BOUNDS ON BASS NUMBERS AND THEIR DUAL

Abolfazl Tehranian and Siamak Yassemi

Abstract

Let (R, \mathfrak{m}) be a commutative Noetherian local ring. We establish some bounds for the sequence of Bass numbers and their dual for a finitely generated R-module.

Introduction

Throughout this paper, (R, \mathfrak{m}, k) is a non-trivial commutative Noetherian local ring with unique maximal ideal \mathfrak{m} and residue field k. Several authors have obtained results on the growth of the sequence of Betti numbers $\left\{\beta_{n}(k)\right\}$ (e.g., see [9] and [1]). In [10] Ramras gives some bounds for the sequence $\left\{\beta_{n}(M)\right\}$ when M is a finitely generated non-free R-module. In this paper, we seek to give some bounds for the sequence of Bass numbers.

For a finitely generated R-module M, let

$$
0 \rightarrow M \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{i} \rightarrow \cdots
$$

be a minimal injective resolution of M. Then, $\mu^{i}(M)$ denotes the number of indecomposable components of E^{i} isomorphic to the injective envelope $\mathrm{E}(k)$ and is called Bass number of M. This is a dual notion of Betti number. For a prime ideal $\mathfrak{p}, \mu^{i}(\mathfrak{p}, M)$ denotes the number of indecomposable components of E^{i} isomorphic to the injective envelope $\mathrm{E}(R / \mathfrak{p})$. It is known that $\mu^{i}(M)$ is finite and is equal to the dimension of Ext ${ }_{R}^{i}(R / \mathfrak{m}, M)$ considered as a vector space over R / \mathfrak{m} (note that $\left.\mu^{i}(\mathfrak{p}, M)=\mu^{i}\left(M_{\mathfrak{p}}\right)\right)$. These numbers play important role in understanding the injective resolution of M, and are the subject of further work. For example, the ring R of dimension d is Gorenstein if and only if R is Cohen-Macaulay and the d th Bass number $\mu^{d}(R)$ is 1 . This was proved by Bass in [2]. Vasconcelos conjectured that one could delete the hypothesis that R be Cohen-Macaulay. This was proved by Paul Roberts in [12].

For a finitely generated R-module M, it turns out that the least i for which $\mu^{i}(M)>0$ is the depth of M, while the largest i with $\mu^{i}(M)>0$ is the injective

[^0]dimension inj. $\operatorname{dim}_{R} M$ of M (which might be infinite), cf. [2] and [8]. In [8] Foxby asked the question: Is $\mu^{i}(M)>0$ for all i with depth ${ }_{R} M \leq i \leq \operatorname{inj} . \operatorname{dim}_{R} M$? In [7], Fossum, Foxby, Griffith, and Reiten answered this question in the affirmative (see also [11]).

A homomorphism $\varphi: F \rightarrow M$ with a flat R-module F is called a flat precover of the R-module M provided $\operatorname{Hom}_{R}(G, F) \rightarrow \operatorname{Hom}_{R}(G, M) \rightarrow 0$ is exact for all flat R-modules G. If in addition any homomorphism $f: F \rightarrow F$ such that $f \varphi=\varphi$ is an automorphism of F, then $\varphi: F \rightarrow M$ is called a flat cover of M. A minimal flat resolution of M is an exact sequence $\cdots \rightarrow F_{i} \rightarrow F_{i-1} \rightarrow$ $\cdots \rightarrow F_{0} \rightarrow M \rightarrow 0$ such that F_{i} is a flat cover of $\operatorname{Im}\left(F_{i} \rightarrow F_{i-1}\right)$ for all $i>0$. A module C is called cotorsion if $\operatorname{Ext}{ }_{R}^{1}(F, C)=0$ for any flat R-module F. A flat cover of a cotorsion module is cotorsion and flat, and the kernel of a flat cover is cotorsion. In [4], Enochs showed that a flat cotorsion module F is uniquely a product $\Pi T_{\mathfrak{p}}$, where $T_{\mathfrak{p}}$ is the completion of a free $R_{\mathfrak{p}}$-module, $\mathfrak{p} \in \operatorname{Spec} R$. Therefore, for $i>0$ he defined $\pi_{i}(\mathfrak{p}, M)$ to be the cardinality of a basis of a free $R_{\mathfrak{p}}$-module whose completion is $T_{\mathfrak{p}}$ in the product $F_{i}=\prod T_{\mathfrak{p}}$. For $i=0$ define $\pi_{0}(\mathfrak{p}, M)$ similarly by using the pure injective envelope of F_{0}. In some sense these invariants are dual to the Bass numbers. In [6], Enochs and Xu proved that for a cotorsion R-module M which possesses a minimal flat resolution, $\pi_{i}(\mathfrak{p}, M)=$ $\operatorname{dim}_{k(\mathfrak{p})} \operatorname{Tor}_{i}^{R}\left(k(\mathfrak{p}), \operatorname{Hom}_{R}\left(R_{\mathfrak{p}}, M\right)\right)$. Here $k(\mathfrak{p})$ denotes the quotient field of R / \mathfrak{p}. Note that in [3] the authors show that every module has a flat cover, see also [13] and [5].

