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HOMOGENEOUS CARTAN GEOMETRIES

MATTHIAS HAMMERL

Abstract. We describe invariant principal and Cartan connections on ho-
mogeneous principal bundles and show how to calculate the curvature and
the holonomy; in the case of an invariant Cartan connection we give a formula
for the infinitesimal automorphisms. The main result of this paper is that
the above calculations are purely algorithmic. As an example of an homoge-
neous parabolic geometry we treat a conformal structure on the product of
two spheres.

Introduction

We begin with a discussion of invariant principal connections in section 1 and
present a similar treatment of invariant Cartan connections in section 2. For both
kinds of connections we give an explicit description of the holonomy Lie algebra
which is due to H. C. Wang. Using ideas from [3] we can use the knowledge of
the holonomy Lie algebra to calculate the infinitesimal automorphisms of a Cartan
geometry in section 2.2.

Nothing in here is really new. Invariant principal connections were already
treated by H. C. Wang in [12]. The case of invariant Cartan connections is quite
analogous. Infinitesimal automorphisms of Cartan geometries were discussed by
A. Čap in [3] and the consequences drawn here for the homogeneous case are quite
elementary.

Nevertheless, as a whole, this provides a nice and simple framework for treating
homogeneous parabolic geometries: for such structures, among which are confor-
mal structures, almost CR structures of hypersurface type, projective structures,
projective contact structures and almost quaternionic structures, one has an equiv-
alence of categories with certain types of Cartan geometries ([11, 13, 5, 6]): this
immediately extends all notions discussed for Cartan geometries, like curvature,
holonomy and infinitesimal automorphisms, to these structures.

In section 3 we consider as an explicit example the case of a conformal structure
on the product of two spheres: We use a well known method to obtain the canonical
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Cartan connection to this parabolic geometry and then calculate the holonomy Lie
algebra of this geometry.

1. Invariant principal connections

1.1. Homogeneous P -principal bundles. Let G π→ M be a P -principal bundle.
The right action of P on G shall be called

r : G × P → G ,

rp(u) = r(u, p) = u · p .

We say that the P -principal bundle G is homogeneous when there is a Lie group
H acting fiber-transitively on G by principal bundle automorphisms.

We denote the action of an element h ∈ H on G by λh ∈ Aut(G) and simply
write λh(u) = h·u for u ∈ G. The diffeomorphism λh factorizes to a diffeomorphism
λ̌h of M and fiber-transitivity of the action of H on G is equivalent to transitivity
of the induced action of H on M .

Let o ∈ M be an arbitrary point. Then the isotropy group K = Ho of o is a
Lie subgroup of H and M = H/K. Now the action of K on G leaves the fiber Go

of G over o invariant. Take some u0 ∈ Go; then one sees that there is a unique
homomorphism of Lie groups Ψ : K → P with k · u0 = u0 · Ψ(k). Now one
checks that in fact G = H ×K P = H ×Ψ P , the associated bundle to the principal
K-bundle H → H/K obtained by the action of K on P by Ψ. We denote the
equivalence class

π̃(h, p) = {(h · k, Ψ(k) · p), k ∈ K} = [h, p] .

So we described an arbitrary homogeneous P -principal bundle as a quotient of
the trivial bundle H×P . We have a K-principal bundle whose base is a P -principal
bundle:

H × P

π̃

��

Koo

H ×K P

π

��

Poo

H/K

We summarize: Every homogeneous P -principal bundle is of the form G =
H ×K P → H/K with the canonical left- respectively right- actions of H resp. P
on G. We can also say: the data defining an H-homogeneous P -principal bundle
is a 4-tuple (H, K, P, Ψ) , where H and P are Lie groups, K is a closed subgroup
of H and Ψ is a homomorphism of Lie groups from K to P .

1.2. Invariant principal connections on homogeneous P -principal bun-

dles. Any H-invariant P -principal connection γ ∈ Ω(H ×K P, p) can be pulled
back to a P -principal connection on the trivial bundle H × P . Now Frobenius
reciprocity (see e.g. [10], 22.14) provides a one-to-one correspondence between
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K-invariant horizontal forms on H × P and p-valued forms on H ×K P . This
can be used to show that H-left invariant P -principal connections on H ×K P
correspond exactly to certain linear maps α : h → p. Precisely: Left-trivialize
H × P = H × P × h × p, then

Theorem 1.1 ([12], Prop. (5.1), Prop. (5.2); [8], Thm. 2.2.6, Thm.4.1.1;). Every

invariant principal connection γ on G = H ×K P is obtained by factorizing a

p-valued one form

γ̂ ∈ Ω1
K(H × P, p)hor ,

(h, p, X, Y ) 7→ Ad(p−1)α(X) + Y

with h ∈ H, p ∈ P, X ∈ h and Y ∈ p. Here the conditions on α ∈ L(h, p) such that

γ̂ is indeed K-invariant and horizontal are

i) α|k = Ψ′

ii) α(Ad(k)X) = Ad(Ψ(k))α(X).

