n+1 , we have k = 1. Thus,

(3.3) fn(f + a) ≡ gn(g + a) ,

which means that f and g share the values 0, −a and c CM, since we assume that
f and g share the set S1 CM. Also, by assumption, f and g share the value ∞
CM. By the conclusions of Lemma 3, f is some Möbius transformation of g, say,

(3.4) f =
Ag + B

Cg + D
AD − BC 6= 0 .

Substituting (3.4) into (3.3) yields

gn+1 + agn ≡ (Ag + B)n
(

(A + aC)g + (B + aD)
)

(Cg + D)n+1
.

Obviously, C = 0 and thus AD 6= 0. Noting a 6= 0 and n ≥ 2, a routine calculation
on the like terms of g leads to B = 0 and A = D. Hence, f ≡ g.

Subcase 1.2. E(f, g) = ∅.
Since f and g share the set S1 CM, then D0

f (z) ≡ Dc
g(z) and Dc

f (z) ≡ D0
g(z).

Subcase 1.2.1. Both f−1(0) = g−1(c) = ∅ and f−1(c) = g−1(0) = ∅.
Since f and g share the value ∞ CM, we know that

f

f − c
and

g − c

g

are non-vanishing holomorphic functions and share the value 1 CM. According to
the conclusions of Lemma 4, we have either f

f−c ≡ g−c
g or f

f−c
g−c

g ≡ 1, which

implies that either f + g ≡ c or f ≡ g. However, if f + g ≡ c, then by (3.2) and

the fact that a 6= −c, (−1)nnnan+1

(n+1)n+1 6= 2b, it is self-contradicted. So, f ≡ g.

Subcase 1.2.2. Either f−1(0) = g−1(c) 6= ∅ or f−1(c) = g−1(0) 6= ∅.
Without loss of generality, we may assume that f−1(0) = g−1(c) 6= ∅ while

f−1(c) = g−1(0) = ∅. Hence, from (3.2), we get k = b
b−acn−cn+1 .

Obviously, c is the only double root of the equation zn+1 +azn−cn+1−acn = 0
while the remaining n − 1 roots, say, aj (j = 1, 2, . . . , n − 1), are all simple.

Let bk (k = 1, 2, . . . , n + 1) be the n + 1 roots of the following equation

(3.5) zn+1 + azn − b = −b − acn − cn+1

k
= − (b − acn − cn+1)2

b
.

By our hypothesis that a 6= −c, (−1)nnnan+1

(n+1)n+1 6= b and (−1)nnnan+1

(n+1)n+1 6= 2b, equation

(3.5) has no multiple roots at all, since neither 0 nor c is a root of it. Hence, bk
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(k = 1, 2, . . . , n + 1) are pairwise distinct such that
∏n+1

k=1 bk 6= 0. By (3.2), noting

that f−1(c) = ∅, we have
n−1
∑

j=1

D
aj

f,1(z) ≡
n+1
∑

k=1

Dbk

g,1(z).

Applying Nevanlinna’s second main theorem to g, and noting that f−1(c) =
g−1(0) = ∅, and f and g share the value ∞ CM, we conclude that

‖ (n + 1)T (r, g) ≤ N1(r, g) + N1

(

r,
1

g

)

+

n+1
∑

k=1

N1

(

r,
1

g − bk

)

+ o
(

T (r, g)
)

≤ N1(r, f) + N1

(

r,
1

f − c

)

+

n−1
∑

j=1

N1

(

r,
1

f − aj

)

+ o
(

T (r, g)
)

≤ nT (r, f) + o
(

T (r, g)
)

.(3.6)

However, by (3.2), we have T (r, f) = T (r, g) + O(1). Combining it with (3.6)
yields ‖ T (r, g) = o

(

T (r, g)
)

, a contradiction.

If f−1(0) = g−1(c) = ∅ and f−1(c) = g−1(0) 6= ∅, interchanging the positions
of f and g yields a contradiction, too. Hence, Subcase 1.2.2 can be ruled out.

Subcase 1.2.3. Neither f−1(0) = g−1(c) = ∅ nor f−1(c) = g−1(0) = ∅.

