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DEFORMATION THEORY

(LECTURE NOTES)

M. DOUBEK, M. MARKL AND P. ZIMA

Abstract. First three sections of this overview paper cover classical topics
of deformation theory of associative algebras and necessary background mate-

rial. We then analyze algebraic structures of the Hochschild cohomology and
describe the relation between deformations and solutions of the correspond-
ing Maurer-Cartan equation. In Section 6 we generalize the Maurer-Cartan
equation to strongly homotopy Lie algebras and prove the homotopy invari-
ance of the moduli space of solutions of this equation. In the last section we
indicate the main ideas of Kontsevich’s proof of the existence of deformation
quantization of Poisson manifolds.
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Conventions. All algebraic objects will be considered over a fixed field k of
characteristic zero. The symbol ⊗ will denote the tensor product over k. We will
sometimes use the same symbol for both an algebra and its underlying space.

1. Algebras and modules

In this section we investigate modules (where module means rather a bimodule
than a one-sided module) over various types of algebras.

Example 1.1. – The category Ass of associative algebras.
An associative algebra is a k-vector space A with a bilinear product A⊗A→ A
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satisfying
a(bc) = (ab)c, for all a, b, c ∈ A.

Observe that at this moment we do not assume the existence of a unit 1 ∈ A.
What we understand by a module over an associative algebra is in fact a bimod-

ule, i.e. a vector space M equipped with multiplications (“actions”) by elements
of A from both sides, subject to the axioms

a(bm) = (ab)m ,

a(mb) = (am)b ,

m(ab) = (ma)b , for all m ∈M, a, b ∈ A .

Example 1.2. – The category Com of commutative associative algebras.
In this case left modules, right modules and bimodules coincide. In addition to
the axioms in Ass we require the commutativity

ab = ba , for all a, b ∈ A ,

and for a module

ma = am , for all m ∈M, a ∈ A .

Example 1.3. – The category Lie of Lie algebras.
The bilinear bracket [−,−] : L⊗L→ L of a Lie algebra L is anticommutative and
satisfies the Jacobi identity, that is

[a, b] = −[b, a] , and

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 , for all a, b, c ∈ L .

A left module (also called a representation) M of L satisfies the standard axiom

a(bm)− b(am) = [a, b]m , for all m ∈M, a, b ∈ L .

Given a left module M as above, one can canonically turn it into a right module by
setting ma := −am. Denoting these actions of L by the bracket, one can rewrite
the axioms as

[a, m] = −[m, a] , and

[a, [b, m]] + [b, [m, a]] + [m, [a, b]] = 0 , for all m ∈M, a, b ∈ L .

Examples 1.1–1.3 indicate how axioms of algebras induce, by replacing one
instance of an algebra variable by a module variable, axioms for the correspond-
ing modules. In the rest of this section we formalize, following [38], this recipe.
The standard definitions below can be found for example in [29].

Definition 1.4. The product in a category C is the limit of a discrete diagram.
The terminal object of C is the limit of an empty diagram, or equivalently, an object
T such that for every X ∈ C there exists a unique morphism X → T .

Remark 1.5. The product of any object X with the terminal object T is naturally
isomorphic to X ,

X × T ∼= X ∼= T ×X .
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Remark 1.6. It follows from the universal property of the product that there

exists the swapping morphism X ×X
s→ X ×X making the diagram

X ×X
p1 - X

@
@

@
@

@

s

R
X

p2

?
�

p1
X ×X

p2

6

in which p1 (resp. p2) is the projection onto the first (resp. second) factor, com-
mutative.

Example 1.7. In the category of A-bimodules, the product M1×M2 is the ordi-
nary direct sum M1 ⊕M2. The terminal object is the trivial module 0.

Definition 1.8. A category C has finite products, if every finite discrete diagram
has a limit in C.

By [29, Proposition 5.1], C has finite limits if and only if it has a terminal object
and products of pairs of objects.

Definition 1.9. Let C be a category, A ∈ C. The comma category (also called
the slice category) C/A is the category whose

– objects (X, π) are C-morphisms X
π→ A, X ∈ C, and

– morphisms (X ′, π′)
f→ (X ′′, π′′) are commutative diagrams of C-morphisms:

X ′ f - X ′′

A

π′

?
=========

idA

A

π′′

?

Definition 1.10. The fibered product (or pullback) of morphisms X1
f1→ A and

X2
f2→ A in C is the limit D (together with morphisms D

p1→ X1, D
p2→ X2) of

the lower right corner of the digram:

D
p1 - X1

X2

p2

?

f2

- A

f1

?

In the above situation one sometimes writes D = X1 ×A X2.
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Proposition 1.11. If C has fibered products then C/A has finite products.

Proof. A straightforward verification. The identity morphism (A, idA) is clearly
the terminal object of C/A.

Let (X1, π1) and (X2, π2) be objects of C/A. By assumption, there exists
the fibered product

(1)

D
p1 - X1

@
@

@
@

@

δ

R
X2

p2

?

π2

- A

π1

?

in C. In the above diagram, of course, δ := π1p1 = π2p2. The maps p1 : D → X1

and p2 : D → X2 of the above diagram define morphisms (denoted by the same
symbols) p1 : (D, δ)→ (X1, π1) and p2 : (D, δ)→ (X2, π2) in C/A. The universal
property of the pullback (1) implies that the object (D, δ) with the projections
(p1, p2) is the product of (X1, π1)× (X2, π2) in C/A. �

One may express the conclusion of the above proof by

(2) (X1, π1)× (X2, π2) = X1 ×A X2 ,

but one must be aware that the left side lives in C/A while the right one in C,
therefore (2) has only a symbolical meaning.

Example 1.12. In Ass, the fibered product of morphisms B1
f1→ A, B2

f2→ A is
the subalgebra

(3) B1 ×A B2 = {(b1, b2) | f1(b1) = f2(b2)} ⊆ B1 ⊕ B2

together with the restricted projections. Hence for any algebra A ∈ Ass, the comma
category Ass /A has finite products.

Definition 1.13. Let C be a category with finite products and T its terminal

object. An abelian group object in C is a quadruple (G, G×G
µ→ G, G

η→ G, T
e→ G)

of objects and morphisms of C such that following diagrams commute:
– the associativity µ:

G×G×G
µ× idG- G×G

G×G

idG×µ

?

µ
- G

µ

?
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– the commutativity of µ (with s the swapping morphism of Remark 1.6):

G×G
s - G×G

@
@

@
@

@
µ

R 	�
�

�
�

�

µ

G
– the neutrality of e:

T ×G
e× idG- G×G �idG×e

G× T

@
@

@
@

@

∼=

�
�

�
�

�∼=

G

µ

?

– the diagram saying that η is a two-sided inverse for the multiplication µ:

G
η × idG- G×G

@
@

@
@

@R
G×G

idG × η

?

µ
- G

µ

?

in which the diagonal map is the composition G→ T
e→ G.

Maps µ, η and e above are called the multiplication, the inverse and the unit
of the abelian group structure, respectively.

Morphisms of abelian group objects (G′, µ′, η′, e′)
f→ (G′′, µ′′, η′′, e′′) are mor-

phisms G′ f→ G′′ in C which preserve all structure operations. In terms of diagrams
this means that

G′ ×G′ f × f- G′′ ×G′′ G′ f - G′′ T =========
idT

T

G

µ′

?

f
- G′

µ′′

?
G

η′

?

f
- G′

η′′

?
G

e′

?

f
- G′

e′′

?

commute. The category of abelian group objects of C will be denoted Cab.

Let Alg be any of the examples of categories of algebras considered above and
A ∈ Alg. It turns out that the category (Alg /A)ab is precisely the correspond-
ing category of A-modules. To verify this for associative algebras, we identify,
in Proposition 1.15 below, objects of (Ass /A)ab with trivial extensions in the sense
of:
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Definition 1.14. Let A be an associative algebra and M an A-module. The trivial
extension of A by M is the associative algebra A⊕M with the multiplication given
by

(a, m)(b, n) = (ab, an + mb), a, b ∈ A and m, n ∈M.

Proposition 1.15. The category (Ass /A)ab is isomorphic to the category of trivial
extensions of A.

Proof. Let M be an A-module and A ⊕M the corresponding trivial extension.

Then A ⊕M with the projection A ⊕M
πA→ A determines an object G of Ass /A

and, by (2) and (3), G×G = (A⊕M ⊕M
πA→ A). It is clear that µ : G×G→ G

given by µ(a, m1, m2) := (a, m1 +m2), e the inclusion A →֒ A⊕M and η : G→ G
defined by η(a, m) := (a,−m) make G an abelian group object in (Ass /A)ab.

On the other hand, let ((B, π), µ, η, e) be an abelian group object in Ass /A.
The diagram

A
e - B

@
@

@
@

@
idA

A

π

?

for the neutral element says that π is a retraction. Therefore one may identify
the algebra A with its image e(A), which is a subalgebra of B. Define M := Kerπ
so that there is a vector spaces isomorphism B = A ⊕ M determined by the
inclusion e : A →֒ B and its retraction π. Since M is an ideal in B, the algebra
A acts on M from both sides. Obviously, M with these actions is an A-bimodule,
the bimodule axioms following from the associativity of B as in Example 1.1. It
remains to show that m′m′′ = 0 for all m′, m′′ ∈M which would imply that B is
a trivial extension of A. Let us introduce the following notation.

For a morphism f : (B′, π′)→ (B′′, π′′) of k-splitting objects of Ass /A (i.e. ob-
jects with specific k-vector space isomorphisms B′ ∼= A ⊕M ′ and B′′ ∼= A ⊕M ′′

such that π′ and π′′ are the projections on the first summand) we denote by

f̃ : M ′ → M ′′ the restriction f |M ′ followed by the projection B′′ π′

→ M ′′. We call

f̃ the reduction of f . Clearly, for every diagram of splitting objects in Ass /A there
is the corresponding diagram of reductions in Ass.

The fibered product (A⊕M, π)×(A⊕M, π) in Ass /A is isomorphic to A⊕M⊕M
with the multiplication

(a′, m′
1, m

′
2)(a

′′, m′′
1 , m′′

2) = (a′a′′, a′m′′
1 + m′

1a
′′ + m′

1m
′′
1 , a′m′′

2 + m′
2a

′′ + m′
2m

′′
2 ) .
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The neutrality of e implies the following diagram of reductions

0⊕M
ẽ× idM- M ⊕M �idM ×ẽ

M ⊕ 0

@
@

@
@

@

∼=

�
�

�
�

�∼=

M

µ̃

?

which in turn implies

µ̃(0, m) = µ̃(m, 0) = m , for all m ∈M .

Since µ is a morphism in Ass, it preserves the multiplication and so does its
reduction µ̃. We finally obtain

m′ ·m′′ = µ̃(m′, 0) · µ̃(0, m′′) = µ̃((m′, 0) · (0, m′′)) = µ̃(m′ · 0, 0 ·m′′) = 0 .

This finishes the proof. �

We have shown that objects of (Ass /A)ab are precisely trivial extensions of
A. Since there is an obvious equivalence between modules and trivial extensions,
we obtain:

Theorem 1.16. The category (Ass /A)ab is isomorphic to the category of A-
modules.

