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Abstract. In this note we study the Ledger conditions on the families of
flag manifold (M6 = SU(3)/SU(1) × SU(1) × SU(1), g(c1,c2,c3)),

`

M12 =

Sp(3)/SU(2) × SU(2) × SU(2), g(c1,c2,c3)

´

, constructed by N.R. Wallach in

[14]. In both cases, we conclude that every member of the both families
of Riemannian flag manifolds is a D’Atri space if and only if it is naturally
reductive. Therefore, we finish the study of M6 made by D’Atri and Nickerson
in [7]. Moreover, we correct and improve the result given by the author and
A. M. Naveira in [3] about M12.

1. Introduction

A Riemannian homogeneous space (G/H, g) with its origin p = {H} is always
a reductive homogeneous space in the following sense (cf. [9, vol.II, p.190]): we
denote by g and h the Lie algebras of G and H respectively and consider the adjoint
representation Ad : H × g → g of H on g. There is a direct sum decomposition
(reductive decomposition) of the form g = m + h where m ⊂ g is a vector subspace
such that Ad(H)(m) ⊂ m. For a fixed reductive decomposition g = m + h, there
is a natural identification of m ⊂ g = TeG with the tangent space TpM via the
projection π : G → G/H = M . Using this natural identification and the scalar
product gp on TpM , we obtain a scalar product 〈 , 〉 on m which is obviously
Ad(H)-invariant.

The following definition is well known from [9, Chapter X, sections 2, 3]:

Definition 1. A Riemannian homogeneous space (G/H, g) is said to be naturally

reductive if there exists a reductive decomposition g = m + h of g satisfying the
condition

(1) 〈[X, Z]m, Y 〉 + 〈X, [Z, Y ]m〉 = 0 for all X, Y, Z ∈ m ,

Here the subscript m indicates the projection of an element of g into m.
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It is also well-known that the condition (1) is equivalent to the following more
geometrical property:

(2)
For any vector X ∈ m\{0}, the curve γ(t) = τ(exp tX)(p)

is a geodesic with respect to the Riemannian connection.

Here exp and τ(h) denote the Lie exponential map of G and the left transformation
of G/H induced by h ∈ G respectively. Thus, for a naturally reductive homoge-
neous space every geodesic on (G/H, g) is an orbit of a one-parameter subgroup
of the group of isometries.

The property of being a D’Atri space (i.e., a space with volume-preserving
symmetries) is equivalent to the infinite number of curvature identities called the
odd Ledger conditions L2k+1, k ≥ 1 (see [6] and [13]). In particular, the first two
non-trivial odd Ledger conditions are

L3 : (∇Xρ)(X, X) = 0 ,(3)

L5 :
n

∑

a,b=1

RXEaXEb
(∇XR)XEaXEb

= 0 ,(4)

where X is any tangent vector at any point m ∈ M and {E1, . . . , En} is any
orthonormal basis of TmM . Here R denotes the curvature tensor and ρ the Ricci
tensor of (M, g), respectively, and n = dimM . The condition L3 is very important.
Thus, a Riemannian manifold (M, g) satisfying the first odd Ledger condition is
said to be of type A (see [12]).

D’Atri spaces have been a topic of interest in Riemannian geometry since they
were introduced by J. E. D’Atri and H. K. Nickerson [6], [7] and studied extensively
by J. E. D’Atri in [5]. In [6], [7] it was proved that all naturally reductive spaces

are D’Atri spaces, and another more simple proof was provided in [5]. See [11] for
a survey about the whole topic. In addition, the classification of all 3-dimensional
D’Atri spaces is well-known. It was done by O. Kowalski in [10] concluding that
all of them are locally naturally reductive. Besides, the first attempts to clas-
sify all 4-dimensional homogeneous D’Atri spaces were done by F. Podesta, A.
Spiro and P. Bueken, L. Vanhecke, in the papers [12] and [4] (which are mutually
complementary), respectively. The previous authors started with the correspond-
ing classification of all spaces of type A, but the classification given in [12] was
incomplete as the author claimed in [1]. Later, the author and O. Kowalski in
[2] obtained the complete classification of all homogeneous spaces of type A in
a simple and explicit form and, as a consequence, they proved correctly that all

homogeneous 4-dimensional D’Atri spaces are locally naturally reductive.
On the other hand, N. R. Wallach in [14] constructed a family of Riemannian

flag manifolds in the complex plane, (M6, g(c1,c2,c3)), in the quaternionic plane,

(M12, g(c1,c2,c3)), and also in the octonionic plane (M24, g(c1,c2,c3)) as examples of
reductive homogeneous spaces. Here, c1, c2 and c3 are positive real constants.