By a similar way as above, we have k = b
b−acn−cn+1 and k = b−acn−cn+1

b , which

yields (−1)nnnan+1

(n+1)n+1 = 2b since we assume that a 6= −c, and a contradiction against

our hypothesis follows immediately.

Case 2. F − 1 and G − 1 are linearly independent. In this case, we have F 6≡ G.

From the conclusions of Lemma 2, there exists an integer j0 ∈ {1, 2, . . . , m}
such that (F − 1, G − 1) and (∂zj0

F, ∂zj0
G) are linearly independent, i.e.,

W =

∣

∣

∣

∣

∣

∣

F − 1 G − 1

∂zj0
F ∂zj0

G

∣

∣

∣

∣

∣

∣

6≡ 0 .

Define

(3.7) H :=
W

(F − 1)(G − 1)
=

∂zj0
G

G − 1
−

∂zj0
F

F − 1
.

By the lemma of the logarithmic derivative (see [8, Lemma 1.34] or [10]),

‖ m(r, H) = o
(

T (r, f) + T (r, g)
)

.

Define IF−1 to be the set of indeterminacy of F − 1. For each z ∈ C
m, there

exists an open connected neighborhood Uz of z and two holomorphic functions
F1 6≡ 0 and F2 6≡ 0 on Uz, coprime at z, such that F1(F − 1) ≡ F2,

dimzF
−1
1 (0)

⋂

F−1
2 (0) ≤ m − 2

and

IF−1

⋂

Uz ≡ F−1
1 (0)

⋂

F−1
2 (0) .
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Define E1 :=
{

supp(D0
F−1)

}

s
to be the set of singular points of the analytic set

supp(D0
F−1). Then, E1 is of co-dimension at least 2. Define E2 :=

{

supp(D∞
F−1)

}

s
,

IG−1, E3 :=
{

supp(D0
G−1)

}

s
and E4 :=

{

supp(D∞
G−1)

}

s
similarly. Write E :=

IF−1

⋃ IG−1

⋃ E1

⋃ E2

⋃ E3

⋃ E4. Then, dimzE ≤ m − 2.

Take z0 ∈ Cm\E to be a point such that D0
F−1(z0) = p ∈ Z+\{0}. Hence,

D0
G−1(z0) = p by our hypothesis that F and G share the value 1 CM. By a result of

Bernstein-Chang-Li [1, Lemma 2.3], there exists a holomorphic coordinate system
u = (u1, u2, . . . , um) of z0 on Uz0 ⊂ Cm\E such that

Uz0

⋂

supp(D0
F−1) =

{

z ∈ Uz0 | u1(z) = 0
}

and
u(zo) =

(

u1(z0), u2(z0), . . . , um(z0)
)

= 0 ∈ C
m .

Hence, there exists a biholomorphic coordinate transformation

zj = zj(u1, u2, . . . , um) j = 1, 2, . . . , m

around 0 ∈ Cm such that z0 = z(0) =
(

z1(0), z2(0), . . . , zm(0)
)

. So, we can write

F (z) − 1 = up
1F

∗(u1, u2, . . . , um)

and
G(z) − 1 = up

1G
∗(u1, u2, . . . , um) ,

where F ∗ and G∗ are holomorphic functions around 0 ∈ Cm and do not vanish
along the analytic set Uz0

⋂

supp(D0
F−1). A routine calculation leads to

∂zj0
F

F − 1

∣

∣

∣

∣

z0

=
p

u1

∂u1

∂zj0

∣

∣

∣

∣

0

+
1

F ∗

m
∑

t=1

∂F ∗

∂ut

∂ut

∂zj0

∣

∣

∣

∣

0

(3.8)

and

∂zj0
G

G − 1

∣

∣

∣

∣

z0

=
p

u1

∂u1

∂zj0

∣

∣

∣

∣

0

+
1

G∗

m
∑

t=1

∂G∗

∂ut

∂ut

∂zj0

∣

∣

∣

∣

0

.(3.9)

Hence, H |z0 = O(1), i.e., D∞
H (z0) = 0.

