ARCHIVUM MATHEMATICUM (BRNO) Tomus 43 (2007), 259 – 263

BOUNDS ON BASS NUMBERS AND THEIR DUAL

Abolfazl Tehranian and Siamak Yassemi

ABSTRACT. Let (R, \mathfrak{m}) be a commutative Noetherian local ring. We establish some bounds for the sequence of Bass numbers and their dual for a finitely generated *R*-module.

INTRODUCTION

Throughout this paper, (R, \mathfrak{m}, k) is a non-trivial commutative Noetherian local ring with unique maximal ideal \mathfrak{m} and residue field k. Several authors have obtained results on the growth of the sequence of Betti numbers $\{\beta_n(k)\}$ (e.g., see [9] and [1]). In [10] Ramras gives some bounds for the sequence $\{\beta_n(M)\}$ when M is a finitely generated non-free R-module. In this paper, we seek to give some bounds for the sequence of Bass numbers.

For a finitely generated R-module M, let

$$0 \to M \to E^0 \to E^1 \to \dots \to E^i \to \dots$$

be a minimal injective resolution of M. Then, $\mu^i(M)$ denotes the number of indecomposable components of E^i isomorphic to the injective envelope E(k) and is called *Bass number* of M. This is a dual notion of Betti number. For a prime ideal $\mathfrak{p}, \mu^i(\mathfrak{p}, M)$ denotes the number of indecomposable components of E^i isomorphic to the injective envelope $E(R/\mathfrak{p})$. It is known that $\mu^i(M)$ is finite and is equal to the dimension of Ext ${}^i_R(R/\mathfrak{m}, M)$ considered as a vector space over R/\mathfrak{m} (note that $\mu^i(\mathfrak{p}, M) = \mu^i(M_\mathfrak{p})$). These numbers play important role in understanding the injective resolution of M, and are the subject of further work. For example, the ring R of dimension d is Gorenstein if and only if R is Cohen-Macaulay and the dth Bass number $\mu^d(R)$ is 1. This was proved by Bass in [2]. Vasconcelos conjectured that one could delete the hypothesis that R be Cohen-Macaulay. This was proved by Paul Roberts in [12].

For a finitely generated *R*-module *M*, it turns out that the least *i* for which $\mu^i(M) > 0$ is the depth of *M*, while the largest *i* with $\mu^i(M) > 0$ is the injective

²⁰⁰⁰ Mathematics Subject Classification: 13C11, 13H10.

Key words and phrases: Bass numbers, injective dimension, zero dimensional rings.

A. Tehranian was supported in part by a grant from Islamic Azad University.

Received November 22, 2006.

dimension inj.dim $_RM$ of M (which might be infinite), cf. [2] and [8]. In [8] Foxby asked the question: Is $\mu^i(M) > 0$ for all i with depth $_RM \leq i \leq \text{inj.dim }_RM$? In [7], Fossum, Foxby, Griffith, and Reiten answered this question in the affirmative (see also [11]).