As concerns the first one, M6, D’Atri and Nickerson in [7] proved that if two
of the parameters c1, c2, c3 are equal, the corresponding Riemannian space is of
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type A. Moreover, for the case c1 = c2 = 1, c3 = 2 they affirmed (without explicit
argument) that the second odd Ledger condition L5 is not satisfied.

Now, we shall finish their study of the L5 condition over the manifold M6. Of
course, with all the relevant arguments. Further, we shall extend the study of the
two-first odd Ledger conditions L3, L5 to the other Wallach’s flag manifold M12.
Moreover, we shall correct the result given by the author and A. M. Naveira in [3]
where this problem over the manifold M12 was studied for the first time. In both
cases, we shall conclude that every member of both families of Riemannian flag
manifolds is a D’Atri space if and only if it is naturally reductive.

Many symbolic computations are required to make this study. Thus, to orga-
nize them in the most systematic way, we use the software Mathematica 5.2

throughout this work. We put stress on the full transparency of this procedure.
However, we shall not treat along this paper the 24-dimensional family of flag

manifolds
(

F4/Spin(8), g(c1,c2,c3)

)

.

2. Preliminaries

Let (M = G/H, g) a reductive Riemannian homogeneous space. In agreement
with the notation of section before let us recall, following [9, vol.2,p.201], that the
Riemannian connection for g is given by

(5) ∇XY = 1
2 [X, Y ]m + U(X, Y ) ,

where U(X, Y ) is the symmetric bilinear mapping of m × m into m defined by

(6) 2〈U(X, Y ), Z〉 = 〈X, [Z, Y ]m〉 + 〈[Z, X ]m, Y 〉 ,

for all X , Y , Z ∈ m.
Note that the space M becomes naturally reductive if and only if U ≡ 0.
Let R denote the curvature tensor of the Riemannian connection ∇. Following

[7] we have

R(X, Y )Z = − [[X, Y ]h, Z] −
1

2
[[X, Y ]m, Z]m − U([X, Y ]m, Z)

+
1

4
[X, [Y, Z]m]m +

1

2
[X, U(Y, Z)]m + U(X, U(Y, Z))

+
1

2
U(X, [Y, Z]m) −

1

4
[Y, [X, Z]m]m −

1

2
[Y, U(X, Z)]m

− U(Y, U(X, Z)) −
1

2
U(Y, [X, Z]m) ,

(7)

for all X , Y , Z ∈ m.
In addition, in [7] the authors showed how the Ledger conditions can be refor-

mulated on reductive homogeneous spaces without explicit use of covariant deriva-
tives. Their theorem below covers only the first two non-trivial odd conditions (3)
and (4), but it is useful for checking concrete examples as in the next section.

Theorem 1. Let Mn = G/H be a reductive Riemannian homogeneous space. Let

{E1, . . . , En} be an orthonormal basis of m and let ρ denote the Ricci curvature
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tensor of the Riemannian connection. Then, the first two odd Ledger’s conditions

can be reformulated in the following way:

L3 ≡ ρ(X, U(X, X)) =

n
∑

a=1

〈R(Ea, X)U(X, X), Ea〉 = 0 ,(8)

L5 ≡

n
∑

a=1

〈R(R(Ea, X)X, X)U(X, X), Ea〉 = 0(9)

for all X ∈ m. Or, equivalently

L3 ≡ ρ(X, U(Y, Z)) + ρ(Y, U(Z, X)) + ρ(Z, U(X, Y )) = 0 ,(10)

L5 ≡
n

∑

a=1

〈R(R(Ea, X)Y, Z)U(V, W ), Ea〉

+

n
∑

a=1

〈R(R(Ea, Y )Z, V )U(W, X), Ea〉

+
n

∑

a=1

〈R(R(Ea, Z)V, W )U(X, Y ), Ea〉

+

n
∑

a=1

〈R(R(Ea, V )W, X)U(Y, Z), Ea〉

+

n
∑

a=1

〈R(R(Ea, W )X, Y )U(Z, V ), Ea〉 = 0(11)

for all X, Y, Z, V, W ∈ m.