Exercise 1.17. Prove analogous statements also for (Com /A)ab and (Lie /L)ab.

Exercise 1.18. The only property of abelian group objects used in our proof
of Proposition 1.15 was the existence of a neutral element for the multiplication.
In fact, by analyzing our arguments we conclude that in Ass /A, every object with
a multiplication and a neutral element (i.e. a monoid in Ass /A) is an abelian
group object. Is this statement true in any comma category? If not, what special
property of Ass /A makes it hold in this particular category?

2. Cohomology

Let A be an algebra, M an A-module. There are the following approaches to
the “cohomology of A with coefficients in M .”

(1) Abelian cohomology defined as H∗(Lin(R∗, M)), where R∗ is a resolution
of A in the category of A-modules.

(2) Non-abelian cohomology defined as H∗(Der(F∗, M)), where F∗ is a reso-
lution of A in the category of algebras and Der(−, M) denotes the space
of derivations with coefficients in M .

(3) Deformation cohomology which is the subject of this note.

The adjective (non)-abelian reminds us that (1) is a derived functor in the abe-
lian category of modules while cohomology (2) is a derived functor in the non-
abelian category of algebras. Construction (1) belongs entirely into classical ho-
mological algebra [27], but (2) requires Quillen’s theory of closed model cate-
gories [37]. Recall that in this note we work over a field of characteristics 0, over
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the integers one should take in (2) a suitable simplicial resolution [1]. Let us indi-
cate the meaning of deformation cohomology in the case of associative algebras.

Let V = Span{e1, . . . , ed} be a d-dimensional k-vector space. Denote Ass(V )
the set of all associative algebra structures on V . Such a structure is determined
by a bilinear map µ : V ⊗ V → V . Relying on Einstein’s convention, we write
µ(ei, ej) = Γl

ijel for some scalars Γl
ij ∈ k. The associativity µ(ei, µ(ej , ek)) =

µ(µ(ei, ej), ek) of µ can then be expressed as

Γr
ilΓ

l
jk = Γl

ijΓ
r
lk , i, j, k, r = 1, . . . , d .

These d4 polynomial equations define an affine algebraic variety, which is just
another way to view Ass(V ), since every point of this variety corresponds to
an associative algebra structure on V . We call Ass(V ) the variety of structure
constants of associative algebras.

The next step is to consider the quotient Ass(V )/ GL(V ) of Ass(V ) modulo
the action of the general linear group GL(V ) recalled in formula (10) below. How-
ever, Ass(V )/ GL(V ) is no longer an affine variety, but only a (possibly singular)
algebraic stack (in the sense of Grothendieck). One can remove singularities by
replacing Ass(V ) by a smooth dg-scheme M. Deformation cohomology is then
the cohomology of the tangent space of this smooth dg-scheme [6, 7].

Still more general approach to deformation cohomology is based on considering
a given category of algebras as the category of algebras over a certain PROP P

and defining the deformation cohomology using a resolution of P in the category
of PROPs [24, 31, 33]. When P is a Koszul quadratic operad, we get the op-
eradic cohomology whose relation to deformations was studied in [3]. There is also
an approach to deformations based on triples [10].

For associative algebras all the above approaches give the classical Hochschild
cohomology (formula 3.2 of [27, §X.3]):

Definition 2.1. The Hochschild cohomology of an associative algebra A with
coefficients in an A-module M is the cohomology of the complex:

0−→M
δHoch−→ C1

Hoch(A, M)
δHoch−→ · · ·

δHoch−→ Cn
Hoch(A, M)

δHoch−→ · · ·
in which Cn

Hoch(A, M) := Lin(A⊗n, M), the space of n-multilinear maps from A

to M . The coboundary δ = δHoch : Cn
Hoch(A, M)→ Cn+1

Hoch(A, M) is defined by

δHochf(a0 ⊗ . . .⊗ an) := (−1)n+1a0f(a1 ⊗ . . .⊗ an) + f(a0 ⊗ . . .⊗ an−1)an

+

n−1
∑

i=0

(−1)i+nf(a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an) ,

for ai ∈ A. Denote Hn
Hoch(A, M) := Hn(C∗

Hoch(A, M), δ).

Exercise 2.2. Prove that δ2
Hoch = 0.

Example 2.3. A simple computation shows that
– H0

Hoch(A, M) = {m ∈M | am−ma = 0 for all a ∈ A},
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– H1
Hoch(A, M) = Der(A, M)/ IDer(A, M), where IDer(A, M) denotes the sub-

space of internal derivations, i.e. derivations of the form ϑm(a) = am − ma for
a ∈ A and some fixed m ∈M . Slightly more difficult is to prove that

– H2
Hoch(A, M) is the space of isomorphism classes of singular extensions of A

by M [27, Theorem X.3.1].

3. Classical deformation theory

As everywhere in this note, we work over a field k of characteristics zero and ⊗
denotes the tensor product over k. By a ring we will mean a commutative asso-
ciative k-algebra. Let us start with necessary preliminary notions.

Definition 3.1. Let R be a ring with unit e and ω : k → R the homomorphism
given by ω(1) := e. A homomorphism ǫ : R → k is an augmentation of R if
ǫω = idk or, diagrammatically,

R
ǫ - k

�
�

�
�

�

id

�

k

ω

6

The subspace R := Ker ǫ is called the augmentation ideal of R. The indecompos-

ables of the augmented ring R are defined as the quotient Q(R) := R/R
2
.

Example 3.2. The unital ring k[[t]] of formal power series with coefficients in
k is augmented, with augmentation ǫ : k[[t]] → k given by ǫ(

∑

i∈N0
ait

i) := a0.

The unital ring k[t] of polynomials with coefficients in k is augmented by ǫ(f) :=
f(0), for f ∈ k[t]. The truncated polynomial rings k[t]/(tn), n ≥ 1, are also
augmented, with the augmentation induced by the augmentation of k[t].

Example 3.3. Recall that the group ring k[G] of a finite group G with unit e is
the space of all formal linear combinations

∑

g∈G agg, ag ∈ k, with the multipli-
cation

(
∑

g∈G a′
gg)(

∑

g∈G a′′
gg) :=

∑

g∈G

∑

uv=g a′
ua′′

vg

and unit 1e. The ring k[G] is augmented by ǫ : k[G]→ k given as

ǫ(
∑

g∈G agg) :=
∑

g∈G ag .

Example 3.4. A rather trivial example of a ring that does not admit an aug-
mentation is provided by any proper extension K ) k of k. If an augmentation
ǫ : K → k exists, then Ker ǫ is, as an ideal in a field, trivial, which implies that ǫ
is injective, which would imply that K = k contradicting the assumption K 6= k.

Exercise 3.5. If
√
−1 6∈ k, then k[x]/(x2 + 1) admits no augmentation.

In the rest of this section, R will be an augmented unital ring with an augmen-
tation ǫ : R→ k and the unit map ω : k → R. By a module we will understand
a left module.
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Remark 3.6. A unital augmented ring R is a k-bimodule, with the bimodule
structure induced by the unit map ω in the obvious manner. Likewise, k is an R-
bimodule, with the structure induced by ǫ. If V is a k-module, then R ⊗ V is
an R-module, with the action r′(r′′ ⊗ v) := r′r′′ ⊗ v, for r′, r′′ ∈ R and v ∈ V .

Definition 3.7. Let V be a k-vector space and R a unital k-ring. The free
R-module generated by V is an R-module R〈V 〉 together with a k-linear map
ι : V → R〈V 〉 with the property that for every R-module W and a k-linear map

V
ϕ→W , there exists a unique R-linear map Φ : R〈V 〉 →W such that the following

diagram commutes:

V
ι - R〈V 〉

@
@

@
@

@
ϕ

R
W

Φ

?

This universal property determines the free module R〈V 〉 uniquely up to iso-
morphism. A concrete model is provided by the R-module R⊗ V recalled in Re-
mark 3.6.

Definition 3.8. Let W be an R-module. The reduction of W is the k-module
W := k⊗R W , with the k-action given by k′(k′′⊗R w) := k′k′′⊗R w, for k′, k′′ ∈ k
and w ∈W .

One clearly has k-module isomorphisms W ∼= W/RW and R〈V 〉 ∼= V . The re-
duction clearly defines a functor from the category of R-modules to the category
of k-modules.

Proposition 3.9. If B is an associative R-algebra, then the reduction B is a k-
algebra, with the structure induced by the algebra structure of B.

Proof. Since B ≃ B/RB, it suffices to verify that RB is a two-sided ideal in B.
But this is simple. For r ∈ R, b′, b′′ ∈ B one sees that µ(rb′, b′′) = rµ(b′, b′′) ∈ RB,
which shows that µ(RB, B) ⊂ RB. The right multiplication by elements of RB
is discussed similarly. �

Definition 3.10. Let A be an associative k-algebra and R an augmented unital
ring. An R-deformation of A is an associative R-algebra B together with a k-
algebra isomorphism α : B → A.

Two R-deformations (B′, B
′ α′

→ A) and (B′′, B
′′ α′′

→ A) of A are equivalent if
there exists an R-algebra isomorphism φ : B′ → B′′ such that φ = α′′−1 ◦ α′.

There is probably not much to be said about R-deformations without additional
assumptions on the R-module B. In this note we assume that B is a free R-module
or, equivalently, that

(4) B ∼= R⊗A (isomorphism of R-modules).
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The above isomorphism identifies A with the k-linear subspace 1 ⊗ A of B and
A⊗A with the k-linear subspace (1⊗A) ⊗ (1⊗A) of B ⊗B.

Another assumption frequently used in algebraic geometry [16, Section III.§9]
is that the R-module B is flat which, by definition, means that the functor B⊗R−
is left exact. One then speaks about flat deformations.

In what follows, R will be either a power series ring k[[t]] or a truncation of
the polynomial ring k[t] by an ideal generated by a power of t. All these rings
are local Noetherian rings therefore a finitely generated R-module is flat if and
only if it is free (see Exercise 7.15, Corollary 10.16 and Corollary 10.27 of [2]).
It is clear that B in Definition 3.10 is finitely generated over R if and only if A
finitely generated as a k-vector space. Therefore, for A finitely generated over k,
free deformations are the same as the flat ones.

The R-linearity of deformations implies the following simple lemma. Recall that
all deformations in this sections satisfy (4).

Lemma 3.11. Let B = (B, µ) be a deformation as in Definition 3.10. Then
the multiplication µ in B is determined by its restriction to A ⊗ A ⊂ B ⊗ B.
Likewise, every equivalence of deformations φ : B′ → B′′ is determined by its
restriction to A ⊂ B.

Proof. By (4), each element of B is a finite sum of elements of the form ra, r ∈ R
and a ∈ A, and µ(ra, sb) = rsµ(a, b) by the R-bilinearity of µ for each a, b ∈ A
and r, s ∈ R. This proves the first statement. The second part of the lemma is
equally obvious. �

The following proposition will also be useful.

Proposition 3.12. Let B′ = (B′, B
′ α′

→ A) and B′′ = (B′′, B
′′ α′′

→ A) be R-defor-
mations of an associative algebra A. Assume that R is either a local Artinian ring
or a complete local ring. Then every homomorphism φ : B′ → B′′ of R-algebras
such that φ = α′′−1 ◦ α′ is an equivalence of deformations.