I.e.: α is a K-equivariant extension of Ψ′ to a linear map from h → p.

This description of invariant principal connections on G leads to an easy formula
for the curvature. If γ ∈ Ω1(G, p) is the invariant principal connection correspond-
ing to α : h → p, the curvature ρ̄ ∈ Ω2(G, p) of γ is given by

ρ̄(ξ, η) = −γ([ξhor , ηhor ]),

where ξhor , ηhor are the horizontal projections of vector fields ξ, η ∈ X(G).
Now ρ̄ is P -equivariant and horizontal and thus factorizes to a H ×K p-valued

2-form on H/K, i.e., a section of H ×K Λ2(h/k) ⊗ p. It is easy to see that H-
invariance of γ implies H-invariance of this section, which is therefore determined
by a unique K-invariant element ρ of Λ2(h/k) ⊗ p.

Therefore we will say that the curvature of α is ρ = ρα ∈ Λ2(h/k) ⊗ p, and one
calculates that

ρ(X1, X2) = [α(X1), α(X2)] − α([X1, X2])

for X1, X2 ∈ h.
So the curvature of α is its failure to be (an extension of Ψ′ : k → p to) a

homomorphism of Lie algebras h → p.
Denote the holonomy of the invariant principal connection corresponding to

α : h → p by hol(α). H. C. Wang gave an explicit description of hol(α):

Theorem 1.2 ([12], Theorem (B)). Denote by R̂ = 〈{ρ(X1, X2)|X1, X2 ∈ h}〉 the

span of the image of ρ in p. Then hol(α) is the h-module generated by R̂. I.e.:

hol(α) = R̂ + [α(h), R̂] + [α(h), [α(h), R̂]] + · · · .(1)

Note that it follows in particular that R̂ + [α(h), R̂] + [α(h), [α(h), R̂]] + · · · is
already a Lie subalgebra of p. The proof is quite involved. From the Ambrose-
Singer theorem ([1]) one knows hat R̂ ⊂ hol(α). The essential part is then the
construction of a group which can be explicitly described and which contains the
holonomy group as a normal subgroup. Then hol(α) is a module under this group

and is shown to be generated by R̂, which can then be reformulated as (1).
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2. Homogeneous Cartan Geometries

One has a very similar description of invariant Cartan connections on homo-
geneous principal bundles. Recall that for Lie groups (G, P ) with P a closed
subgroup of G a Cartan geometry of type (G, P ) is a P -principal bundle G over a
manifold M endowed with a one form ω ∈ Ω1(G, g), called the Cartan connection,
satisfying

i) ω is P -equivariant: (rp)∗(ω) = Ad(p−1) ◦ ω for all p ∈ P .
ii) ω reproduces fundamental vector fields: ω( d

dt |t=0
u·exp(tY )) = Y for all Y ∈ p.

iii) ω is an absolute parallelism: at every u ∈ G the map ωu : TuG → g is an
isomorphism.

We will say that (G, ω) is a Cartan geometry of type (G, P ).
A Cartan geometry (G, ω) is homogeneous if there is a Lie group H acting fiber-

transitively on G by automorphisms of the Cartan geometry. I.e., when we denote
the action of H on G by λh : G → G we have that for every h ∈ H

i. λh is an automorphism of the P -principal bundle G: λh(u · p) = λh(u) · p
ii. λh preserves ω: λ∗

h(ω) = ω.

Now we saw in section 1.1 that G is of the form H×ΨP for some homomorphism
Ψ : K → P and analogously to the case of principal connections one gets the
following description of invariant Cartan connections of type (G, P ) on G = H ×K

P :

Theorem 2.1 ([12], Thm. 4; [8], Thm. 4.2.1.). Invariant Cartan connections on

H ×K P are in 1:1-correspondence with maps α : h → g satisfying

(C.1) α|k = Ψ′

(C.2) α(Ad(k)X) = Ad(Ψ(k))α(X) for all X ∈ h, k ∈ K
(C.3) α induces an isomorphism of h/k with g/p.