A homomorphism $\varphi \colon F \to M$ with a flat *R*-module *F* is called a flat precover of the *R*-module *M* provided $\operatorname{Hom}_R(G, F) \to \operatorname{Hom}_R(G, M) \to 0$ is exact for all flat R-modules G. If in addition any homomorphism $f: F \to F$ such that $f\varphi = \varphi$ is an automorphism of F, then $\varphi \colon F \to M$ is called a flat cover of M. A minimal flat resolution of M is an exact sequence $\cdots \rightarrow F_i \rightarrow F_{i-1} \rightarrow F_{i-1}$ $\cdots \to F_0 \to M \to 0$ such that F_i is a flat cover of $\operatorname{Im}(F_i \to F_{i-1})$ for all i > 0. A module C is called cotorsion if $\operatorname{Ext} {}^{1}_{R}(F,C) = 0$ for any flat R-module F. A flat cover of a cotorsion module is cotorsion and flat, and the kernel of a flat cover is cotorsion. In [4], Enochs showed that a flat cotorsion module F is uniquely a product $\prod T_{\mathfrak{p}}$, where $T_{\mathfrak{p}}$ is the completion of a free $R_{\mathfrak{p}}$ -module, $\mathfrak{p} \in \text{Spec } R$. Therefore, for i > 0 he defined $\pi_i(\mathfrak{p}, M)$ to be the cardinality of a basis of a free $R_{\mathfrak{p}}$ -module whose completion is $T_{\mathfrak{p}}$ in the product $F_i = \prod T_{\mathfrak{p}}$. For i = 0 define $\pi_0(\mathfrak{p}, M)$ similarly by using the pure injective envelope of F_0 . In some sense these invariants are dual to the Bass numbers. In [6], Enochs and Xu proved that for a cotorsion R-module M which possesses a minimal flat resolution, $\pi_i(\mathfrak{p}, M) =$ $\dim_{k(\mathfrak{p})} \operatorname{Tor} {}^{R}_{i}(k(\mathfrak{p}), \operatorname{Hom}_{R}(R_{\mathfrak{p}}, M))$. Here $k(\mathfrak{p})$ denotes the quotient field of R/\mathfrak{p} . Note that in [3] the authors show that every module has a flat cover, see also [13] and [5].

In this paper, we study the sequence of Bass numbers $\mu^i(\mathfrak{p}, M)$ and its dual $\pi_i(\mathfrak{p}, M)$. Among the other things we establish the following bounds:

(1)
$$\mu^2(M)/\mu^1(M) \le \ell(R)$$
 and $\mu^{n+1}(M)/\mu^n(M) < \ell(R)$ for any $n \ge 2$,

(2) $\mu^n(M)/\mu^{n+1}(M) < \ell(R)/\ell(\text{Soc}(R))$ for any $n \ge 1$,

where $\ell(*)$ refers to the length of *.

1. Main results

The following lemma is the key to our main result.

Lemma 1.1. Let \mathfrak{p} be a prime ideal of R and let L be an $R_{\mathfrak{p}}$ -module of finite length. Then the following hold:

(a) For any module M and any non-negative integer n,

$$\ell\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}(L,M)\right) - \ell\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{n}(L,M)\right) \ge \mu^{n+1}(\mathfrak{p},M) - \ell(L)\mu^{n}(\mathfrak{p},M).$$

(b) For any cotorsion *R*-module *M* and any non-negative integer *n*,

$$\ell\left(\operatorname{Tor}_{n+1}^{R_{\mathfrak{p}}}(L,M)\right) - \ell\left(\operatorname{Tor}_{n}^{R_{\mathfrak{p}}}(L,M)\right) \ge \pi_{n+1}(\mathfrak{p},M) - \ell(L)\pi_{n}(\mathfrak{p},M).$$

Proof. (a) We proceed by induction on $s = \ell(L)$. If s = 1, then $L \cong k(\mathfrak{p})$, and

$$\ell\left(\operatorname{Ext} _{R_{\mathfrak{p}}}^{n+1}(k(\mathfrak{p}),M)\right) - \ell\left(\operatorname{Ext} _{R_{\mathfrak{p}}}^{n}(k(\mathfrak{p}),M)\right) = \mu^{n+1}(\mathfrak{p},M) - \mu^{n}(\mathfrak{p},M)$$

Now assume that s > 1. Then there is a submodule K of L with $\ell(K) = s - 1$ such that the sequence $0 \to k(\mathfrak{p}) \to L \to K \to 0$ is exact. The corresponding long

exact sequence for Ext $_{R_{\mathfrak{p}}}(-,M)$ gives the exact sequence

$$\operatorname{Ext} {}^{n}_{R_{\mathfrak{p}}}(K, M) \to \operatorname{Ext} {}^{n}_{R_{\mathfrak{p}}}(L, M) \to \operatorname{Ext} {}^{n}_{R_{\mathfrak{p}}}(k(\mathfrak{p}), M)$$
$$\to \operatorname{Ext} {}^{n+1}_{R_{\mathfrak{p}}}(K, M) \to \operatorname{Ext} {}^{n+1}_{R_{\mathfrak{p}}}(L, M).$$