Proof (Sketch of proof). We must show that φ is invertible. One may consider
a formal inverse of φ in the form of an expansion in the successive quotients of
the maximal ideal. If R is Artinian, this formal inverse has in fact only finitely
many terms and hence it is an actual inverse of φ. If R is complete, this formal
expansion is convergent. �

We leave as an exercise to prove that each R-deformation of A in the sense

of Definition 3.10 is equivalent to a deformation of the form (B, B
can→ A), with

B = R ⊗ A (equality of k-vector spaces) and can the canonical map B = k ⊗R

(R⊗A)→ A given by

can(1⊗R (1⊗ a)) := a , for a ∈ A .

Two deformations (B, µ′) and (B, µ′′) of this type are equivalent if and only if
there exists an R-algebra isomorphism φ : (B, µ′)→ (B, µ′′) which reduces, under
the identification can : B → A, to the identity idA : A → A. Since we will
be interested only in equivalence classes of deformations, we will assume that all
deformations are of the above special form.
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Definition 3.13. A formal deformation is a deformation, in the sense of Defini-
tion 3.10, over the complete local augmented ring k[[t]].

Exercise 3.14. Is k[x, y, t]/(x2 + txy) a formal deformation of k[x, y]/(x2)?

Theorem 3.15. A formal deformation B of A is given by a family

{µi : A⊗A→ A | i ∈ N}
satisfying µ0(a, b) = ab (the multiplication in A) and

(Dk)
∑

i+j=k, i,j≥0 µi(µj(a, b), c) =
∑

i+j=k, i,j≥0 µi(a, µj(b, c)) ∀a, b, c ∈ A

for each k ≥ 1.

Proof. By Lemma 3.11, the multiplication µ in B is determined by its restriction
to A⊗A. Now expand µ(a, b), for a, b ∈ A, into the power series

µ(a, b) = µ0(a, b) + tµ1(a, b) + t2µ2(a, b) + · · ·
for some k-bilinear functions µi : A ⊗ A → A, i ≥ 0. Obviously, µ0 must be
the multiplication in A. It is easy to see that µ is associative if and only if (Dk)
are satisfied for each k ≥ 1. �

Remark 3.16. Observe that (D1) reads

aµ1(b, c)− µ1(ab, c) + µ1(a, bc)− µ1(a, b)c = 0

and says precisely that µ1 ∈ Lin(A⊗2, A) is a Hochschild cocycle, δHoch(µ1) = 0,
see Definition 2.1.

Example 3.17. Let us denote by H the group

H := {u = idA +φ1t + φ2t
2 + · · · | φi ∈ Lin(A, A)} ,

with the multiplication induced by the composition of linear maps. By Proposi-
tion 3.12, formal deformations µ′ = µ0 + µ′

1t + µ′
2t

2 + · · · and µ′′ = µ0 + µ′′
1 t +

µ′′
2t2 + · · · of µ0 are equivalent if and only if

(5) u ◦ (µ0 + µ′
1t + µ′

2t
2 + · · · ) = (µ0 + µ′′

1t + µ′′
2t2 + · · · ) ◦ (u ⊗ u) .

We close this section by formulating some classical statements [12, 13, 14]
which reveal the connection between deformation theory of associative algebras
and the Hochschild cohomology. As suggested by Remark 3.16, the first natural
object to look at is µ1. This motivates the following

Definition 3.18. An infinitesimal deformation of an algebra A is a D-deformation
of A, where

D := k[t]/(t2)

is the local Artinian ring of dual numbers.

Remark 3.19. One can easily prove an analog of Theorem 3.15 for infinitesimal
deformations, namely that there is a one-to-one correspondence between infinites-
imal deformations of A and k-linear maps µ1 : A ⊗ A → A satisfying (D1), that
is, by Remark 3.16, Hochschild 2-cocycles of A with coefficients in itself. But we
can formulate a stronger statement:
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Theorem 3.20. There is a one-to-one correspondence between the space of equiv-
alence classes of infinitesimal deformations of A and the second Hochschild coho-
mology H2

Hoch(A, A) of A with coefficients in itself.

Proof. Consider two infinitesimal deformations of A given by multiplications ∗′
and ∗′′, respectively. As we observed in Remark 3.19, these deformations are
determined by Hochschild 2-cocycles µ′

1, µ
′′
1 : A⊗A→ A, via equations

a ∗′ b = ab + tµ′
1(a, b)(6)

a ∗′′ b = ab + tµ′′
1(a, b) , a, b ∈ A .

Each equivalence φ of deformations ∗′ and ∗′′ is determined by a k-linear map
φ1 : A→ A,

φ(a) = a + tφ1(a) , a ∈ A ,(7)

the invertibility of such a φ follows from Proposition 3.12 but can easily be checked
directly. Substituting (6) and (7) into

φ(a ∗′ b) = φ(a) ∗′′ φ(b) , a, b ∈ A ,(8)

one obtains

φ(ab + tµ′
1(a, b)) = (a + tφ1(a)) ∗′′ (b + tφ1(b))

which can be further expanded into

ab + tφ(µ′
1(a, b)) = ab + t(aφ1(b)) + t(φ1(a)b) + tµ′′

1 (a + tφ1(a), b + tφ1(b))

so, finally,

ab + tµ′
1(a, b) = ab + t(aφ1(b) + φ1(a)b) + tµ′′

1(a, b) .

Comparing the t-linear terms, we see that (8) is equivalent to

µ′
1(a, b) = δHochφ1(a, b) + µ′′

1(a, b) .

We conclude that infinitesimal deformations given by µ′
1, µ

′′
1 ∈ C2

Hoch(A, A) are
equivalent if and only if they differ by a coboundary, that is, if and only if [µ′

1] =
[µ′′

1 ] in H2
Hoch(A, A). �

Another classical result is:

Theorem 3.21. Let A be an associative algebra such that H2
Hoch(A, A) = 0. Then

all formal deformations of A are equivalent.

Proof (Sketch of proof). If ∗′, ∗′′ are two formal deformations of A, one can, using
the assumption H2

Hoch(A, A) = 0, as in the proof of Theorem 3.20 find a k-linear
map φ1 : A→ A defining an equivalence of (B, ∗′) to (B, ∗′′) modulo t2. Repeating
this process, one ends up with an equivalence φ = id +tφ1 + t2φ2 + · · · of formal
deformations ∗′ and ∗′′. �

Definition 3.22. An n-deformation of an algebra A is an R-deformation of A for
R the local Artinian ring k[t]/(tn+1).

We have the following version of Theorem 3.15 whose proof is obvious.



346 M. DOUBEK, M. MARKL, P. ZIMA

Theorem 3.23. An n-deformation of A is given by a family

{µi : A⊗A→ A | 1 ≤ i ≤ n}
of k-linear maps satisfying (Dk) of Theorem 3.15 for 1 ≤ k ≤ n.

Definition 3.24. An (n + 1)-deformation of A given by {µ1, . . . , µn+1} is called
an extension of the n-deformation given by {µ1, . . . , µn}.

Let us rearrange (Dn+1) into

−aµn+1(b, c) + µn+1(ab, c)− µn+1(a, bc) + µn+1(a, b)c

=
∑

i+j=n+1, i,j>0

(

µi(a, µj(b, c))− µi(µj(a, b), c)
)

Denote the trilinear function in the right-hand side by On and interpret it as
an element of C3

Hoch(A, A),

(9) On :=
∑

i+j=n+1, i,j>0

(µi(a, µj(b, c))− µi(µj(a, b), c)) ∈ C3
Hoch(A, A) .

Using the Hochschild differential recalled in Definition 2.1, one can rewrite (Dn+1)
as

δHoch(µn+1) = On .

We conclude that, if an n-deformation extends to an (n+1)-deformation, then On

is a Hochschild coboundary. In fact, one can prove:

Theorem 3.25. For any n-deformation, the cochain On ∈ C3
Hoch(A, A) defined

in (9) is a cocycle, δHoch(On) = 0. Moreover, [On] = 0 in H3
Hoch(A, A) if and only

if the n-deformation {µ1, . . . , µn} extends into some (n + 1)-deformation.

Proof. Straightforward. �

Geometric deformation theory. Let us turn our attention back to the variety
of structure constants Ass(V ) recalled in Section 2, page 340. Elements of Ass(V )
are associative k-linear multiplications · : V ⊗ V → V and there is a natural left
action · 7→ ·φ of GL(V ) on Ass(V ) given by

(10) a ·φ b := φ
(

φ−1(a) · φ−1(b)
)

,

for a, b ∈ V and φ ∈ GL(V ). We assume that V is finite dimensional.

Definition 3.26. Let A be an algebra with the underlying vector space V inter-
preted as a point in the variety of structure constants, A ∈ Ass(V ). The algebra A
is called (geometrically) rigid if the GL(V )-orbit of A in Ass(V ) is Zarisky-open.

The following classical statement whose proof can be found in [36, § 5] specifies
the relation between the Hochschild cohomology and geometric rigidity, compare
also Propositions 1 and 2 of [8].

Theorem 3.27. Suppose that the ground field is algebraically closed.
(i) If H2

Hoch(A, A) = 0 then A is rigid, and
(ii) if H3

Hoch(A, A) = 0 then A is rigid if and only if H2
Hoch(A, A) = 0.
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Remark 3.28. An analysis parallel to the one presented in this section can be
made for any class of “reasonable” algebras, where “reasonable” are algebras over
quadratic Koszul operads [35, Section II.3.3] for which the deformation cohomology
is given by a “standard construction.” Let us emphasize that most of “classical”
types of algebras (Lie, associative, associative commutative, Poisson, etc.) are
“reasonable.” See also [3, 4].

4. Structures of (co)associative (co)algebras

Let V be a k-vector space. In this section we recall, in Theorems 4.16 and 4.21,
the following important correspondence between (co)algebras and differentials:

{coassociative coalgebra structures on the vector space V }
l

{quadratic differentials on the free associative algebra generated by V }
and its dual version:

{associative algebras on the vector space V }
l

{quadratic differentials on the “cofree” coassociative coalgebra cogenerated by V }.
The reason why we put ‘cofree’ into parentheses will become clear later in this

section. Similar correspondences exist for any “reasonable” (in the sense explained
in Remark 3.28) class of algebras, see [11, Theorem 8.2]. We will in fact need
only the second correspondence but, since it relies on coderivations of “cofree”
coalgebras, we decided to start with the first one which is simpler to explain.

Definition 4.1. The free associative algebra generated by a vector space W is
an associative algebra A(W ) ∈ Ass together with a linear map W → A(W ) having
the following property:

For every A ∈ Ass and a linear map W
ϕ→ A, there exists a unique algebra

homomorphism A(W )→ A making the diagram:

W - A(W )

@
@

@
@

@
ϕ

R
A
?

commutative.

The free associative algebra on W is uniquely determined up to isomorphism.
An example is provided by the tensor algebra T (W ) :=

⊕∞
n=1 W⊗n with the in-

clusion W = W⊗1 →֒ T (W ). There is a natural grading on T (W ) given by
the number of tensor factors,

T (W ) =
⊕∞

n=0 T n(W ) ,
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where T n(W ) := W⊗n for n ≥ 1 and T 0(W ) := 0. Let us emphasize that the ten-
sor algebra as defined above is nonunital , the unital version can be obtained by
taking T 0(W ) := k.