In this paper, we study the sequence of Bass numbers $\mu^{i}(\mathfrak{p}, M)$ and its dual $\pi_{i}(\mathfrak{p}, M)$. Among the other things we establish the following bounds:
(1) $\mu^{2}(M) / \mu^{1}(M) \leq \ell(R)$ and $\mu^{n+1}(M) / \mu^{n}(M)<\ell(R)$ for any $n \geq 2$,
(2) $\mu^{n}(M) / \mu^{n+1}(M)<\ell(R) / \ell(\operatorname{Soc}(R))$ for any $n \geq 1$,
where $\ell(*)$ refers to the length of $*$.

1. Main results

The following lemma is the key to our main result.
Lemma 1.1. Let \mathfrak{p} be a prime ideal of R and let L be an $R_{\mathfrak{p}}$-module of finite length. Then the following hold:
(a) For any module M and any non-negative integer n,

$$
\ell\left(\operatorname{Ext}{ }_{R_{\mathfrak{p}}}^{n+1}(L, M)\right)-\ell\left(\operatorname{Ext}{ }_{R_{\mathfrak{p}}}^{n}(L, M)\right) \geq \mu^{n+1}(\mathfrak{p}, M)-\ell(L) \mu^{n}(\mathfrak{p}, M) .
$$

(b) For any cotorsion R-module M and any non-negative integer n,

$$
\ell\left(\operatorname{Tor}_{n+1}^{R_{\mathfrak{p}}}(L, M)\right)-\ell\left(\operatorname{Tor}_{n}^{R_{\mathfrak{p}}}(L, M)\right) \geq \pi_{n+1}(\mathfrak{p}, M)-\ell(L) \pi_{n}(\mathfrak{p}, M)
$$

Proof. (a) We proceed by induction on $s=\ell(L)$. If $s=1$, then $L \cong k(\mathfrak{p})$, and

$$
\ell\left(\operatorname{Ext}{ }_{R_{\mathfrak{p}}}^{n+1}(k(\mathfrak{p}), M)\right)-\ell\left(\operatorname{Ext}{ }_{R_{\mathfrak{p}}}^{n}(k(\mathfrak{p}), M)\right)=\mu^{n+1}(\mathfrak{p}, M)-\mu^{n}(\mathfrak{p}, M) .
$$

Now assume that $s>1$. Then there is a submodule K of L with $\ell(K)=s-1$ such that the sequence $0 \rightarrow k(\mathfrak{p}) \rightarrow L \rightarrow K \rightarrow 0$ is exact. The corresponding long
exact sequence for Ext ${ }_{R_{\mathfrak{p}}}(-, M)$ gives the exact sequence