In order to obtain examples using Theorem 1, we compute U from (6) and the
curvature tensor R at the point p from (7).

3. Two families of flag manifolds

Let SU(n) be the special unitary group and Sp(n) be the symplectic group.
In the natural way, both M6 = SU(3)/SU(1) × SU(1) × SU(1) and M12 =

Sp(3)/SU(2) × SU(2) × SU(2) admit a reductive homogeneous decomposition
[15].

Moreover, N. R. Wallach constructs an infinite number of metrics with strictly
positive sectional curvature over the previous spaces [14].

Let G = SU(3) or Sp(3), and let H = (SU(1) × SU(1) × SU(1)) or (Sp(1) ×
Sp(1)×Sp(1) ≡ SU(2)×SU(2)×SU(2)). In agreement with the notation before,
the Lie algebra g = su(3) or sp(3) and h is the subalgebra of diagonal matrices.
To simplify notation, we use the same letter K for the complex plane C and for
the quaternionic plane H. Let us define g = m ⊕ h by

m = V1 ⊕ V2 ⊕ V3 ,
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where

V1 =











0 z 0
−z̄ 0 0

0 0 0



 , z ∈ K







, V2 =











0 0 z

0 0 0
−z̄ 0 0



 , z ∈ K







and

V3 =











0 0 0
0 0 z

0 −z̄ 0



 , z ∈ K







.

Let 〈 , 〉 be the inner product on m given by

(12) 〈X, Y 〉 =

{

0 if X ∈ Vi, Y ∈ Vj , i 6= j ,
−ci Trace XY if X, Y ∈ Vi, i = 1, 2, 3 .

where c1, c2 and c3 are positive real parameters.
These spaces were introduced by N. R. Wallach in [14] where he also calculated

from the formulas (6) and (12) that

(13) U(X, Y ) =

{

0 if X, Y ∈ Vi, i = 1, 2, 3 ,

−
ci−cj

2ck
[X, Y ] if X ∈ Vi, Y ∈ Vj , i 6= j 6= k .

Obviously, the decomposition is naturally reductive if and only if c1 = c2 = c3.

3.1. Case K = C. For this case, the corresponding flag manifold is M6 =
SU(3)/SU(1) × SU(1) × SU(1). Further, we know that J. E. D’Atri and H. K.
Nickerson in [7] proved that if at least two of the parameters c1, c2, c3 are equal, the
corresponding Riemannian space is of type A. Moreover, for the case c1 = c2 = 1,
c3 = 2 they affirmed (without giving any argument) that the second odd Ledger
condition L5 is not satisfied. Now, we shall finish the study of the L5 condition
over the manifold M6. For the convenience of the reader we repeat the relevant
material from [7], thus making our exposition self-contained.

First, we define a basis {E1, JE1, E2, JE2, E3, JE3} for m taking z = 1, i in V1,
z = 1,−i in V2 and z = −1,−i in V3, respectively. Note that implicitly we have
defined the invariant almost complex structure J : m → m by

J





0 a12 a13

−ā12 0 a23

−ā13 −ā23 0



 =





0 ia12 −ia13

iā12 0 ia23

−iā13 iā23 0





i.e. for all X ∈ m and Y ∈ h, it satisfies

J2X = −X, J [Y, X ]m = [Y, JX ]m .

Afterwards, we define a basis {K1, K2, K3} for h taking

K1 =





i 0 0
0 −i 0
0 0 0



 , K2 =





−i 0 0
0 0 0
0 0 i



 , K3 =





0 0 0
0 i 0
0 0 −i



 .
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Then, we get that the multiplication table for m is given by

[El, JEl] = 2Kl , l = 1, 2, 3 .

[El, Em] = −[JEl, JEm] = En , [El, Em] = −[JEl, JEm] = En ,

where (l, m, n) is a cyclic permutation of (1, 2, 3). Moreover, we get

[Kl, El] = 2JEl , [Kl, JEl] = −2El , l = 1, 2, 3 ,

[Kl, Em] = −2JEm , [Kl, JEm] = Em , l 6= m, l, m ∈ {1, 2, 3} .