Convention 4.2. We are going to consider graded algebraic objects. Our choice
of signs will be dictated by the principle that whenever we commute two “things”
of degrees p and q, respectively, we multiply the sign by (−1)pq. This rule is some-
times called the Koszul sign convention. As usual, non-graded (classical) objects
will be, when necessary, considered as graded ones concentrated in degree 0.

Let f ′ : V ′ → W ′ and f ′′ : V ′′ → W ′′ be homogeneous maps of graded vec-
tor spaces. The Koszul sign convention implies that the value of (f ′ ⊗ f ′′) on
the product v′ ⊗ v′′ ∈ V ′ ⊗ V ′′ of homogeneous elements equals

(f ′ ⊗ f ′′)(v′ ⊗ v′′) := (−1)deg(f ′′) deg(v′)f ′(v′)⊗ f ′′(v′′) .

In fact, the Koszul sign convention is determined by the above rule for evaluation.

Definition 4.3. Assume V = V ∗ is a graded vector space, V =
⊕

i∈Z
V i.

The suspension operator ↑ assigns to V the graded vector space ↑V with Z-grading
(↑V )i := V i−1. There is a natural degree +1 map ↑: V → ↑V that sends v ∈ V
into its suspended copy ↑v ∈ ↑V . Likewise, the desuspension operator ↓ changes
the grading of V according to the rule (↓V )i := V i+1. The corresponding degree
−1 map ↓: V → ↓V is defined in the obvious way. The suspension (resp. the desus-
pension) of V is sometimes also denoted sV or V [−1] (resp. s−1V or V [1]).

Example 4.4. If V is an un-graded vector space, then ↑ V is V placed in degree
+1 and ↓ V is V placed in degree −1.

Remark 4.5. In the “superworld” of Z2-graded objects, the operators ↑ and ↓
agree and coincide with the parity change operator.

Exercise 4.6. Show that the Koszul sign convention implies (↓ ⊗ ↓) ◦ (↑ ⊗ ↑) =
− id or, more generally,

↓⊗n ◦ ↑⊗n=↑⊗n ◦ ↓⊗n= (−1)
n(n−1)

2 id

for an arbitrary n ≥ 1.

Definition 4.7. A derivation of an associative algebra A is a linear map θ : A→ A
satisfying the Leibniz rule

θ(ab) = θ(a)b + aθ(b)

for every a, b ∈ A. Denote Der(A) the set of all derivations of A.

We will in fact need a graded version of the above definition:

Definition 4.8. A degree d derivation of a Z-graded algebra A is a degree d linear
map θ : A→ A satisfying the graded Leibniz rule

(11) θ(ab) = θ(a)b + (−1)d|a|aθ(b)

for every homogeneous element a ∈ A of degree |a| and for every b ∈ A. We denote

Derd(A) the set of all degree d derivations of A.
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Exercise 4.9. Let µ : A ⊗ A → A be the multiplication of A. Prove that (11)
is equivalent to

θµ = µ(θ ⊗ id) + µ(id⊗θ) .

Observe namely how the signs in the right hand side of (11) are dictated by
the Koszul convention.

Proposition 4.10. Let W be a graded vector space and T (W ) the tensor algebra
generated by W with the induced grading. For any d, there is a natural isomor-
phism

(12) Derd
(

T (W )
) ∼= Lind

(

W, T (W )
)

,

where Lind(−,−) denotes the space of degree d k-linear maps.

Proof. Let θ ∈ Derd
(

T (W )
)

and f := θ|W : W → T (W ). The Leibniz rule (11)
implies that, for homogeneous elements wi ∈W , 1 ≤ i ≤ n,

θ(w1 ⊗ · · · ⊗ wn) = f(w1)⊗ w2 ⊗ · · · ⊗ wn + (−1)d|w1|w1 ⊗ f(w2)⊗ · · · ⊗ wn +· · ·

=

n
∑

i=1

(−1)d(|w1|+···+|wi−1|)w1 ⊗ · · · ⊗ f(wi)⊗ · · · ⊗ wn

which reveals that θ is determined by its restriction f on W . On the other hand,
given a degree d linear map f : W → T (W ), the above formula clearly defines

a derivation θ ∈ Derd
(

T (W )
)

. The correspondence

Derd
(

T (W )
)

∋ θ ←→ f := θ|W ∈ Lind
(

W, T (W )
)

is the required isomorphism (12). �

Exercise 4.11. Let θ ∈ Derd
(

T (W )
)

, f := θ|V and x ∈ T 2(W ). Prove that

θ(x) = (f ⊗ id + id⊗f)(x) .

Definition 4.12. A derivation θ ∈ Derd
(

T (W )
)

is called quadratic if θ(W ) ⊂
T 2W . A degree 1 derivation θ is a differential if θ2 = 0.

Exercise 4.13. Prove that the isomorphism of Proposition 4.10 restricts to

Derd
2

(

T (W )
) ∼= Lind

(

W, T 2(W )
)

,

where Derd
2

(

T (W )
)

is the space of all quadratic degree d derivations of T (W ).

Definition 4.14. Let V be a vector space. A coassociative coalgebra structure
on V is given by a linear map ∆ : V → V ⊗ V satisfying

(∆⊗ id)∆ = (id⊗∆)∆

(the coassociativity).

We will need, in Section 6, also a cocommutative version of coalgebras:
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Definition 4.15. A coassociative coalgebra A = (V, ∆) as in Definition 4.14
is cocommutative if

T∆ = ∆

with the swapping map T : V ⊗ V → V ⊗ V given by

T (v′ ⊗ v′′) := (−1)|v
′||v′′|v′′ ⊗ v′

for homogeneous v′, v′′ ∈ V .

Theorem 4.16. Let V be a (possibly graded) vector space. Denote Coass(V )

the set of all coassociative coalgebra structures on V and Diff 1
2(T (↑V )) the set of

all quadratic differentials on the tensor algebra T (↑V ). Then there is a natural
isomorphism

Coass(V ) ∼= Diff 1
2

(

T (↑V )
)

.

Proof. Let χ ∈ Diff 1
2(T (↑V )). Put f := χ|↑V so that f is a degree +1 map

↑V → ↑V ⊗ ↑V . By Exercise 4.11 (with W := ↑V , θ := χ and x := f(↑v)),

0 = χ2(↑v) = χ(f(↑v)) = (f ⊗ id + id⊗f)(f(↑v))

for every v ∈ V , therefore

(13) (f ⊗ id + id⊗f)f = 0 .

We have clearly described a one-to-one correspondence between quadratic dif-
ferentials χ ∈ Diff 1

2(T (↑V )) and degree +1 linear maps f ∈ Lin1(↑V , T 2(↑V ))
satisfying (13).

Given f : ↑V → ↑V ⊗ ↑V as above, define the map ∆ : V → V ⊗ V by
the commutative diagram

↑V f- ↑V ⊗ ↑V

V

↑
6

∆- V ⊗ V

↑⊗ ↑
6

i.e., by Exercise 4.6,

∆ := (↑⊗ ↑)−1 ◦ f ◦ ↑ = −(↓⊗ ↓) ◦ f ◦ ↑ .

Let us show that (13) is equivalent to the coassociativity of ∆. We have

(∆⊗ id)∆ = (−(↓⊗ ↓)f ↑⊗ id) (−(↓⊗ ↓)f ↑) = ((↓⊗ ↓)f ↑⊗ id) (↓⊗ ↓)f ↑
= ((↓⊗ ↓)f ⊗ ↓)f ↑ = −(↓⊗ ↓⊗↓)(f ⊗ id)f ↑ .

The minus sign in the last term appeared because we interchanged f (a “thing”
of degree +1) with ↓ (a “thing” of degree −1). Similarly

(id⊗∆)∆ = (id⊗(−(↓⊗ ↓))f ↑) (−(↓⊗ ↓)f ↑) = (id⊗(↓⊗ ↓)f ↑) (↓⊗ ↓)f ↑
= (↓⊗(↓⊗ ↓)f)f ↑ = (↓⊗ ↓⊗↓)(id⊗f)f ↑ ,

so (13) is indeed equivalent to (∆⊗ id)∆ = (id⊗∆)∆. This finishes the proof. �
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We are going to dualize Theorem 4.16 to get a description of associative alge-
bras, not coalgebras. First, we need a dual version of the tensor algebra:

Definition 4.17. The underlying vector space T (W ) of the tensor algebra with
the comultiplication ∆ : T (W )→ T (W )⊗ T (W ) defined by

∆(w1 ⊗ . . .⊗ wn) :=

n−1
∑

i=1

(w1 ⊗ . . .⊗ wi)⊗ (wi+1 ⊗ . . .⊗ wn)

is a coassociative coalgebra denoted cT (W ) and called the tensor coalgebra.

Warning. Contrary to general belief, the coalgebra cT (W ) with the projection
cT (W )→W is not cofree in the category of coassociative coalgebras! Cofree coal-
gebras (in the sense of the obvious dual of Definition 4.1) are surprisingly compli-
cated objects [9, 40, 17]. The coalgebra cT (W ) is, however, cofree in the subcate-
gory of coaugmented nilpotent coalgebras [35, Section II.3.7]. This will be enough
for our purposes.

In the following dual version of Definition 4.8 we use Sweedler’s convention
expressing the comultiplication in a coalgebra C as ∆(c) =

∑

c(1) ⊗ c(2), c ∈ C.

Definition 4.18. A degree d coderivation of a Z-graded coalgebra C is a linear
degree d map θ : C → C satisfying the dual Leibniz rule

(14) ∆θ(c) =
∑

θ(c(1))⊗ c(2) +
∑

(−1)d|c(1)|c(1) ⊗ θ(c(2)) ,

for every c ∈ C. Denote the set of all degree d coderivations of C by CoDerd(C).

As in Exercise 4.9 one easily proves that (14) is equivalent to

∆θ = (θ ⊗ id)∆ + (id⊗θ)∆.

Let us prove the dual of Proposition 4.10:

Proposition 4.19. Let W be a graded vector space. For any d, there is a natural
isomorphism

(15) CoDerd(cT (W )) ∼= Lind(T (W ), W ).

Proof. For θ ∈ CoDerd(T (W )) and s ≥ 1 denote fs ∈ Lind(T s(W ), W ) the
composition

(16) fs : T s(W )
θ|Ts(W )

−−−→ cT (W )
proj.
−−→W .

The dual Leibniz rule (14) implies that, for w1, . . . , wn ∈W and n ≥ 0,

θ(w1 ⊗ · · · ⊗ wn) :=

∑

s≥1

n−s+1
∑

i=1

(−1)d(|w1|+···+|wi−1|)w1 ⊗ · · · ⊗ fs(wi ⊗ · · · ⊗ wi+s−1)⊗ · · · ⊗ wn ,

which shows that θ is determined by f := f0 + f1 + f2 + · · · ∈ Lind(T (W ), W ).