Explicitly: given such an α, the corresponding Cartan connection ω is obtained by

factorizing

ω̂ ∈ Ω1(H ×K P, g) ,

ω̂((h, p, X, Y )) = Ad(p−1)α(X) + Y .

We will say that α is a Cartan connection.
Similarly as in the case of invariant principal connections, the curvature of

an invariant Cartan connection α : h → p is described by an element κ = κα ∈
Λ2(h/k) ⊗ g: it is given by

κ(X1, X2) = [α(X1), α(X2)] − α([X1, X2] .

Using the isomorphism induced by α between h/k and g/p we can also regard the
curvature as

κ = κ(α) ∈ Λ2(g/p)∗ ⊗ g .
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2.1. The holonomy of a Cartan connection. Consider a Cartan geometry
(G, ω) of type (G, P ). We can extend the structure group of G from P to G by
taking G′ = G×P G. Then a Cartan connection ω ∈ Ω1(G, g) extends equivariantly
to a G-principal connection ω′ ∈ Ω1(G′, g) on G′. We will say that the holonomy
Lie group Hol(ω) of the Cartan geometry (G, ω) is Hol(ω′).

When (G, ω) is homogeneous, i.e., G = H×K P and ω is induced by an α : h → g

satisfying (C.1)–(C.3) the above construction yields G′ = H×ΨG, with Ψ regarded
as a map from K → P →֒ G, and ω′ corresponds (again) to α : h → g; Note here
that α in particular satisfies (C.1) and (C.2).

Thus we have

Theorem 2.2. The holonomy Lie algebra of a homogeneous Cartan geometry

(H ×K P, α : h → g) is

hol(α) = R̂ + [α(h), R̂] + [α(h), [α(h), R̂]] + · · · ,

where R̂ = 〈{κ(X1, X2)|X1, X2 ∈ h}〉.
2.2. Infinitesimal Automorphisms. Let (G → M, ω) be a Cartan geometry
of type (G, P ). A vector field ξ ∈ X(G) is an infinitesimal automorphism of
(G → M, ω) if it satisfies

(1) ξ is P -invariant: Trpξ(u) = ξ(u · p) ∀u ∈ G, p ∈ P
(2) ξ preserves ω : Lξω = 0.

We remark that the Lie algebra of the automorphism group of the Cartan
geometry (G, ω) is formed by the complete vector fields on G which are infinitesimal
automorphisms.

Condition (1) is equivalent to ω ◦ ξ : G → g being P -equivariant. Thus an
infinitesimal automorphism ξ of (G, ω) gives rise to a section of the adjoint tractor
bundle

AM := G ×P g .

We want to describe, in terms of geometric data on AM , those sections of AM
which correspond to infinitesimal automorphisms of (G, ω). We first show how
ω induces a linear connection on AM : Since the action of P on g is just the
restriction of the adjoint action of G on g we have

AM = G ×P g = (G ×P G) ×G g = G′ ×G g .

Recall from 2.1: G′ = G ×P G: G′ is the extension of structure group of G from
P to G and (G′, ω′) is a G-principal bundle endowed with a principal connection.
Thus the principal connection ω′ on G′ induces a linear connection ∇ on AM .

The second ingredient we need to give a condition on a section s ∈ Γ(AM) to
be an automorphism of (G, ω) comes from the curvature function

κ : G → Λ2(g/p)∗ ⊗ g.

It is a P -equivariant smooth map, and since TM = G ×P g/p,

κ ∈ Γ(Λ2(T ∗M) ⊗AM) ⊂ Γ(T ∗M ⊗ T ∗M ⊗AM) .
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Now note that since AM = G ×P g the canonical surjection Π: g → g/p induces a
map

Π̄ : AM → TM .

For s ∈ Γ(AM)) we may thus consider

isκ := κ(Π̄(s), ·) ∈ Ω1(M,AM).

The following theorem characterizes infinitesimal automorphisms of a parabolic
geometry as parallel sections of a connection on the adjoint tractor bundle AM :

Theorem 2.3 ([3], Prop. 3.2). A section s of AM corresponds to an infinitesimal

automorphism of (G, ω) if and only if

∇s + isκ = 0 .