It follows that

$$\ell\left(\operatorname{Ext} _{R_{\mathfrak{p}}}^{n+1}(L,M)\right) - \ell\left(\operatorname{Ext} _{R_{\mathfrak{p}}}^{n}(L,M)\right) \geq \ell\left(\operatorname{Ext} _{R_{\mathfrak{p}}}^{n+1}(K,M)\right) - \ell\left(\operatorname{Ext} _{R_{\mathfrak{p}}}^{n}(K,M)\right) - \mu^{n}(\mathfrak{p},M) \geq \mu^{n+1}(\mathfrak{p},M) - \ell(K)\mu^{n}(\mathfrak{p},M) - \mu^{n}(\mathfrak{p},M) = \mu^{n+1}(\mathfrak{p},M) - \ell(L)\mu^{n}(\mathfrak{p},M),$$

where the first inequality follows from the property of length and the equality $\operatorname{Ext}_{R_{\mathfrak{p}}}^{n}(k(\mathfrak{p}), M) = \mu^{n}(\mathfrak{p}, M)$, also the second inequality follows by the induction hypothesis.

(b) We proceed by induction on $s = \ell(L)$. If s = 1, then $L \cong k(\mathfrak{p})$, and we have

$$\ell\left(\operatorname{Tor}_{n+1}^{R_{\mathfrak{p}}}(k(\mathfrak{p}),M)\right) - \ell\left(\operatorname{Tor}_{n}^{R_{\mathfrak{p}}}(k(\mathfrak{p}),M)\right) = \pi_{n+1}(\mathfrak{p},M) - \ell(L)\pi_{n}(\mathfrak{p},M)$$

Now assume that s > 1. Then there is an $R_{\mathfrak{p}}$ - submodule K of L with $\ell(K) = s - 1$ such that the sequence $0 \to k(\mathfrak{p}) \to L \to K \to 0$ is exact. Set $N = \text{Hom}_R(R_{\mathfrak{p}}, M)$. The corresponding long exact sequence for Tor $R_{\mathfrak{p}}(-, N)$ leads to the exact sequence

For
$${}^{R_{\mathfrak{p}}}_{n+1}(L,N) \to \operatorname{Tor} {}^{R_{\mathfrak{p}}}_{n+1}(K,N) \to \operatorname{Tor} {}^{R_{\mathfrak{p}}}_{n}(k(\mathfrak{p}),N)$$

 $\to \operatorname{Tor} {}^{R_{\mathfrak{p}}}_{n}(L,N) \to \operatorname{Tor} {}^{R_{\mathfrak{p}}}_{n}(K,N).$

It follows that

$$\ell\left(\operatorname{Tor}_{n+1}^{R_{\mathfrak{p}}}(L,N)\right) - \ell\left(\operatorname{Tor}_{n}^{R_{\mathfrak{p}}}(L,N)\right) \geq \ell\left(\operatorname{Tor}_{n+1}^{R_{\mathfrak{p}}}(K,N)\right) - \pi_{n}(M)$$
$$- \ell\left(\operatorname{Tor}_{n}^{R_{\mathfrak{p}}}(K,N)\right) - \pi_{n}(M)$$
$$\geq \pi_{n+1}(M) - \ell(K)\pi_{n}(M) - \pi_{n}(M)$$
$$= \pi_{n+1}(M) - \ell(L)\pi_{n}(M),$$

where the second inequality follows by the induction hypothesis.