On the other hand, it is easy to verify that for any map f ∈ Lind(T (W ), W ) de-
composed into the sum of its homogeneous components, the above formula defines
a coderivation θ ∈ CoDerd(T (W )). This finishes the proof. �
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Definition 4.20. The composition fs : T s(W )→W defined in (16) is called the

sth corestriction of the coderivation θ. A coderivation θ ∈ CoDerd(T (W )) is qua-
dratic if its sth corestriction is non-zero only for s = 2. A degree 1 coderivation θ
is a differential if θ2 = 0.

Let us finally formulate a dual version of Theorem 4.16.

Theorem 4.21. Let V be a graded vector space. Denote CoDiff 1
2(

cT (↓V )) the set
of all quadratic differentials on the tensor coalgebra cT (↓V ). One then has a nat-
ural isomorphism

(17) Ass(V ) ∼= CoDiff 1
2

(

cT (↓V )
)

.

Proof. Let χ ∈ CoDiff 1
2(

cT (↓V )) and f : ↓V ⊗↓V → ↓V be the 2nd corestriction
of χ. Define µ : V ⊗ V → V by the diagram

↓V ⊗ ↓V f - ↓V

V ⊗ V

↓⊗ ↓
6

µ - V

↓
6

The correspondence χ↔ µ is then the required isomorphism. This can be verified
by dualizing the steps of the proof of Theorem 4.16 so we can safely leave the details
to the reader. �

5. dg-Lie algebras and the Maurer-Cartan equation

Definition 5.1. A graded Lie algebra is a Z-graded vector space

g =
⊕

n∈Z

gn

equipped with a degree 0 bilinear map [−,−] : g ⊗ g → g (the bracket) which is
graded antisymmetric, i.e.

(18) [a, b] = −(−1)|a||b|[b, a]

for all homogeneous a, b ∈ g, and satisfies the graded Jacobi identity:

(19)
[

a, [b, c]
]

+ (−1)|a|(|b|+|c|)
[

b, [c, a]
]

+ (−1)|c|(|a|+|b|)
[

c, [a, b]
]

= 0

for all homogeneous a, b, c ∈ g.

Exercise 5.2. Write the axioms of graded Lie algebras in an element-free form
that would use only the bilinear map l := [−,−] : g⊗g→ g and its iterated compo-
sitions, and the operator of “permuting the inputs” of a multilinear map. Observe
how the Koszul sign convention helps remembering the signs in (18) and (19).

Definition 5.3. A dg-Lie algebra (an abbreviation for differential graded Lie al-
gebra) is a graded Lie algebra L =

⊕

n∈Z
Ln as in Definition 5.1 together with a

degree 1 linear map d : L→ L which is
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– a degree 1 derivation , i.e. d[a, b] = [da, b] + (−1)|a|[a, db] for homogeneous
a, b ∈ L, and

– a differential, i.e. d2 = 0.

Our next aim is to show that the Hochschild complex (C∗
Hoch(A, A), δHoch) of

an associative algebra recalled in Definition 2.1 has a natural bracket which turns
it into a dg-Lie algebra. We start with some preparatory material.

Proposition 5.4. Let C be a graded coalgebra. For coderivations θ, φ ∈ CoDer (C)
define

[θ, φ] := θ ◦ φ− (−1)|θ||φ|φ ◦ θ .

The bracket [−,−] makes CoDer (C) =
⊕

n∈Z
CoDern(C) a graded Lie algebra.

Proof. The key observation is that [θ, φ] is a coderivation (note that neither θ ◦φ
nor φ ◦ θ are coderivations!). Verifying this and the properties of a graded Lie
bracket is straightforward and will be omitted. �

Proposition 5.5. Let C be a graded coalgebra and χ ∈ CoDer 1(C) such that

(20) [χ, χ] = 0 ,

where [−,−] is the bracket of Proposition 5.4. Then

d(θ) := [χ, θ] for θ ∈ CoDer (C)
is a differential that makes CoDer (C) a dg-Lie algebra.

Observe that, since |χ| = 1, (20) does not tautologically follow from the graded
antisymmetry (18).

Proof (Proof of Proposition 5.5). The graded Jacobi identity (19) implies that,
for each homogeneous θ,

[

χ, [χ, θ]
]

= −(−1)|θ|+1
[

χ, [θ, χ]
]

−
[

θ, [χ, χ]
]

.

Now use the graded antisymmetry [θ, χ] = (−1)|θ|+1[χ, θ] and the assumption
[χ, χ] = 0 to conclude from the above display that

[

χ, [χ, θ]
]

= −
[

χ, [χ, θ]
]

,

therefore, since the characteristic of the ground field is zero,

d2(θ) =
[

χ, [χ, θ]
]

= 0 ,

so d is a differential. The derivation property of d with respect to the bracket can
be verified in the same way and we leave it as an exercise to the reader. �

In Proposition 5.5 we saw that coderivations of a graded coalgebra form a dg-
Lie algebra. Another example of a dg-Lie algebra is provided by the Hochschild
cochains of an associative algebra (see Definition 2.1). We need the following:

Definition 5.6. For f ∈ Lin(V ⊗(m+1), V ), g ∈ Lin(V ⊗(n+1), V ) and 1 ≤ i ≤ m+1
define f ◦i g ∈ Lin(V ⊗(m+n+1), V ) by

(f ◦i g) := f
(

id
⊗(i−1)
V ⊗g ⊗ id

⊗(m−i+1)
V

)

.
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Define also

f ◦ g :=

m+1
∑

i=1

(−1)n(i+1)f ◦i g

and, finally,

[f, g] := f ◦ g − (−1)mng ◦ f .

The operation [−,−] is called the Gerstenhaber bracket (our definition however
differs from the original one of [12] by the overall sign (−1)n).

Let A be an associative algebra with the underlying space V . Since, by Defi-
nition 2.1, C∗+1

Hoch(A, A) = Lin(V ⊗(∗+1), V ), the structure of Definition 5.6 defines

a degree 0 operation [−,−] : C∗+1
Hoch(A, A) ⊗ C∗+1

Hoch(A, A) → C∗+1
Hoch(A, A) called

again the Gerstenhaber bracket. We leave as an exercise the proof of

Proposition 5.7. The Hochschild cochain complex of an associative algebra with
the Gerstenhaber bracket form a dg-Lie algebra

C∗+1
Hoch(A, A) = (C∗+1

Hoch(A, A), [−,−], δHoch) .

The following theorem gives an alternative description of the dg-Lie algebra
of Proposition 5.7.

Theorem 5.8. Let A be an associative algebra with multiplication µ : V ⊗V → V
and χ ∈ CoDiff 1

2(
cT (↓V )) the coderivation that corresponds to µ in the correspon-

dence of Theorem 4.21. Let d := [χ,−] be the differential introduced in Proposi-
tion 5.5. Then there is a natural isomorphism of dg-Lie algebras

ξ :
(

C
(∗+1)
Hoch (A, A), [−,−], δHoch

) ∼=−→
(

CoDer∗(cT (↓V )), [−,−], d
)

.

Proof. Given φ ∈ Cn+1
Hoch(A, A) = Lin(V ⊗(n+1), V ), let f : (↓V )⊗(n+1) → ↓V be

the degree n linear map defined by the diagram

(↓V )⊗(n+1) f - ↓V

V ⊗(n+1)

↓⊗(n+1)

6

φ - V

↓
6

By Proposition 4.19, there exists a unique coderivation θ ∈ CoDern(cT (↓V ))
whose (n + 1)th corestriction is f and other corestrictions are trivial.

The map ξ : C
(∗+1)
Hoch (A, A) → CoDer∗(cT (↓V )) defined by ξ(φ) := θ is clearly

an isomorphism. The verification that ξ commutes with the differentials and brack-
ets is a straightforward though involved exercise on the Koszul sign convention
which we leave to the reader. �

Corollary 5.9. Let µ be the multiplication in A interpreted as an element of
C2

Hoch(A, A), and f ∈ C∗
Hoch(A, A). Then δHoch(f) = [µ, f ].
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Proof. The corollary immediately follows from Theorem 5.8. Indeed, because ξ
commutes with all the structures, we have

δHoch(f) = ξ−1ξδHoch(f) = ξ−1(d(ξf)) = ξ−1[χ, ξf ] = [µ, f ] .

We however recommend as an exercise to verify the corollary directly, comparing
[µ, f ] to the formula for the Hochschild differential. �

Proposition 5.10. A bilinear map κ : V ⊗ V → V defines an associative algebra
structure on V if and only if [κ, κ] = 0.

Proof. By Definition 5.6 (with m = n = 1),

1

2
[κ, κ] =

1

2

(

κ ◦ κ− (−1)mnκ ◦ κ
)

= κ◦κ = κ◦1κ−κ◦2κ = κ(κ⊗idV )−κ(idV ⊗κ) ,

therefore [κ, κ] = 0 is indeed equivalent to the associativity of κ. �

Proposition 5.11. Let A be an associative algebra with the underlying vector
space V and the multiplication µ : V ⊗V → V . Let ν ∈ C2

Hoch(A, A) be a Hochschild
2-cochain. Then µ + ν ∈ C2

Hoch(A, A) = Lin(V ⊗2, V ) is associative if and only if

(21) δHoch(ν) +
1

2
[ν, ν] = 0 .

Proof. By Proposition 5.10, µ + ν is associative if and only if

0 =
1

2
[µ + ν, µ + ν] =

1

2

{

[µ, µ] + [ν, ν] + [µ, ν] + [ν, µ]
}

= δHoch(ν) +
1

2
[ν, ν] .

To get the rightmost term, we used the fact that, since µ is associative, [µ, µ] = 0
by Proposition 5.10. We also observed that [µ, ν] = [ν, µ] = δHoch(ν) by Corol-
lary 5.9. �

A bilinear map ν : V ⊗ V → V such that µ + ν is associative can be viewed
as a deformation of µ. This suggests that (21) is related to deformations. This is
indeed the case, as we will see later in this section. Equation (21) is a particular
case of the Maurer-Cartan equation in a arbitrary dg-Lie algebra:

Definition 5.12. Let L = (L, [−,−], d) be a dg-Lie algebra. A degree 1 element
s ∈ L1 is Maurer-Cartan if it satisfies the Maurer-Cartan equation

(22) ds +
1

2
[s, s] = 0 .

Remark 5.13. The Maurer-Cartan equation (also called the Berikashvili equa-
tion) along with its clones and generalizations is one of the most important equa-
tions in mathematics. For instance, a version of the Maurer-Cartan equation
describes the differential of a left-invariant form, see [22, I.§4].

Let g be a dg-Lie algebra over the ground field k. Consider the dg-Lie algebra
L over the power series ring k[[t]] defined as

(23) L := g⊗ (t) ,

where (t) ⊂ k[[t]] is the ideal generated by t. Degree n elements of L are expressions
f1t + f2t

2 + · · · , fi ∈ gn for i ≥ 1. The dg-Lie structure on L is induced from
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that of g in an obvious manner. Denote by MC(g) the set of all Maurer-Cartan
elements in L. Clearly, a degree 1 element s = f1t + f2t

2 + · · · is Maurer-Cartan
if its components {fi ∈ g1}i≥1 satisfy the equation:

(MCk ) dfk +
1

2

∑

i+j=k

[fi, fj ] = 0

for each k ≥ 1.