The curvature tensor can be computed from (7) with respect to this basis. The
non-trivial cases are the following formulas (14) and the formulas obtained from
(14) by using the operator J :

(14)

R(El, JEl)El = −4JEl ,

R(El, JEl)Em = 2R(El, Em)JEl

= −2R(JEl, Em)El = 4−(cl−cm−cn)2

2cmcn
JEm ,

R(El, Em)El = R(JEl, Em)JEl =
(

(cn−cl)
cm

− (cl−cm−cn)2

4cmcn

)

Em ,

for l, m, n distinct and l, m, n ∈ {1, 2, 3}.
Further, we obtain easily from (14) that the only non-trivial terms of the Ricci

tensor are

(15) ρ(El, El) = ρ(JEl, JEl) =
(6cmcn+c2

l −c2
m−c2

n)
cmcn

for l, m, n distinct and l, m, n ∈ {1, 2, 3}.
Now, we shall use (13) and (15) to compute the Ledger condition L3, (10).

The equation (10) has a purely algebraic character because the family of metrics
g(c1,c2,c3) is left-invariant. Hence, we can substitute for X, Y, Z every triplet cho-
sen from the basis of m (with possible repetition). Thus, the condition (10) is
equivalent to a system of algebraic equations. Finally, we have obtained, after a
lengthy by routine calculation, that the only non-trivial equation appears when

(X, Y, Z) ∈
{

(El, Em, En), (El, JEm, JEn) | l, m, n ∈ {1, 2, 3}, n 6= l 6= m 6= n
}

.

To be precise, the L3 condition is equivalent to

(16)
(c1 − c2)(c1 − c3)(c2 − c3)

c1c2c3
= 0 .

We conclude that every member of the family of Riemannian flag manifolds

(M6, g(c1,c2,c3)) is of type A if and only if at least two of the parameters c1, c2, c3,
are equal.

To finish, we shall prove that the Ledger condition L5 is satisfied if and only if

c1 = c2 = c3.

Case c1 = cl, l = 2, 3.
Let us put X = E2, Y = E3, Z = V = W = E1 in (11). Thus, for l = 2 we

obtain using (12), (13) and (14) that (11) can be written in the form

(17) (x − 1)(9x2 + 24x + 80) = 0 , for x = c3

c1
.



A PROPERTY OF WALLACH’S FLAG MANIFOLDS 313

Analogously for l = 3, we obtain that (11) can be written in the form

(18) (x − 1)(3x2 + 8x + 96) = 0 , for x = c2

c1
.

In both equations (17), (18), the second order equation has negative discriminant.
Then, if c1 = cl, l = 2, 3, the only possible real solution is c1 = c2 = c3.

Case c2 = c3.

Let us put in (11) first X = E2, Y = JE3, Z = W = E1, V = JE1 and later
X = E2, Y = JE3, Z = JE1, V = W = E1. Thus, we obtain a system of equations
of the form

(x − 1)(x − 4)(x2 + 2x + 4) = 0,

(x − 1)(x2 − 4x − 2) = 0,
(19)

respectively, where x = c1

c2
. Here, the only solution of the system is x = 1. Then,

if c2 = c3, the only possible solution is c1 = c2 = c3.
As a conclusion, every member of the family of Riemannian flag manifolds

(M6, g(c1,c2,c3)) is a D’Atri space if and only if it is naturally reductive.

3.2. Case K = H. In this case, we shall make the study of the two-first odd
Ledger conditions L3, L5 on the other Wallach’s flag manifold, i.e. the twelve
dimensional manifold M12 = Sp(3)/SU(2)×SU(2)×SU(2). Moreover, we correct
the result given in [3] where this problem was studied for the first time.

From now on, we will denote by jl, l = 1, 2, 3 the three quaternionic imaginary
units i, j, k, respectively.

First, we shall define a basis for m. Let us introduce three invariants almost-
complex structures Jl : m → m, l = 1, 2, 3, by

Jl





0 a12 a13

−ā12 0 a23

−ā13 −ā23 0



 =





0 jla12 −jla13

jlā12 0 jla23

−jlā13 jlā23 0





for l = 1, 2 and

J3





0 a12 a13

−ā12 0 a23

−ā13 −ā23 0



 =





0 j3a12 j3a13

j3ā12 0 j3a23

j3ā13 j3ā23 0



 ,

i.e. for all X ∈ m and Y ∈ h, they satisfy

J2
l X = −X , Jl[Y, X ]m = [Y, JlX ]m for l = 1, 2, 3 ,

JlJmX = −JmJlX = JnX where (l, m, n) is a cyclic permutation of (1, 2, 3) .