Corollary 1.2. Let R be a zero dimensional ring and let M be an R-module. For any prime ideal \mathfrak{p} and any integer $n \ge 1$ the following hold: (a)

$$\mu^{n+1}(\mathfrak{p}, M) \le \ell(R_\mathfrak{p})\mu^n(\mathfrak{p}, M)$$

(b) If M is a cotorsion R-module, then

$$\pi_{n+1}(\mathfrak{p}, M) \leq \ell(R_\mathfrak{p})\pi_n(\mathfrak{p}, M)$$

Proof. (a) Replace the module L in Lemma 1.1(a) with $R_{\mathfrak{p}}$ and note that Ext $_{R_{\mathfrak{p}}}^{i}(R_{\mathfrak{p}}, -) = 0$ for all $i \geq 1$.

Ext $_{R_{\mathfrak{p}}}(n_{\mathfrak{p}}, -) = 0$ for an i = -(b) Replace the module L in Lemma 1.1(b) with $R_{\mathfrak{p}}$ and note that Tor $_{i}^{R_{\mathfrak{p}}}(R_{\mathfrak{p}}, -) = 0$ for any $i \geq 1$.

Proposition 1.3. Let R be a zero dimensional ring. Then the following hold:

(a) Let M be an R-module. For any integer $n \ge 1$ and prime ideal \mathfrak{p} ,

$$\mu^{n+1}(\mathfrak{p}, M) \le \ell(R_\mathfrak{p})\mu^n(\mathfrak{p}, M)$$

(b) Let M be a cotorsion R-module. For any $\mathfrak{p} \in \text{Spec } R$ and any $n \geq 2$,

 $\pi_{n+1}(\mathfrak{p}, M) + \ell \big(\operatorname{Soc}(R) \big) \pi_{n-1}(\mathfrak{p}, M) \le \ell(R_{\mathfrak{p}}) \pi_n(\mathfrak{p}, M) \,.$

Proof. (a) It is clear from Lemma 1.1(a).

(b) Assume that $\mathfrak{p} \in \text{Spec } R$ and set $I = \text{Soc}(R_{\mathfrak{p}}), N = \text{Hom}_{R}(R_{\mathfrak{p}}, M)$. From the exact sequence

$$0 \to I \to R_{\mathfrak{p}} \to R_{\mathfrak{p}}/I \to 0\,,$$

it follows that for any $n \ge 1$,

$$\operatorname{Tor} {}^{R_{\mathfrak{p}}}_{n+1}(R_{\mathfrak{p}}/I,N) \cong \operatorname{Tor} {}^{R}_{n}(I,N) \cong \oplus \operatorname{Tor} {}^{R}_{n}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}},N) \,,$$

where the numbers of copies in the direct sum is $\ell(I)$. Hence

$$\ell\left(\operatorname{Tor}_{n+1}^{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/I,N)\right) = \ell(I)\pi_{n}(\mathfrak{p},M) \text{ for } n \ge 1.$$

Thus, by Lemma 1.1(b), for $n \ge 2$,

$$\ell(I)\big(\pi_n(\mathfrak{p},M) - \pi_{n-1}(\mathfrak{p},M)\big) \ge \pi_{n+1}(\mathfrak{p},M) - \ell(R_\mathfrak{p}/I)\pi_n(\mathfrak{p},M).$$

Therefore,
$$\ell(I)\pi_{n-1}(\mathfrak{p}, M) + \pi_{n+1}(\mathfrak{p}, M) \leq \ell(R_{\mathfrak{p}})\pi_n(M).$$

Theorem 1.4. Let R be a zero dimensional local ring. For any finitely generated non-injective R-module M the following hold:

(1) $\mu^{n+1}(M)/\mu^n(M) < \ell(R)$ for any $n \ge 2$, (2) $\mu^n(M)/\mu^{n+1}(M) < \ell(R)/\ell(\operatorname{Soc}(R))$ for any $n \ge 1$.