Example 5.14. Let us apply the above construction to the Hochschild complex of
an associative algebra A with the multiplication µ0, that is, take g := C∗+1

Hoch(A, A)
with the Gerstenhaber bracket and the Hochschild differential. In this case, one
easily sees that (MC k) for s = µ1t + µ2t

2 + · · · , µi ∈ C2
Hoch(A, A) is precisely

equation (Dk) of Theorem 3.15, k ≥ 1, compare also calculations on page 346.
We conclude that MC(g) is the set of infinitesimal deformations of µ0.

Let us recall that each Lie algebra l can be equipped with a group structure
with the multiplication given by the Hausdorff-Campbell formula:

(24) x · y := x + y +
1

2
[x, y] +

1

12

([

x, [x, y]
]

+
[

y, [y, x]
])

+ · · ·
assuming a suitable condition that guarantees that the above infinite sum makes
sense in l, see [39, I.IV.§7]. We denote l with this multiplication by exp(l). For-
mula (24) is obtained by expressing the right hand side of

x · y = log
(

exp(x) exp(y)
)

,

where

exp(a) := 1 + a +
1

2!
a2 +

1

3!
a3 + · · · , log(1 + a) := a− 1

2
a2 +

1

3
a3 − · · · ,

in terms of iterated commutators of non-commutative variables x and y.
Using this construction, we introduce the gauge group of g as

G(g) := exp(L0) ,

where L0 = g0 ⊗ (t) is the Lie subalgebra of degree zero elements in L defined
in (23). Let us fix an element χ ∈ g1. The gauge group then acts on L1 = g1⊗ (t)
by the formula

(25) x·l := l+[x, χ+l]+
1

2!
[x, [x, χ+l]]+

1

3!
[x, [x, [x, χ+l]]]+· · · , x ∈ G(g), l ∈ L1,

obtained by expressing the right hand side of

(26) x · l = exp(x)(χ + l) exp(−x)− χ

in terms of iterated commutators. Denoting dχ := [χ, χ], formula (25) reads

x · l = l + dx + [x, l] +
1

2

{

[x, dx] + [x, [x, l]]
}

+(27)

+
1

3

{

[x, [x, dx]] + [x, [x, [x, l]]]
}

+ · · ·

Lemma 5.15. Action (27) of G(g) on L1 preserves the space MC(g) of solutions
of the Maurer-Cartan equation.
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Proof. We will prove the lemma under the assumption that g is a dg-Lie algebra
whose differential d has the form d = [χ,−] for some χ ∈ g1 satisfying [χ, χ] = 0
(see Proposition 5.5). The proof of the general case is a straightforward, though
involved, verification.

It follows from (26) that χ+x · l = exp(x)(χ+ l) exp(−x), i.e. x transforms χ+ l
into exp(x)(χ + l) exp(−x). Under the assumption d = [χ,−], the Maurer-Cartan
equation for l is equivalent to [χ + l, χ + l] = 0. The Maurer-Cartan equation for
the transformed l then reads

[exp(x)(χ + l) exp(−x), exp(x)(χ + l) exp(−x)] = 0 ,

which can be rearranged into

exp(x)[χ + l, χ + l] exp(−x) = 0 .

This finishes the proof. �

Thanks to Lemma 5.15, it makes sense to consider

Def(g) := MC(g)/G(g) ,

the moduli space of solutions of the Maurer-Cartan equation in L = g⊗ (t).

Example 5.16. Let us return to the situation in Example 5.14. In this case

g0 = C1
Hoch(A, A) = Lin(A, A) ,

with the bracket given by the commutator of the composition of linear maps.
The gauge group G(g) consists of elements x = f1t + f2t

2 + . . ., fi ∈ Lin(A, A).
It follows from the definition of the gauge group action that two formal deforma-
tions µ′ = µ0 + µ′

1t + µ′
2t

2 + · · · and µ′′ = µ0 + µ′′
1 t + µ′′

2t2 + · · · of µ0 define
the same element in Def(g) if and only if

(28) exp(x)(µ0 + µ′
1t + µ′

2t
2 + · · · ) = (µ0 + µ′′

1t + µ′′
2t2 + · · · )

(

exp(x)⊗ exp(x)
)

for some x ∈ G(g). The above formula has an actual, not only formal, meaning –
all power series make sense because of the completeness of the ground ring.

On the other hand, recall that in Example 3.17 we introduced the group

H :=
{

u = idA +φ1t + φ2t
2 + · · · | φi ∈ Lin(A, A)

}

.

The exponential map exp : G(g) → H is a well-defined isomorphism with the in-
verse map log : H → G(g). We conclude that the equivalence relation defined
by (28) is the same as the equivalence defined by (5) in Example 3.17, there-
fore Def(g) = MC(g)/G(g) is the moduli space of equivalence classes of formal
deformations of µ0.

The above analysis can be generalized by replacing, in (23), (t) by an arbitrary
ideal m in a local Artinian ring or in a complete local ring.
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6. L∞-algebras and the Maurer-Cartan equation

We are going to describe a generalization of differential graded Lie algebras.
Let us start by recalling some necessary notions.

Let W be a Z-graded vector space. We will denote by ∧W the free graded
commutative associative algebra over W . It is characterized by the obvious analog
of the universal property in Definition 4.1 with respect to graded commutative as-
sociative algebras. It can be realized as the tensor algebra T (W ) modulo the ideal
generated by x⊗ y − (−1)|x||y|y ⊗ x. If one decomposes

W = W even ⊕W odd

into the even and odd parts, then

∧W ∼= k[W even]⊗ E[W odd] ,

where the first factor is the polynomial algebra and the second one is the exterior
(Grassmann) algebra. The algebra ∧W can also be identified with the subspace
of T (W ) consisting of graded-symmetric elements (remember we work over a char-
acteristic zero field).

Denote the product of (homogeneous) elements w1, . . . , wn ∈ W in ∧W by
w1∧. . .∧wn. For a permutation σ ∈ Sk we define the Koszul sign ε(σ) ∈ {−1, +1}
by

w1 ∧ . . . ∧ wk = ε(σ)wσ(1) ∧ . . . ∧wσ(k)

and the antisymmetric Koszul sign χ(σ) ∈ {−1, +1} by

χ(σ) := sgn(σ)ε(σ) .

Exercise 6.1. Express ǫ(σ) and χ(σ) explicitly in terms of σ and the degrees
|w1|,. . . ,|wn|.

Finally, a permutation σ ∈ Sn is called an (i, n−i)-unshuffle if σ(1) < . . . < σ(i)
and σ(i + 1) < . . . < σ(n). The set of all (i, n − i)-unshuffles will be denoted
S(i,n−i).

Definition 6.2. An L∞-algebra (also called a strongly homotopy Lie or sh Lie
algebra) is a graded vector space V together with a system

lk : ⊗kV → V, k ∈ N

of linear maps of degree 2− k subject to the following axioms.
– Antisymmetry: For every k ∈ N, every permutation σ ∈ Sk and every homo-

geneous v1, . . . , vk ∈ V ,

(29) lk(vσ(1), . . . , vσ(k)) = χ(σ)lk(v1, . . . , vk) .

– For every n ≥ 1 and homogeneous v1, . . . , vn ∈ V ,

(Ln)
∑

i+j=n+1

(−1)i
∑

σ∈Si,n−i

χ(σ)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0 .
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Remark 6.3. The sign in (Ln) was taken from [15]. With this sign conven-
tion, all terms of the (generalized) Maurer-Cartan equation recalled in (31) below
have +1-signs. Our sign convention is related to the original one in [25, 26] via

the transformation ln 7→ (−1)(
n+1
2 )ln. We also used the opposite grading which

is better suited for our purposes – the operation lk as introduced in [25, 26] has
degree k − 2.

Let us expand axioms (Ln) for n = 1, 2 and 3.
Case n = 1. For n = 1 (L1) reduces to l1(l1(v)) = 0 for every v ∈ V , i.e. l1 is a
degree +1 differential.
Case n = 2. By (29), l2 : V ⊗ V → V is a linear degree 0 map which is graded
antisymmetric,

l2(v, u) = −(−1)|u||v|l2(u, v)

and (Ln) for n = 2 gives

(L2) l1
(

l2(u, v)
)

= l2
(

l1(u), v
)

+ (−1)|u|l2
(

u, l1(v)
)

meaning that l1 is a graded derivation with respect to the multiplication l2. Writing
d := l1 and [u, v] := l2(u, v), (L2) takes more usual form

d[u, v] = [du, v] + (−1)|u|[u, dv] .

Case n = 3. The degree −1 graded antisymmetric map l3 : ⊗3V → V satis-
fies (L3):

(−1)|u||w|[[u, v], w] + (−1)|v||w|[[w, u], v] + (−1)|u||v|[[v, w], u]

= (−1)|u||w|
(

dl3(u, v, w) + l3(du, v, w)

+ (−1)|u|l3(u, dv, w) + (−1)|u|+|v|l3(u, v, dw)
)

.

One immediately recognizes the three terms of the Jacobi identity in the left-hand
side and the d-boundary of the trilinear map l3 in the right-hand side. We conclude
that the bracket [−,−] satisfies the Jacobi identity modulo the homotopy l3.

Example 6.4. If all structure operations of an L∞-algebra L = (V, l1, l2, l3, . . .)
except l1 vanish, then L is just a dg-vector space with the differential d = l1.
If all lk’s except l1 and l2 vanish, then L is our familiar dg-Lie algebra from
Definition 5.3 with d = l1 and the Lie bracket [−,−] = l2. In this sense, dg-Lie
algebras are particular cases of L∞-algebras.

Example 6.5. Let L′ = (V ′, l′1, l
′
2, l

′
3, . . .) and L′′ = (V ′′, l′′1 , l′′2 , l′′3 , . . .) be two L∞-

algebras. Define their direct sum L′ ⊕ L′′ to be the L∞-algebra L′ ⊕ L′′ with the
underlying vector space V ′ ⊕ V ′′ and structure operations {lk}k≥1 given by

lk(v′1 ⊕ v′′1 , . . . , v′k ⊕ v′′k ) := l′k(v′1, . . . , v
′
k) + l′′k(v′′1 , . . . , v′′k ) ,

for v′1, . . . , v
′
k ∈ V ′, v′′1 , . . . , v′′k ∈ V ′′.

For a graded vector space V denote ∨k(V ) the quotient of
⊗k

V modulo
the subspace spanned by elements

v1 ⊗ · · · ⊗ vk − χ(σ) vσ(1) ⊗ · · · ⊗ vσ(k) .
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The antisymmetry (29) implies that the structure operations of an L∞ algebra
can be interpreted as maps

lk : ∨k(V )→ V, k ≥ 1 .

We are going to give a description of the set of L∞-structures on a given graded
vector space in terms of coderivations, in the spirit of Theorem 4.21. To this end,
we need the following coalgebra which will play the role of cT (W ).

Proposition 6.6. The space ∧(W ) with the comultiplication ∆ : ∧(W )→ ∧(W )⊗
∧(W ) defined by

∆(w1 ∧ . . . ∧wn) :=

n−1
∑

i=1

∑

σ∈Si,n−i

ǫ(σ)(wσ(1) ∧ . . . ∧wσ(i))⊗ (wσ(i+1) ∧ . . . ∧wσ(n))

is a graded coassociative cocommutative coalgebra. We will denote it c∧(W ).