$$
\begin{aligned}
\operatorname{Ext}{ }_{R_{\mathfrak{p}}}^{n}(K, M) & \rightarrow \operatorname{Ext}{ }_{R_{\mathfrak{p}}}^{n}(L, M) \rightarrow \operatorname{Ext}{ }_{R_{\mathfrak{p}}}^{n}(k(\mathfrak{p}), M) \\
& \rightarrow \operatorname{Ext}{ }_{R_{\mathfrak{p}}}^{n+1}(K, M) \rightarrow \operatorname{Ext}{ }_{R_{\mathfrak{p}}}^{n+1}(L, M) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\ell\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}(L, M)\right)-\ell\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{n}(L, M)\right) \geq & \ell\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}(K, M)\right) \\
& -\ell\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{n}(K, M)\right)-\mu^{n}(\mathfrak{p}, M) \\
\geq & \mu^{n+1}(\mathfrak{p}, M)-\ell(K) \mu^{n}(\mathfrak{p}, M)-\mu^{n}(\mathfrak{p}, M) \\
= & \mu^{n+1}(\mathfrak{p}, M)-\ell(L) \mu^{n}(\mathfrak{p}, M),
\end{aligned}
$$

where the first inequality follows from the property of length and the equality
 hypothesis.
(b) We proceed by induction on $s=\ell(L)$. If $s=1$, then $L \cong k(\mathfrak{p})$, and we have

$$
\ell\left(\operatorname{Tor}{ }_{n+1}^{R_{\mathfrak{p}}}(k(\mathfrak{p}), M)\right)-\ell\left(\operatorname{Tor}_{n}^{R_{\mathfrak{p}}}(k(\mathfrak{p}), M)\right)=\pi_{n+1}(\mathfrak{p}, M)-\ell(L) \pi_{n}(\mathfrak{p}, M) .
$$

Now assume that $s>1$. Then there is an $R_{\mathfrak{p}^{-}}$submodule K of L with $\ell(K)=$ $s-1$ such that the sequence $0 \rightarrow k(\mathfrak{p}) \rightarrow L \rightarrow K \rightarrow 0$ is exact. Set $N=$ $\operatorname{Hom}_{R}\left(R_{\mathfrak{p}}, M\right)$. The corresponding long exact sequence for $\operatorname{Tor}^{R_{\mathfrak{p}}}(-, N)$ leads to the exact sequence

$$
\begin{aligned}
\operatorname{Tor}{ }_{n+1}^{R_{\mathfrak{p}}}(L, N) & \rightarrow \operatorname{Tor}{ }_{n+1}^{R_{\mathfrak{p}}}(K, N) \rightarrow \operatorname{Tor}{ }_{n}^{R_{\mathfrak{p}}}(k(\mathfrak{p}), N) \\
& \rightarrow \operatorname{Tor}{ }_{n}^{R_{\mathfrak{p}}}(L, N) \rightarrow \operatorname{Tor}{ }_{n}^{R_{\mathfrak{p}}}(K, N) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\ell\left(\operatorname{Tor}{ }_{n+1}^{R_{\mathfrak{p}}}(L, N)\right)-\ell\left(\operatorname{Tor}{ }_{n}^{R_{\mathfrak{p}}}(L, N)\right) \geq & \ell\left(\operatorname{Tor}_{n+1}^{R_{\mathfrak{p}}}(K, N)\right) \\
& -\ell\left(\operatorname{Tor}_{n}^{R_{\mathfrak{p}}}(K, N)\right)-\pi_{n}(M) \\
\geq & \pi_{n+1}(M)-\ell(K) \pi_{n}(M)-\pi_{n}(M) \\
= & \pi_{n+1}(M)-\ell(L) \pi_{n}(M),
\end{aligned}
$$

where the second inequality follows by the induction hypothesis.
Corollary 1.2. Let R be a zero dimensional ring and let M be an R-module. For any prime ideal \mathfrak{p} and any integer $n \geq 1$ the following hold:
(a)

$$
\mu^{n+1}(\mathfrak{p}, M) \leq \ell\left(R_{\mathfrak{p}}\right) \mu^{n}(\mathfrak{p}, M) .
$$

(b) If M is a cotorsion R-module, then

$$
\pi_{n+1}(\mathfrak{p}, M) \leq \ell\left(R_{\mathfrak{p}}\right) \pi_{n}(\mathfrak{p}, M)
$$

Proof. (a) Replace the module L in Lemma 1.1(a) with $R_{\mathfrak{p}}$ and note that Ext ${ }_{R_{\mathfrak{p}}}^{i}\left(R_{\mathfrak{p}},-\right)=0$ for all $i \geq 1$.
(b) Replace the module L in Lemma 1.1(b) with $R_{\mathfrak{p}}$ and note that $\operatorname{Tor}{ }_{i}^{R_{\mathfrak{p}}}\left(R_{\mathfrak{p}},-\right)$ $=0$ for any $i \geq 1$.