Proof. Let ξ ∈ X(G) be a P -invariant vector field on G. Then ω ◦ ξ is a P -
equivariant map G → g and the corresponding section s ∈ Γ(AM) is obtained
by factorizing u 7→

[

u, ω(ξ(u))
]

. Now Lξω = iξdω + d
(

ω(ξ)
)

; Take a vector field
η ∈ X(G) which is π-related to a vector field η̃ on M ; Then

(Lξω)(η) = dω(ξ, η) + η · ω(ξ) = κ(ξ, η) + η · ω(ξ) −
[

ω(ξ), ω(η)
]

.

Since ∇η̃s corresponds to to the P -equivariant map u 7→ η(u)·ω(ξ)+adωu(η)

(

ωu(ξ)
)

this proves the claim. �

Now

∇̂ξs := ∇ξs + κ(Π̄(s), ξ) for ξ ∈ Γ(TM), s ∈ Γ(AM)(2)

is again a linear connection on AM , and thus Theorem 2.3 says that the infinites-
imal automorphisms of (G, ω) are

inf(ω) :=
{

s ∈ Γ(AM) : ∇̂s = 0
}

.

i.e. inf(ω) consists of the parallel sections of (AM, ∇̂).
This allows us to reformulate the problem of determining inf(ω) in the following

way:

Theorem 2.4.

inf(ω) =
{

X ∈ g : Ad(Hol(∇̂))X = {X}
}

.

In particular, if M is simply connected,

inf(ω) =
{

X ∈ g : ad(hol(∇̂))X = {0}
}

.

This follows from the well known fact that parallel sections of vector bundles
correspond to holonomy-invariant elements of the modelling vector space.
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2.2.1. Infinitesimal Automorphisms of Homogeneous Cartan Geometries. We can
now apply theorem 2.4 to the case of a Cartan connection α : h → g on a homoge-
neous principal bundle H ×K P → H/K as discussed in section 2:

∇̂ as defined in (2) is H-invariant and it is easy to see that it is induced by the
G-principal connection

α̂ : h → gl(g) ,

α̂(X) = ad(α(X)) + κ(Π(·), α(X) + p)

on G′ = G ×P G.
Thus we have

Theorem 2.5. Let α : h → g be a Cartan connection of type (G, P ) on a simply

connected homogeneous space H/K. Then the Lie algebra of infinitesimal au-

tomorphisms of the corresponding homogeneous Cartan geometry consists of all

elements of g which are stabilized by hol(α̂), i.e.:

inf(α) =
{

X ∈ g : hol(α̂)X = {0}
}

.

Since we can determine hol(α̂) by using theorem 1.2 it is a purely algorith-
mic task to calculate the infinitesimal automorphisms of a homogeneous Cartan
geometry.

Of course we know that H acts by automorphisms of Cartan geometries on
(G, α) = (H ×K P, α) from the left. It is clear that the fundamental vector fields
on G for this action are infinitesimal automorphisms and we have seen above that
they are thus determined by elements of g: It is easy to see that these elements
are exactly those in the image of α : h → g. It is not difficult either to verify that
indeed α(h) lies in the kernel of every element of the holonomy Lie algebra of α̂;
the main observation here is that α̂(X)α(Y ) = α

(

[X, Y ]
)

for X, Y ∈ h.

3. The conformal holonomy of the product of two spheres

It is a classical result of Élie Cartan ([7]) that conformal geometries are equiv-
alent to certain parabolic geometries. Thus 2.1 provides a notion of holonomy for
conformal structures, which is called conformal holonomy. Conformal holonomies
induced by bi-invariant metrics on Lie groups have been treated in [9]. Our setting
for calculating conformal holonomies works for invariant conformal structures on
arbitrary simply connected homogeneous spaces.

Let Sp, Sq be the Euclidean spheres of dimension p, q with p+q ≥ 3 and let g1,g2

denote their Riemannian metrics of radius 1. For s ∈ R, s > 0 and s′ ∈ R\{0}
we have the (pseudo-)Riemannian metric g(s,s′) = (sg1, s

′g2) on M = Sp × Sq.

When s′ > 0 g(s,s′) is positive definite and for s′ < 0 it has signature (p, q). The

conformal class [g(s,s′)] of this Riemannian metric endows Sp×Sq with a conformal
structure and we are going to calculate its conformal holonomy. To do this, we
first switch to a homogeneous or Lie group description of the conformal geometry
(Sp × Sq, g(s,s′)).
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Since Sp = O(p + 1)/O(p) we have M = Sp × Sq = H/K with H = O(p + 1)×
O(q + 1) and K = O(p) × O(q). We will write elements of so(p + 1) as

v ⊕ A =

(

0 −vt

v A

)

with v ∈ R
p and A ∈ so(p). So so(p + 1) = R

p ⊕ so(p) and the Lie bracket is

[v1 ⊕ A1, v2 ⊕ A2] =
(

A1v2 − A2v1

)

⊕
(

v2v
t
1 − v1v

t
2 + [A1, A2]

)

.(3)

Thus k = so(p)⊕ so(q) and h = (Rp ⊕R
q)⊕ k. We will denote n = R

p ⊕R
q < h.