Proof. A direct verification which we leave to the reader as an exercise. �

For the coalgebra c∧(W ), the following analog of Proposition 4.19 holds.

Proposition 6.7. Let W be a graded vector space. For any d, there is a natural
isomorphism

CoDerd(c∧(W )) ∼= Lind
(

c∧(W ), W
)

.

We leave the proof to the reader. Observe that the coalgebra c∧(W ) is a direct
sum

c∧(W ) =
⊕

n≥1

c∧n(W )

of subspaces c∧n(W ) spanned by w1∧. . .∧wn, for w1, . . . , wn ∈W . One may define
the sth corestriction of a coderivation θ ∈ CoDer(c∧(W )) as the composition

fs : c∧s(W )
θ|∧s

(W )

−−−→ c∧(W )
proj.
−−→W .

As in Definition 4.20, a coderivation θ ∈ CoDerd(c∧(W )) is quadratic if its sth
corestriction is non-zero only for s = 2. A differential is a degree 1 coderivation θ
such that θ2 = 0.

Theorem 6.8. Denote by L∞(V ) the set of all L∞-algebra structures on a graded

vector space V and CoDiff 1(c∧(↓V )) the set of differentials on c∧(↓V ). Then
there is a bijection

L∞(V ) ∼= CoDiff 1
(

c∧(↓V )
)

.

Proof. Let χ ∈ CoDiff 1(c∧(↓V )) and fn : c∧n(↓V ) → ↓V the nth corestriction
of χ, n ≥ 1. Define ln : ∨n(V )→ V by the diagram

c∧n(↓V )
fn - ↓V

∨n(V )

⊗n↓
6

ln - V

↓
6
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It is then a direct though involved verification that the maps

(30) ln := (−1)(
n+1
2 )ln

define an L∞-structure on V and that the correspondence χ ↔ (l1, l2, l3, . . .) is
one-to-one. The reason for the sign change in (30) is explained in Remark 6.3. �

Remark 6.9. By Theorem 6.8, L∞-algebras can be alternatively defined as differ-
entials on “cofree” cocommutative coassociative coalgebras (the reason why we put
‘cofree’ into quotation marks is the same as in Section 4, see also the warning on
page 351). Dual forms of these object are Sullivan models that have existed in ra-
tional homotopy theory since 1977 [42] though they were recognized as homotopy
versions of Lie algebras much later [19, 26].

Exercise 6.10. Show that the isomorphism of Theorem 6.8 restricts to the iso-
morphism

Lie(V ) ∼= CoDiff 1
2

(

c∧(↓V )
)

between the set of Lie algebra structures on V and quadratic differentials on
the coalgebra c∧(↓V ). This isomorphism shall be compared to the isomorphism
in Theorem 4.21.

Let us make a digression and see what happens when one allows in the right
hand side of (17) all, not only quadratic, differentials. The above material indicates
that one should expect a homotopy version of associative algebras. This is indeed
so; one gets the following objects that appeared in 1963 [41] (but we use the sign
convention of [30]).

Definition 6.11. An A∞-algebra (also called a strongly homotopy associative
algebra) is a graded vector space V together with a system

µk : V ⊗k → V, k ≥ 1 ,

of linear maps of degree k − 2 such that

(An)

n−1
∑

λ=0

n−λ
∑

k=1

(−1)k+λ+kλ+k(|v1 |+···+|vλ|)µn−k+1

(

v1, ..., µk(vλ+1, ..., vλ+k), ..., vn

)

= 0

for every n ≥ 1, v1, . . . , vn ∈ V .

One easily sees that (A1) means that ∂ := µ1 is a degree −1 differential, (A2)
that the bilinear product µ2 : V ⊗ V → V commutes with ∂ and (A3) that µ2

is associative up to the homotopy µ3. A∞-algebras can also be described as al-
gebras over the cellular chain complex of the non-Σ operad K = {Kn}n≥1 whose
nth piece is the (n− 2)-dimensional convex polytope Kn called the Stasheff asso-
ciahedron [35, Section II.1.6]. Let us mention at least that K2 is the point, K3

the closed interval and K4 is the pentagon from Mac Lane’s theory of monoidal
categories [28]. A portrait of K5 due to Masahico Saito is in Figure 1.
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Figure 1. Saito’s portrait of K5.

Theorem 6.12. For a graded vector space V denote A∞(V ) the set of all A∞-

algebra structures on V and CoDiff 1(cT (↓V )) the set of all differentials on cT (↓V ).
Then there is a natural bijection

A∞(V ) ∼= CoDiff 1
(

cT (↓V )
)

.

Proof. The isomorphism in the above theorem is of the same nature as the iso-
morphism of Theorem 6.8, but it also involves the ‘flip’ of degrees since we defined,
following [30], A∞-algebras in such a way that the differential ∂ = µ1 has degree
−1. We leave the details to the reader. �

Let us return to the main theme of this section. Our next task will be to
introduce morphisms of L∞-algebras. We start with a simple-minded definition.

Suppose L′ = (V ′, l′1, l
′
2, l

′
3, . . .) and L′′ = (V ′′, l′′1 , l′′2 , l′′3 , . . .) are L∞-algebras.

A strict morphism is a degree zero linear map f : V ′ → V ′′ which commutes with
all structure operations, that is

f(l′k(v1, . . . , vk)) = l′′k
(

f(v1), . . . , f(vk)
)

,

for each v1, . . . , vk ∈ V ′, k ≥ 1.
For our purposes we need, however, a subtler notion of morphisms. We give

a definition that involves the isomorphism of Theorem 6.8.

Definition 6.13. Let L′ and L′′ be L∞-algebras represented by dg-coalgebras
(c∧(↓V ′), δ′) and (c∧(↓V ′′), δ′′). A (weak) morphism of L∞-algebras is then a mor-
phism of dg-coalgebras F : (c∧(↓V ′), δ′)→ (c∧(↓V ′′), δ′′).

Definition 6.13 can be unwrapped. Let Fk : c∧k(↓V ′) → ↓V ′′ be, for each
k ≥ 1, the composition

c∧k(↓V ′)
F
−−−→ c∧(↓V ′′)

proj.
−−→ ↓V ′′.
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Define the maps fk : ∨kV ′ → V ′′ by the diagram

c∧k(↓V ′)
Fk- ↓V ′′

∨kV ′

⊗k↓
6

fk- V ′′

↓
6

Clearly, fk is a degree 1 − k linear map. The fact that F is a dg-morphism
can be expressed via a sequence of axioms (Mn), n ≥ 1, where (Mn) postulates
the vanishing of a combination of n-multilinear maps on V ′ with values in V ′′

involving fi, l
′
i and l′′i for i ≤ n.

We are not going to write (Mn)’s here. Explicit axioms for L∞-maps can be
found in [21], see also [25, Definition 5.2] where the particular case when L′′ is
a dg-Lie algebra (l′′k = 0 for k ≥ 3) is discussed in detail. The reader is how-
ever encouraged to verify that (M1) says that f1 : (V ′, l′1) → (V ′′, l′′1 ) is a chain
map and that (M2) means that f1 commutes with the brackets l′2 and l′′2 modulo
the homotopy f2.

Morphisms of L∞-algebras L′ and L′′ with underlying vector spaces V ′ and

V ′′ can therefore be equivalently defined as systems f = {fk :
⊗k

V ′ → V ′′}k≥1,
where fk is a degree 1 − k graded antisymmetric linear map, and axioms (Mn),
n ≥ 1, are satisfied. Let us denote by L∞ the category of L∞-algebras and their
morphisms in the sense of Definition 6.13.

Exercise 6.14. Show that the category strL∞ of L∞-algebras and their strict
morphisms can be identified with the (non-full) subcategory of L∞ with the same
objects and morphisms f = (f1, f2, . . .) such that fk = 0 for k ≥ 2.

Show that the obvious imbedding dgLie →֒ L∞ is not full. This means that
there are more morphisms between dg-Lie algebras considered as elements of the
category L∞ than in the category of dgLie. Observe finally that the forgetful
functor � : L∞ → dgVect given by forgetting all structure operations is not faithful.

7. Homotopy invariance of the Maurer-Cartan equation

Let us start with recalling some necessary definitions.

Definition 7.1. A morphism f = (f1, f2, . . .) : L′ = (V ′, l′1, l
′
2, . . .) → L′′ =

(V ′′, l′′1 , l′′2 , . . .) of L∞-algebras is a weak equivalence if the chain map f1 : (V ′, l′1)→
(V ′′, l′′1 ) induces an isomorphism of cohomology.

Definition 7.2. An L∞-algebra L = (V, l1, l2, . . .) is minimal if l1 = 0. It is
contractible if lk = 0 for k ≥ 2 and if H∗(V, l1) = 0.

Proposition 7.3. Let f be a weak equivalence of minimal L∞-algebras g′, g′′ over
the ground field k. Let m be the maximal ideal in a complete local k-algebra R.
Then the induced map f ⊗m : L′ → L′′, where L′ := g′ ⊗m and L′′ := g′′ ⊗m, is
an isomorphism of L∞-algebras.
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Proof. It follows from the minimality of g′ and g′′ that the linear part f1 of the
weak equivalence f = (f1, f2, . . .) is an isomorphism, thus the corresponding map
F : (c∧(↓V ′), δ′) → (c∧(↓V ′′), δ′′) induces an isomorphism of generators. Such
maps can be formally inverted, and the extension of scalars by m guarantees that
the inversion formula converges. �

Warning. There seems to be general belief that a weak equivalence of minimal
L∞-algebras is always an isomorphism, but simple examples show that this is not
true. One needs to control the convergence of the inversion formula. This can
be achieved either by extending the scalars as in the above proposition, or by
imposing some restrictions on the grading, as the simple connectivity assumption
in rational homotopy theory.

The following theorem, which can be found in [23], uses the direct sum of L∞-
algebras recalled in Example 6.5.

Theorem 7.4. Each L∞-algebra is the direct sum of a minimal and a contractible
L∞-algebra.

Let L ∼= Lm ⊕ Lc be a decomposition of an L∞-algebra L into a minimal
L∞-algebra Lm and a contractible L∞-algebra Lc. Since the inclusion ι : Lm →
Lm ⊕ Lc

∼= L is a weak equivalence, Theorem 7.4 implies:

Corollary 7.5. Each L∞-algebra is weakly equivalent to a minimal one.

Corollary 7.5 above can also be derived from homotopy invariance properties
of strongly homotopy algebras proved in [32]. Suppose we are given an L∞-algebra
L = (V, l1, l2, . . .). In characteristic zero, two cochain complexes have the same
cochain homotopy type if and only if they have isomorphic cohomology. In par-
ticular, the cochain complex (V, l1) is homotopy equivalent to the cohomology
H∗(V, l1) considered as a complex with trivial differential. Move (M1) on page 133
of [32] now implies that there exists an induced minimal L∞-structure on H∗(V, l1),
weakly equivalent to L. Let us remark that an A∞-version of Corollary 7.5 was
known to Kadeishvili already in 1985, see [20].