Take z∞ ∈ Cm\E to be a point such that D∞
F−1(z0) = q ∈ Z+\{0}. Similarly,

D∞
G−1(z0) = q and D∞

H (z∞) = 0. Hence, H is holomorphic on Cm and

‖ N(r, H) = o
(

T (r, f) + T (r, g)
)

.

Therefore, we obtain

‖ T (r, H) = o
(

T (r, f) + T (r, g)
)

.(3.10)

It is not difficult to show that

‖ N
(

r,
1

f

)

≤ N
(

r,
1

H

)

+ o
(

T (r, f) + T (r, g)
)

≤ T (r, H) + o
(

T (r, f) + T (r, g)
)

≤ o
(

T (r, f) + T (r, g)
)

.

Analogically, ‖ N
(

r, 1
g

)

≤ o
(

T (r, f)+T (r, g)
)

, ‖ N
(

r, 1
f−c

)

≤ o
(

T (r, f)+T (r, g)
)

and ‖ N
(

r, 1
g−c

)

≤ o
(

T (r, f) + T (r, g)
)

.
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Combining the method used in Subcase 1.2.1, the estimate that N2(r, ·) ≤
N(r, ·) + O(1) on valence functions, and the conclusions of Lemma 4 yields ei-
ther f + g ≡ c or f ≡ g. The former case implies that f−1(0) = g−1(c) and
f−1(c) = g−1(0). Since f and g share the set S2 CM, and 0 and c are the only

two Picard values of both f and g, and (−1)nnnan+1

(n+1)n+1 6= b (then, all the zeros, say,

ω1, ω2, . . . , ωn+1, of the equation ωn(ω +a)− b = 0 are simple and distinct from 0,

c) and (−1)nnn(n+2)an+1

2n+1(n+1)n+1 6= b (then, ωj 6= c
2 for j = 1, 2, . . . , n + 1), so, without loss

of generality, we might assume that ω1 + ω2 = c, ω2 + ω3 = c, . . . , ωn + ωn+1 = c,
ωn+1 + ω1 = c. Noting n ≥ 2, we derive that ω2 = ωn+1, a contradiction. On
the other hand, the latter case yields F ≡ G, a contradiction, too. The proof of
Theorem 1 finishes here completely.

4. Proof of Theorem 2

Define f∗ := 1/f and g∗ := 1/g. By the assumptions of Theorem 2 and the
conclusions of Theorem 1, we have f∗ ≡ g∗. Hence, f ≡ g.

Final Note. From a recent discussion with M. Shirosaki in a conference at Hi-
roshima University, the second author was informed that any three non-intersecting
sets of the form S1 = {a1, a2}, S2 = {b1, b2} and S3 = {c} are necessarily not
unique range sets, see also H.-X. Yi’s paper [12, Examples 3 and 4] with S3 = {∞}.
On the other hand, our aforementioned several examples show that, under some
trivial transformation, the only possible triple unique range sets of five elements
might be S1 = {0}, S2 =

{

ω|ω3 + aω2 + bω + c = 0
}

and S3 = {∞} such that
the polynomial in S2 has no multiple zeros and bc 6= 0. Further, we think new
method, say, that of algebraic curve, might be involved to completely solve this
problem. Also see related works of A. Boutabaa and A. Escassut on p-adic fields.

Acknowledgement. The authors are indebted to Professors P.-C. Hu, M. Shi-
rosaki and the anonymous referee for valuable comments and suggestions.
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Komplexen, Ann. Polon. Math. 38 (1980), 259–287.

[5] Gross, F., On the distribution of values of meromorphic functionas, Trans. Amer. Math.
Soc. 131 (1968), 199–214.

[6] Gross, F., Factorization of meromorphic functions and some open problems, Complex
Analysis (Proc. Conf. Univ. Kentucky, Lexington, Kentucky, 1976), Lecture Notes in Math.
599, Springer, Berlin, 1977.

[7] Hayman, W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.



ON UNIQUE RANGE SETS OF MEROMORPHIC FUNCTIONS IN C
m 195

[8] Hu, P. C., Li, C. and Yang, C. C., Unicity of Meromorphic Mappings, Kluwer Academic,
Dordrecht, 2003.

[9] Jin, L. and Ru, M., A unicity theorem for moving targets counting multiplicities, Tôhoku
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