Let g1 = Ip, g2 = Iq be the standard Euclidean inner products on R
p and R

q. It
will later be useful also to regard g1,g2 as (degenerate) bilinear forms on R

p+q by
trivial extension.

It is easy to see that the H = O(p+1)×O(q+1)-invariant (pseudo-)Riemannian
metric g(s,s′) = (sg1, s

′g2) on M = Sp×Sq = H/K corresponds to the K-invariant

(pseudo-) inner product g(s,s′) = sg1 ⊕ s′g2 on R
p ⊕ R

q.

3.1. The prolongation to a canonical Cartan connection. Now we describe
(H/K = Sp × Sq, [g(s,s′)]) as a (canonical) Cartan geometry of type (G, P ): here

G = PO(p + q + 1, 1) for s′ > 0 and G = PO(p + 1, q + 1) for s′ < 0. Let
g := g1 + sgn(s′)g2. This is the standard inner product of the same signature as
g(s,s′). The Lie algebra of G is graded

g = g−1 ⊕ g0 ⊕ g1 = R
p+q ⊕ co(Rp+q, g) ⊕ (Rp+q)

∗

and P is the stabilizer of the induced filtration of g. The adjoint action identifies
g0 with co(g−1, g).

There is a unique (up to isomorphisms of g) Cartan connection

α : h → g

which induces an isomorphism of the Euclidean spaces (n, g(s,s′)) and g/p = g−1 =

(Rp+q, g) and satisfies the following two normalization conditions:

(Conf.1) Imκ ⊂ p: its curvature has vanishing g−-part
(Conf.2) The Ricci-type contraction of the g0-component of κ vanishes.

We will now obtain maps Ψ: K → P and α0 : h → g such that the conformal
structure g(s,s′) is the underlying structure of the homogeneous Cartan geometry

corresponding to (Ψ, α0). First note that we have a canonical embedding Ψ of K =
O(p) × O(q) into O(g) < CO(g) = G0 < P ; being less formal, one could say that
Ψ = Ad|K . Now Ψ′ : k → h is extended to a map α0 : h → g by the obvious isometry

of (n, g(s,s′)) = (Rp ⊕ R
q, sg1 ⊕ |s′|g2) with (g−1, g) = (Rp+q, g1 ⊕ sgn(s′)g2):

α0|n : n → R
p+q < g ,

(

v ⊕ 0
)

⊕
(

w ⊕ 0
)

7→
( 1√

s
v ⊕ 1

√

|s′|
w

)

⊕ 0 ⊕ 0 .

It is clear that α0 : h → g is K-equivariant; also, α0 satisfies (C.1) and (C.3)
by construction and thus it is a Cartan connection of type (G, P ).
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Since in so(p + 1) = R
p ⊕ so(p) the R

p-part brackets into so(p) by (3) we also
have [n, n] ⊂ k; thus

κ(v1 ⊕ w1, v2 ⊕ w2) ⊂ p ,

which is the first normalizing condition (Conf.1) on the Cartan connection to
this conformal structure. So it remains to find a map A : g−1 → g1 such that
α = α0 + A ◦ α0 also satisfies (Conf.2).

This problem is solved by the rho-tensor Aij ∈ L(Rp+q, (Rp+q)
∗
):

Aij = − 1

p + q − 2

(

Rij −
R̃

2(p + q − 1)
gij

)

.

Here R = κ0, the g0-component of the curvature of α0, Rij = Rai
a

j is the Ricci

curvature and R̃ = gijRij is the scalar curvature. It is a straightforward calculation
that the Ricci curvature is

Rij = s(p − 1)g1ij + s′(q − 1)sgn(s′)g2ij

and the scalar curvature is

R̃ = sp(p − 1) + s′q(q − 1) .

Thus the rho-tensor is given by

Aij = − 1

2δ

(

(2s∆ + m(s, s′))g1ij + (2s′∆ − m(s, s′))sgn(s′)g2ij

)

,(4)

where

δ = (p + q − 1)(p + q − 2) ;

∆ = (p − 1)(q − 1) ;

m(s, s′) = sp(p − 1) − s′q(q − 1) .