On the other hand, it is easy to prove that the structures Jl, l = 1, 2 are
nearly-Kähler (i.e. they satisfy (∇XJl)X = 0 for X ∈ m) and the structure J3 is
Hermitian (i.e. (∇XJ3)Y − (∇J3XJ3)J3Y = 0 for X, Y ∈ m), [8].

Finally, we define the adapted basis
{

E1, J1E1, J2E1, J3E1, E2, J1E2, J2E2, J3E2, E3, J1E3, J2E3, J3E3

}
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for m = V1 ⊕ V2 ⊕ V3. In particular, we take for generating V1 the elements

E1 =





0 1 0
−1 0 0

0 0 0



 , JlE1 =





0 jl 0
jl 0 0
0 0 0



 , l = 1, 2, 3 ,

for generating V2 the elements

E2 =





0 0 1
0 0 0

−1 0 0



 , JlE2 =





0 0 −jl

0 0 0
−jl 0 0



 , l = 1, 2 ,

J3E2 =





0 0 j3
0 0 0

j3 0 0



 ,

and for generating V3 the elements

E3 =





0 0 0
0 0 1
0 −1 0



 , JlE3 =





0 0 0
0 0 jl

0 jl 0



 , l = 1, 2, 3 .

Thus, we get an adapted basis for m such that

[El, Em] = −[JpEl, JpEm] = −En , [El, JpEm] = [JpEl, Em] = JpEn ,

where p = 1, 2 and (l, m, n) is a cyclic permutation of (1, 2, 3) ,

[J3E1, J3E2] = −E3 , [J3E2, J3E3] = −E1 , [J3E3, J3E1] = E2 ,

[E1, J3E2] = −[J3E1, E2] = −J3E3 , [E2, J3E3] = −[J3E2, E3] = J3E1 ,

[E3, J3E1] = [J3E3, E1] = −J3E2 ,

[JpE3, JqE1] = −[JqE3, JpE1] = JrE2 for (p, q, r)∈{(1, 2, 3), (1, 3, 2), (3, 2, 1)} ,

[J1El, J2Em] = −[J2El, J1Em] = −J3En for (l, m, n) ∈ {(1, 2, 3), (2, 3, 1)} ,

[J1El, J3Em] = [J3El, J1Em] = J2En for (l, m, n) ∈ {(2, 1, 3), (2, 3, 1)} ,

[J2El, J3Em] = [J3El, J2Em] = J1En for (l, m, n) ∈ {(1, 2, 3), (3, 2, 1)} .

Now we introduce a basis {Klp : l, p = 1, 2, 3} for h. More explicitly, we take

K1l =





jl 0 0
0 0 0
0 0 0



 , K2l =





0 0 0
0 jl 0
0 0 0



 , K3l =





0 0 0
0 0 0
0 0 jl



 , l = 1, 2, 3 .
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Then, we get

[E1, JpE1] = 2(K1p − K2p) for p = 1, 2, 3 ,

[JpE1, JqE1] = 2(K1r − K2r) for (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ,

[E2, JpE2] = 2(−K1p + K3p) for p = 1, 2 ,

[E2, J3E2] = 2(K13 − K33) ,

[JpE2, JqE2] = 2(K1r + K3r) for (p, q, r) ∈ {(1, 2, 3), (1, 3, 2), (3, 2, 1)} ,

[E3, JpE3] = 2(K2p − K3p) for p = 1, 2, 3 ,

[JpE3, JqE3] = 2(K2r − K3r) for (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ,