Proof. Let I = Soc(R). From the exact sequence

$$0 \to I \to R \to R/I \to 0$$

it follows that for any $n \ge 1$,

Ext
$${}^{n+1}_{R}(R/I, M) \cong \operatorname{Ext} {}^{n}_{R}(I, M) \cong \oplus \operatorname{Ext} {}^{n}_{R}(R/\mathfrak{m}, M)$$
,

where the numbers of copies in the direct sum is $\ell(I)$. Hence

$$\ell\left(\operatorname{Ext}_{R}^{n+1}(R/I,M)\right) = \ell(I)\mu^{n}(M) \quad \text{for} \quad n \ge 1.$$

Thus, by Lemma 1.1, for $n \ge 2$,

$$\ell(I)(\mu^{n}(M) - \mu^{n-1}(M)) \ge \mu^{n+1}(M) - \ell(R/I)\mu^{n}(M).$$

Therefore, $\ell(I)\mu^{n-1}(M) + \mu^{n+1}(M) \leq \ell(R)\mu^n(M)$. By [7, Theorem 1.1], $\mu^i(M) > 0$ for depth $_RM \leq i \leq \text{inj.dim }_RM$. Since R is Artinian, depth $_RM = 0$. Thus for any $n, n \geq 2, \mu^n(M)$ and $\mu^{n-1}(M)$ are positive integer and hence $\mu^{n+1}(M)/\mu^n(M) < \ell(R)$. Moreover, if $2 \leq n$, then $\mu^n(M)$ and $\mu^{n+1}(M)$ are positive integers and thus $\mu^{n-1}(M)/\mu^n(M) < \ell(R)/\ell(\operatorname{Soc}(R))$.

Corollary 1.5. Let R be a zero dimensional ring. Let M be a finitely generated R-module. For any prime ideal \mathfrak{p} with $M_{\mathfrak{p}}$ non-injective $R_{\mathfrak{p}}$ -module, the following hold:

262

Remark 1.6. To the best of the knowledge of the authors, there is no condition (yet!) which implies that $\pi_n(\mathfrak{p}, M) > 0$. This is the reason that we could not give a similar result as Theorem 1.4 for the dual notion of Bass numbers.

References

- Avramov, L. L., Sur la croissance des nombres de Betti d'un anneau local, C. R. Acad. Sci. Paris 289 (1979), 369–372.
- [2] Bass, H., On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
- [3] Bican, L., El Bashir, R., Enochs, E. E., All modules have flat covers, Bull. London Math. Soc. 33 (2001), 385–390.
- [4] Enochs, E. E., Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), 179–184.
- [5] Enochs, E. E., Jenda, O. M. G., *Relative homological algebra*, de Gruyter Expositions in Mathematics, 30. Walter de Gruyter & Co., Berlin, 2000.
- [6] Enochs, E. E., Xu, J. Z., On invariants dual to the Bass numbers, Proc. Amer. Math. Soc. 125 (1997), 951–960.
- [7] Fossum, R., Foxby, H.-B., Griffith, P., Reiten, I., Minimal injective resolutions with applications to dualizing modules and Gorenstein modules, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 193–215.
- [8] Foxby, H.-B., On the μ^i in a minimal injective resolution, Math. Scand. **29** (1971), 175–186.
- [9] Gulliksen, T., A proof of the existence of minimal R-algebra resolutions, Acta Math. 120 (1968), 53–58.
- [10] Ramras, M., Bounds on Betti numbers, Canad. J. Math. 34 (1982), 589-592.
- [11] Roberts, P., Two applications of dualizing complexes over local rings, Ann. Sci. École Norm. Sup. (4) 9 (1), (1976), 103–106.
- [12] Roberts, P., Rings of type 1 are Gorenstein, Bull. London Math. Soc. 15 (1983), 48–50.
- [13] Xu, J. Z., Minimal injective and flat resolutions of modules over Gorenstein rings, J. Algebra 175 (1995), 451–477.

A. TEHRANIAN, SCIENCE AND RESEARCH BRANCH ISLAMIC AZAD UNIVERSITY, TEHRAN, IRAN *E-mail*: tehranian1340@yahoo.com

S. YASSEMI, CENTER OF EXCELLENCE IN BIOMATHEMATICS SCHOOL OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE UNIVERSITY OF TEHRAN, TEHRAN, IRAN *E-mail*: yassemi@ipm.ir