3.2. Calculation of the curvature and the holonomy. Now we can calculate
the curvature κ of the normal Cartan connection α = α0+A◦α0. Since, as we have
already observed,[n, n] ⊂ k, and since the projection of α to g0 vanishes, it is easy
to see that the g1-component of κ vanishes. Thus κ = κg0

and for X1, X2 ∈ R
p+q

κg0
(X1, X2) = R(X1, X2) + [X1, A(X2)] − [X2, A(X1)].

One obtains that κij
r
s

is the skew-symmetrization of κ̃ij
r
s

in the variables i, j,
where

κ̃ij
r
s

=
(

s − 1

δ
(m(s, s′) + 2s∆)

)

δ1
r
i g1js +

(

s′ +
1

δ
(m(s, s′) − 2s′∆)

)

δ2
r
i sgn(s′)g2js

−2∆

δ
(s + s′)

(

δ1
r
i g2js − δ2

r
i sgn(s′)g1js

)

.(5)

Theorem 3.1 (Special cases).

i) If either p or q is 1 or if s′ = −s, (Sp × Sq, g(s,s′)) is conformally flat.

ii) If p, q ≥ 2 and s′ = p−1
q−1s then (Sp × Sq, g(s,s′)) is Einstein and

hol(Sp × Sq, g(s,s′)) = so(p + q + 1) .
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Proof. Of course the case s′ = −s just reflects the fact that then Sp×Sq is simply
a twofold covering of the homogeneous model of conformal Cartan geometries of
signature (p, q). But both conformally flat cases can be seen immediately by
choosing an orthogonal basis for R ⊕ R

p+q ⊕ R and using the embeddings

(

0 −vt

v A1

)

⊕
(

0 −wt

w A2

)

7→









0 −vt 0 0
v A1 0 0
0 0 A2 w
0 0 −wt 0









for s = 1, s′ = −1 resp.

(

0 −vt

v A1

)

⊕
(

0 −w
w 0

)

7→











0 −vt 0 0
v A1 0 0
0 0 0 1√

|s′|
w

0 0 sgn(s′) 1√
|s′|

w 0











for q = 1, s = 1 and s′ of arbitrary signature.
To see the second claim we first notice that hol(α) contains so(Rn, g): Since

2∆

δ
(s + s′) 6= 0

the image of κ contains all matrices of the form
(

0 B
−sgn(s′)Bt 0

)

∈ so(Rn, g) .

But since

α

((

0 0
0 A1

)

⊕
(

0 0
0 A2

))

=

(

A1 0
0 A2

)

∈ so(Rn, g)

and hol(α) is the (h, α)-module generated by the image of κ, simplicity of so(Rn, g)
shows that indeed so(Rn, g) ⊂ hol(α).
Now the condition

s′ =
p − 1

q − 1
s

means exactly that the Ricci curvature Rij is a multiple of g, and thus (Sp ×
Sq, g(s,s′)) is Einstein. Then by (4) also A is a multiple of g, and, explicitly:
A = rg with

r = − p − 1

2(p + q − 1)
.

Thus

α((v ⊕ A1) ⊕ (w ⊕ A2) = (v ⊕ w) ⊕ (A1 ⊕ A2) ⊕ r(v ⊕ w)t ,
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and we see that the smallest Lie subalgebra of g containing Imκ and being invariant
under (h, α) consists of matrices of the form





0 rXt 0
X A −rX
0 −Xt 0



 ,

which proves the claim since r < 0. �

When both p and q are at least two a generic ratio of radii (s, s′) of arbitrary
signature yields full holonomy, which is straightforward to check. A different
argument for this case can be found in [2].

Theorem 3.2 (The generic case). If p, q ≥ 2, then for s′ 6∈ {−s, p−1
q−1s},

hol(Sp × Sq, g(s,s′)) = g = so(p + q + 1, 1) for s′ > 0 resp.

hol(Sp × Sq, g(s,s′)) = g = so(p + 1, q + 1) for s′ < 0 .

Remark 3.3. The treatment of the holonomy of homogeneous parabolic geome-
tries other than conformal structures is closely parallel, the only additional problem
which appears is that there are no longer general formulas for the prolongation of
the given geometric data to the corresponding Cartan geometries. To see how this
problem boils down to basic representation theory see e.g. [4] or [8] for explicit
examples of prolongations in the realm of CR-structures.
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