[E1, K1p] = −[E1, K2p] = −JpE1, [E1, K3p] = 0 for p = 1, 2, 3 ,

[E2, K1p] = −[E2, K3p] = JpE2 , [E2, K2p] = 0 for p = 1, 2 ,

[E2, K13] = −[E2, K33] = −J3E2 , [E2, K23] = 0 ,

[E3, K2p] = −[E1, K3p] = −JpE3 , [E3, K1p] = 0 for p = 1, 2, 3 ,

[JpE1, K1p] = −[JpE1, K2p] = E1 , [JpE1, K3p] = 0 for p = 1, 2, 3 ,

[JpE2, K1p] = −[JpE2, K3p] = −E2 , [JpE2, K2p] = 0 for p = 1, 2, 3 ,

[JpE3, K2p] = −[JpE3, K3p] = E3 , [JpE3, K1p] = 0 for p = 1, 2, 3 ,

[JpE1, Klq] = −[JqE1, Klp] = JrE1 , l = 1, 2 , [JpE1, K3q] = [JqE1, K3p] = 0

for (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ,

[JpE2, K2q] = [JqE2, K2p] = 0 for (p, q) ∈ {(1, 2), (1, 3), (2, 3)} ,

[J2E2, Kl1] = −[J1E2, Kl2] = J3E2 , l = 1, 3 ,

[J2E2, Kl3] = [J3E2, Kl2] = J1E2 , l = 1, 3 ,

[J1E2, Kl3] = [J3E2, Kl1] = −J2E2 , l = 1, 3 ,

[JpE3, Klq] = −[JqE3, Klp] = JrE3 , l = 2, 3 , [JpE3, K1q] = [JqE3, K1p] = 0

for (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} .

The curvature tensor can be computed from (7) with respect to this basis. Let
us denote by J0 the identity and let us put A = c2

1 +(c2 − c3)
2 − 2c1(c2 + c3). The

non-trivial cases are the following formulas

R(JqEl, JpEl)JpEl = 4JqEl , p 6= q ,

R(JqEl, JpEm)JpEm =
−3c2

n+(cl−cm)2+2cn(cl+cm)
4clcn

JqEl ,

for distinct l, m, n ∈ {1, 2, 3}, p, q ∈ {0, 1, 2, 3},
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R(El, Em)JpEm = −R(El, JpEm)Em = −Jp(R(JpEl, Em)JpEm)

= Jp(R(JpEl, JpEm)Em) = A
4clcn

JpEl , p = 1, 2 ,

R(El, Em)J3Em = −R(El, J3Em)Em = −J3(R(J3El, Em)J3Em)

= J3(R(J3El, J3Em)Em) = (−1)l+mA

4clcn
J3El ,

for distinct l, m, n ∈ {1, 2, 3},

R(El, JpEm)JqEm = −R(El, JqEm)JpEm = (−1)(p+r+n!+1)A

4clcn
JrEl ,

(l, m, n) ∈ {(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 2, 1)} ,

R(El, JpEm)JqEm = −R(El, JqEm)JpEm = (−1)(l!+1)A

4clcn
JrEl ,

(l, m, n) ∈ {(1, 3, 2), (3, 1, 2)} ,

for (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

R(JpEl, Em)JqEm = −R(JpEl, JqEm)Em = (−1)(q+r+n!)A

4clcn
JrEl ,

R(JrEl, Em)JqEm = −R(JrEl, JqEm)Em = (−1)(q+r+n!+1)A

4clcn
JpEl ,

(l, m, n) ∈ {(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 2, 1)} ,

R(JpEl, Em)JqEm = −R(JpEl, JqEm)Em = (−1)(l!+1)A

4clcn
JrEl ,

R(JrEl, Em)JqEm = −R(JrEl, JqEm)Em = (−1)(l!)A
4clcn

JpEl ,

(l, m, n) ∈ {(1, 3, 2), (3, 1, 2)} ,

for (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

R(JpEl, JqEm)JpEm = −R(JpEl, JpEm)JqEm = (−1)qA

4clcn
JqEl ,

(l, m, n) ∈ {(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 2, 1)} ,

R(JpEl, JqEm)JpEm = −R(JpEl, JpEm)JqEm = A
4clcn

JqEl ,

(l, m, n) ∈ {(1, 3, 2), (3, 1, 2)} ,

for distinct p, q ∈ {1, 2, 3},

R(JpEl, JqEm)JrEm = −R(JpEl, JrEm)JqEm = (−1)(r+n!)A

4clcn
El ,

(l, m, n) ∈ {(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 2, 1)} ,

R(JpEl, JqEm)JrEm = −R(JpEl, JrEm)JqEm = (−1)l!A

4clcn
El ,

(l, m, n) ∈ {(1, 3, 2), (3, 1, 2)} ,
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for (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