Proposition 1.3. Let R be a zero dimensional ring. Then the following hold:
(a) Let M be an R-module. For any integer $n \geq 1$ and prime ideal \mathfrak{p},

$$
\mu^{n+1}(\mathfrak{p}, M) \leq \ell\left(R_{\mathfrak{p}}\right) \mu^{n}(\mathfrak{p}, M)
$$

(b) Let M be a cotorsion R-module. For any $\mathfrak{p} \in \operatorname{Spec} R$ and any $n \geq 2$,

$$
\pi_{n+1}(\mathfrak{p}, M)+\ell(\operatorname{Soc}(R)) \pi_{n-1}(\mathfrak{p}, M) \leq \ell\left(R_{\mathfrak{p}}\right) \pi_{n}(\mathfrak{p}, M)
$$

Proof. (a) It is clear from Lemma 1.1(a).
(b) Assume that $\mathfrak{p} \in \operatorname{Spec} R$ and set $I=\operatorname{Soc}\left(R_{\mathfrak{p}}\right), N=\operatorname{Hom}_{R}\left(R_{\mathfrak{p}}, M\right)$. From the exact sequence

$$
0 \rightarrow I \rightarrow R_{\mathfrak{p}} \rightarrow R_{\mathfrak{p}} / I \rightarrow 0
$$

it follows that for any $n \geq 1$,

$$
\operatorname{Tor}{ }_{n+1}^{R_{\mathfrak{p}}}\left(R_{\mathfrak{p}} / I, N\right) \cong \operatorname{Tor}{ }_{n}^{R}(I, N) \cong \oplus \operatorname{Tor}{ }_{n}^{R}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}, N\right)
$$

where the numbers of copies in the direct sum is $\ell(I)$. Hence

$$
\ell\left(\operatorname{Tor}_{n+1}^{R_{\mathfrak{p}}}\left(R_{\mathfrak{p}} / I, N\right)\right)=\ell(I) \pi_{n}(\mathfrak{p}, M) \text { for } n \geq 1
$$

Thus, by Lemma 1.1(b), for $n \geq 2$,

$$
\ell(I)\left(\pi_{n}(\mathfrak{p}, M)-\pi_{n-1}(\mathfrak{p}, M)\right) \geq \pi_{n+1}(\mathfrak{p}, M)-\ell\left(R_{\mathfrak{p}} / I\right) \pi_{n}(\mathfrak{p}, M) .
$$

Therefore, $\ell(I) \pi_{n-1}(\mathfrak{p}, M)+\pi_{n+1}(\mathfrak{p}, M) \leq \ell\left(R_{\mathfrak{p}}\right) \pi_{n}(M)$.
Theorem 1.4. Let R be a zero dimensional local ring. For any finitely generated non-injective R-module M the following hold:
(1) $\mu^{n+1}(M) / \mu^{n}(M)<\ell(R)$ for any $n \geq 2$,
(2) $\mu^{n}(M) / \mu^{n+1}(M)<\ell(R) / \ell(\operatorname{Soc}(R))$ for any $n \geq 1$.

Proof. Let $I=\operatorname{Soc}(R)$. From the exact sequence

$$
0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0
$$

it follows that for any $n \geq 1$,

$$
\operatorname{Ext}_{R}^{n+1}(R / I, M) \cong \operatorname{Ext}{ }_{R}^{n}(I, M) \cong \oplus \operatorname{Ext}_{R}^{n}(R / \mathfrak{m}, M),
$$

where the numbers of copies in the direct sum is $\ell(I)$. Hence

$$
\ell\left(\operatorname{Ext}_{R}^{n+1}(R / I, M)\right)=\ell(I) \mu^{n}(M) \text { for } \quad n \geq 1
$$

Thus, by Lemma 1.1, for $n \geq 2$,

$$
\ell(I)\left(\mu^{n}(M)-\mu^{n-1}(M)\right) \geq \mu^{n+1}(M)-\ell(R / I) \mu^{n}(M)
$$