R(El, JpEl)JqEm = (−1)(r+n!)A

2cmcn
JrEm ,

R(El, JpEl)JrEm = (−1)(r+n!+1)A

2cmcn
JqEm ,

(l, m, n) ∈ {(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 2, 1)} ,

R(El, JpEl)JqEm = (−1)l!A

2cmcn
JrEm ,

R(El, JpEl)JrEm = (−1)(l!+1)A

2cmcn
JqEm ,

(l, m, n) ∈ {(1, 3, 2), (3, 1, 2)} ,

for (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

R(El, JpEl)Em = −Jp(R(El, JpEl)JpEm) = −A
2cmcn

JpEm , p = 1, 2 ,

R(El, J3El)Em = −J3(R(El, J3El)J3Em) = (−1)(l+m+1)A

2cmcn
J3Em ,

for distinct l, m, n ∈ {1, 2, 3},

R(JpEl, JqEl)Em = −Jr(R(JpEl, JqEl)JrEm) = (−1)(q+n!)A

2cmcn
JrEm ,

(l, m, n) ∈ {(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 2, 1)} ,

R(JpEl, JqEl)Em = −Jr(R(JpEl, JqEl)JrEm) = (−1)(m!)A

2cmcn
JrEm ,

(l, m, n) ∈ {(1, 3, 2), (3, 1, 2)} ,

for (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

R(JpEl, JqEl)JpEm = (−1)rA

2cmcn
JqEm , r = max({p, q}) ,

(l, m, n) ∈ {(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 2, 1)} ,

R(JpEl, JqEl)JpEm = A
2cmcn

JqEm ,

(l, m, n) ∈ {(1, 3, 2), (3, 1, 2)} ,

for distinct p, q ∈ {1, 2, 3} .

Further, we obtain easily from the previous formulas that the only non-trivial
terms of the Ricci tensor are

(20) ρ(El, El) = ρ(JpEl, JpEl) =
2(8cmcn+c2

l −c2
m−c2

n)
cmcn

for l, m, n distinct and p, l, m, n ∈ {1, 2, 3}.
Now, we shall use (13) and (20) to compute the Ledger condition L3, (10).

The equation (10) has a purely algebraic character because the family of metrics
g(c1,c2,c3) is left-invariant. Hence, we can substitute for X, Y, Z every triplet chosen



318 T. ARIAS-MARCO

from the basis of m (with possible repetition). Thus, the condition (10) is equiva-
lent to a system of algebraic equations. Finally, we have obtained after a lengthy
by routine calculation, that the only non-trivial equation appears when

(X, Y, Z) ∈{(El, Em, En), (El, JpEm, JpEn), (JlEl, JmEm, JnEn), (JlEl, JnEm,

JmEn), (JnEl, JlEm, JmEn) | p, l, m, n ∈ {1, 2, 3}, n 6= l 6= m 6= n} .

To be precise, the L3 condition is equivalent to

(21)
(c1 − c2)(c1 − c3)(c2 − c3)

c1c2c3
= 0 .

We conclude that every member of the family of Riemannian flag manifolds

(M12, g(c1,c2,c3)) is of type A if and only if at least two of the parameters c1, c2, c3,
are equal.

To finish, we shall prove that the L5 Ledger condition is satisfied if and only if

c1 = c2 = c3.

Case c1 = cl, l = 2, 3.
Let us put X = E2, Y = E3, Z = V = W = E1 in (11). Thus, for l = 2 we

obtain using (12), (13) and (??) that (11) can be written in the form

(22) (x − 1)(9x2 + 48x + 112) = 0 , for x = c3

c1
.

Analogously for l = 3, we obtain that (11) can be written in the form

(23) (x − 1)(x2 + 3x + 36) = 0 , for x = c2

c1
.

In both equations (22), (23), the second order equation has negative discriminant.
Then, if c1 = cl, l = 2, 3, the only possible real solution is c1 = c2 = c3.

Case c2 = c3.

Let us put in (11) first X = E2, Y = J1E3, Z = W = E1, V = J1E1 and later
X = E2, Y = E3, Z = V = W = E1. Thus, we obtain a system of equations of
the form

(x − 1)(x − 4)(3x2 − 6x + 4) = 0,

(x − 1)(7x2 − 46x + 48) = 0,
(24)

respectively, where x = c1

c2
. Here, the only solution of the system is x = 1. Then,

if c2 = c3, the only possible solution is c1 = c2 = c3.
As a conclusion, every member of the family of Riemannian flag manifolds

(M12, g(c1,c2,c3)) is a D’Atri space if and only if it is naturally reductive.
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