Therefore, $\ell(I) \mu^{n-1}(M)+\mu^{n+1}(M) \leq \ell(R) \mu^{n}(M)$. By [7, Theorem 1.1], $\mu^{i}(M)>$ 0 for depth ${ }_{R} M \leq i \leq \operatorname{inj} . \operatorname{dim}_{R} M$. Since R is Artinian, depth ${ }_{R} M=0$. Thus for any $n, n \geq 2, \mu^{n}(M)$ and $\mu^{n-1}(M)$ are positive integer and hence $\mu^{n+1}(M) / \mu^{n}(M)$ $<\ell(R)$. Moreover, if $2 \leq n$, then $\mu^{n}(M)$ and $\mu^{n+1}(M)$ are positive integers and thus $\mu^{n-1}(M) / \mu^{n}(M)<\ell(R) / \ell(\operatorname{Soc}(R))$.

Corollary 1.5. Let R be a zero dimensional ring. Let M be a finitely generated R-module. For any prime ideal \mathfrak{p} with $M_{\mathfrak{p}}$ non-injective $R_{\mathfrak{p}}$-module, the following hold:
(1) $\mu^{n+1}(\mathfrak{p}, M) / \mu^{n}(\mathfrak{p}, M)<\ell\left(R_{\mathfrak{p}}\right)$ for any $n \geq 2$,
(2) $\mu^{n}(\mathfrak{p}, M) / \mu^{n+1}(\mathfrak{p}, M)<\ell\left(R_{\mathfrak{p}}\right) / \ell\left(\operatorname{Soc}\left(R_{\mathfrak{p}}\right)\right)$ for any $n \geq 1$.

Remark 1.6. To the best of the knowledge of the authors, there is no condition (yet!) which implies that $\pi_{n}(\mathfrak{p}, M)>0$. This is the reason that we could not give a similar result as Theorem 1.4 for the dual notion of Bass numbers.

References

[1] Avramov, L. L., Sur la croissance des nombres de Betti d'un anneau local, C. R. Acad. Sci. Paris 289 (1979), 369-372.
[2] Bass, H., On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
[3] Bican, L., El Bashir, R., Enochs, E. E., All modules have flat covers, Bull. London Math. Soc. 33 (2001), 385-390.
[4] Enochs, E. E., Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), 179-184.
[5] Enochs, E. E., Jenda, O. M. G., Relative homological algebra, de Gruyter Expositions in Mathematics, 30. Walter de Gruyter \& Co., Berlin, 2000.
[6] Enochs, E. E., Xu, J. Z., On invariants dual to the Bass numbers, Proc. Amer. Math. Soc. 125 (1997), 951-960.
[7] Fossum, R., Foxby, H.-B., Griffith, P., Reiten, I., Minimal injective resolutions with applications to dualizing modules and Gorenstein modules, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 193-215.
[8] Foxby, H.-B., On the μ^{i} in a minimal injective resolution, Math. Scand. 29 (1971), 175-186.
[9] Gulliksen, T., A proof of the existence of minimal R-algebra resolutions, Acta Math. 120 (1968), 53-58.
[10] Ramras, M., Bounds on Betti numbers, Canad. J. Math. 34 (1982), 589-592.
[11] Roberts, P., Two applications of dualizing complexes over local rings, Ann. Sci. École Norm. Sup. (4) 9 (1), (1976), 103-106.
[12] Roberts, P., Rings of type 1 are Gorenstein, Bull. London Math. Soc. 15 (1983), 48-50.
[13] Xu, J. Z., Minimal injective and flat resolutions of modules over Gorenstein rings, J. Algebra 175 (1995), 451-477.
A. Tehranian, Science and Research Branch

Islamic Azad University, Tehran, Iran
E-mail: tehranian1340@yahoo.com
S. Yassemi, Center of Excellence in Biomathematics

School of Mathematics, Statistics, and Computer Science
University of Tehran, Tehran, Iran
E-mail: yassemi@ipm.ir

[^0]: 2000 Mathematics Subject Classification: 13C11, 13H10.
 Key words and phrases: Bass numbers, injective dimension, zero dimensional rings.
 A. Tehranian was supported in part by a grant from Islamic Azad University.

 Received November 22, 2006.