Remarkably, each L∞-algebra is, under some mild assumptions, weakly equiva-
lent to a dg-Lie algebra. This can be proved as follows. Suppose L is an L∞-algebra
represented by a dg-coalgebra (c∧(↓V ), δ). The bar construction B(c∧(↓V ), δ) is
a dg-Lie algebra and one may show, under an assumption that guarantees the con-
vergence of a spectral sequence, that B(c∧(↓V ), δ) is weakly equivalent to L in the
category of L∞-algebras. This property is an algebraic analog of the rectification
principle for WP-spaces provided by the M -construction of Boardman and Vogt,
see [35, Theorem II.2.9].

Let g be an L∞-algebra over the ground field k, with the underlying k-vector
space V . Then V ⊗ (t), where (t) ⊂ k[[t]] is the ideal generated by t, has
a natural induced L∞-structure. Denote this L∞-algebra by L := g ⊗ (t) =
(V ⊗ (t), l1, l2, l3, . . .). Let MC(g) be the set of all degree +1 elements s ∈ L1

satisfying the generalized Maurer-Cartan equation

(31) l1(s) +
1

2
l2(s, s) +

1

3!
l3(s, s, s) + · · ·+ 1

n!
ln(s, . . . , s) + · · · = 0 .
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When g is a dg-Lie algebra, one recognizes the ordinary Maurer-Cartan equa-
tion (22).

At this moment one needs to introduce a suitable gauge equivalence between
solutions of (31) generalizing the action of the gauge group G(g) recalled in (25).
Since in applications of Section 8 all relevant L∞-algebras are in fact dg-Lie alge-
bras, we are not going to describe this generalized gauge equivalence here, and only
refer to [23] instead. We denote Def(g) the set of gauge equivalence classes of so-
lutions of (31). Let us, however, mention that there are examples, as bialgebras
treated in [33], where deformations are described by a fully-fledged L∞-algebra.

Example 7.6. For g contractible, Def(g) is the one-point set consisting of the class
of the trivial solution of (31). Indeed,

MC(g) = {s = s1t + s2t
2 + . . . | ds1 = ds2 = · · · = 0}

so, by acyclicity, si = dbi for some bi ∈ g0, i ≥ 1. Formula (27) (with x =
−b1t1 − b2t2 − · · · and l = s1t + s2t

2 + · · · ) gives

(−b1t1 − b2t2 − · · · ) · (s1t + s2t
2 + · · · ) = 0,

therefore s = s1t + s2t
2 + · · · is equivalent to the trivial solution.

Example 7.7. Let g′ and g′′ be two L∞-algebras. Then, for the direct product,

Def(g′ ⊕ g′′) ∼= Def(g′)×Def(g′′).

Indeed, it follows from definition that MC(g′ ⊕ g′′) ∼= MC(g′) × MC(g′′). This
factorization is preserved by the gauge equivalence.

The central statement of this section reads:

Theorem 7.8. The assignment g 7→ Def(g) extends to a covariant functor from
the category of L∞-algebras and their weak morphisms to the category of sets.
A weak equivalence f : g′ → g′′ induces an isomorphism Def(f) : Def(g′) ∼=
Def(g′′).

The above theorem implies that the deformation functor Def descends to the
localization hoL∞ obtained by inverting weak equivalences in L∞. By Quillen’s
theory [37], hoL∞ is equivalent to the category of minimal L∞-algebras and ho-
motopy classes (in an appropriate sense) of their maps. This explains the meaning
of homotopy invariance in the title of this section.

Proof (Proof of Theorem 7.8). For an L∞-morphism f = (f1, f2, f3, . . .) : g′ → g′′

define MC(f) : MC(g′)→ MC(g′′) by

MC(f)(s) := f1(s) +
1

2
f2(s, s) + · · ·+ 1

n!
fn(s, . . . , s) + · · ·

It can be shown that MC(f) is a well-defined map that descends to the quotients
by the gauge equivalence, giving rise to a map Def(f) : Def(g′)→ Def(g′′).

Assume that f : g′ → g′′ above is a weak equivalence. By Theorem 7.4, g′

decomposes as g′ = g′m ⊕ g′c, with g′m minimal and g′c contractible, and there is
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a similar decomposition g′′ = g′′m ⊕ g′′c for g′′. Define the map f : g′m → g′′m by
the commutativity of the diagram

g′m ⊕ g′c
�i

⊃ g′m

g′′m ⊕ g′′c

f

? p -- g′′m

f

?

in which i is the natural inclusion and p the natural projection. Observe that f is
a weak equivalence. By Proposition 7.3, f becomes, after extending the scalars by
(t) ⊂ k[[t]], an isomorphism. Therefore, in the following induced diagram, the map
Def(f) is an isomorphism, too:

Def(g′m)×Def(g′c) �Def(i)
⊃ Def(g′m)

Def(g′′m)×Def(g′′c )

Def(f)

?
Def(p)-- Def(g′′m)

Def(f)

?

Since, by Example 7.6, both Def(g′c) and Def(g′′c ) are points, the maps Def(i) and
Def(p) are isomorphisms. We finish the proof by concluding that Def(f) is also
an isomorphism. �

8. Deformation quantization of Poisson manifolds

In this section we indicate the main ideas of Kontsevich’s proof of the existence
of a deformation quantization of Poisson manifolds. Our exposition follows [23].
Let us recall some necessary notions.

Definition 8.1. A Poisson algebra is a vector space V equipped with operations
· : V ⊗ V → V and {−,−} : V ⊗ V → V such that:

– (V, · ) is an associative commutative algebra,
– (V, {−,−}) is a Lie algebra, and
– the map v 7→ {u, v} is a · -derivation for any u ∈ V , i.e.

{u, v · w} = {u, v} · w + v · {u, w} .

Exercise 8.2. Show that Poisson algebras can be equivalently defined as struc-
tures with only one operation • : V ⊗ V → V such that

u•(v•w) = (u•v)•w − 1

3

{

(u•w)•v + (v•w)•u− (v•u)•w − (w•u)•v)
}

,

for each u, v, w ∈ V , see [34, Example 2].

Poisson algebras are ‘classical limits’ of associative deformations of commuta-
tive associative algebras. By this we mean the following. Let A = (V, · ) be
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an associative algebra with multiplication a, b 7→ a · b. Consider a formal deforma-
tion (k[[t]]⊗V, ⋆) of A given, as in Theorem 3.15, by a family {µi : A⊗A→ A}i≥1

by the formula

(32) a ⋆ b := a · b + tµ1(a, b) + t2µ2(a, b) + t3µ3(a, b) + · · ·
for a, b ∈ V . We have the following:

Proposition 8.3. Suppose A = (V, · ) is a commutative associative algebra.
Then, for an associative deformation (32) of A,

{a, b} := µ1(a, b)− µ1(b, a), a, b ∈ V ,

is a Lie bracket such that P⋆ := (V, ·, {−,−}) is Poisson algebra.

Definition 8.4. In the above situation, P⋆ is called the classical limit of the
⋆-product and (k[[t]]⊗V, ⋆) a deformation quantization of the Poisson algebra P⋆.

Proof (Proof of Proposition 8.3). Let us prove first that {−,−} is a Lie bracket.
The antisymmetry of {−,−} is obvious, one thus only needs to verify the Ja-
cobi identity. It is a standard fact that the antisymmetrization of an associa-
tive multiplication is a Lie product [39, Chapter I], therefore [−,−] defined by
[x, y] := x⋆y−y ⋆x for x, y ∈ k[[t]]⊗A, is a Lie bracket on k[[t]]⊗A. We conclude
by observing that the Jacobi identity for {−,−} evaluated at a, b, c ∈ A is the
term at t2 of the Jacobi identify for [−,−] evaluated at the same elements.

It remains to verify the derivation property. It is clearly equivalent to

(33) µ1(ab, c)− µ1(c, ab)− aµ1(b, c) + aµ1(c, b)− µ1(a, c)b + µ1(c, a)b = 0

where we, for brevity, omitted the symbol for the · -product. In Remark 3.16 we
observed that µ1 is a Hochschild cocycle, therefore

ρ(a, b, c) := aµ1(b, c)− µ1(ab, c) + µ1(a, bc)− µ1(a, b)c = 0 .

A straightforward verification involving the commutativity of the · -product shows
that the left hand side of (33) equals −ρ(a, b, c)+ρ(a, c, b)−ρ(c, a, b). This finishes
the proof. �

Let us recall geometric versions of the above notions.

Definition 8.5. A Poisson manifold is a smooth manifold M equipped with a Lie
product {−,−} : C∞(M)⊗C∞(M)→ C∞(M) on the space of smooth functions
such that (C∞(M), · , {−,−}), where · is the standard pointwise multiplication,
is a Poisson algebra.

Poisson manifolds generalize symplectic ones in that the bracket {−,−} need
not be induced by a nondegenerate 2-form. The following notion was introduced
and physically justified in [5].

Definition 8.6. A deformation quantization (or a star product) of a Poisson man-
ifold M is a deformation quantization of the Poisson algebra (C∞(M), ·, {−,−})
such that all µi’s in (32) are differential operators.

Theorem 8.7 (Kontsevich [23]). Every Poisson manifold admits a deformation
quantization.



368 M. DOUBEK, M. MARKL, P. ZIMA

Proof (Sketch of Proof). Maxim Kontsevich proved this theorem in two steps.
He proved first a ‘local’ version assuming M = Rd, and then he globalized the
result to an arbitrary M using ideas of formal geometry and the language of
superconnections. We are going to sketch only the first step of Kontsevich’s proof.

The idea was to construct two weakly equivalent L∞-algebras g′, g′′ such that
Def(g′) contained the moduli space of Poisson structures on M and Def(g′′) was
the moduli space of star products, and then apply Theorem 7.8. In fact, g′ will
turn out to be an ordinary graded Lie algebra and g′′ a dg-Lie algebra.
– Construction of g′. It is the graded Lie algebra of polyvector fields with the struc-
ture given by the Shouten-Nijenhuis bracket. In more detail, g′ =

⊕

n≥0 g′n with

g′n := Γ(M,∧n+1TM), n ≥ 1 ,

where Γ(M,∧n+1TM) denotes the space of smooth sections of the (n+1)th exterior
power of the tangent bundle TM . The bracket is determined by

[ξ0 ∧ . . . ∧ ξk, η0 ∧ . . . ∧ ηl] :=

:=

k
∑

i=0

l
∑

j=0

(−1)i+j+k[ξi, ηj ] ∧ ξ0 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξk ∧ η0 ∧ . . . ∧ η̂j ∧ . . . ∧ ηl ,

where ξ1, . . . , ξk, η1, . . . , ηl ∈ Γ(M, TM) are vector fields, ˆ indicates the omission
and [ξi, ηj ] in the right hand side denotes the classical Lie bracket of vector fields
ξi and ηj [22, I.§1].

Recall that Poisson structures on M are in one-to-one correspondence with
smooth sections α ∈ Γ(M,∧2TM) satisfying [α, α] = 0. The corresponding
bracket of smooth functions f, g ∈ C∞(M) is given by {f, g} = α(f ⊗ g). Since g′

is just a graded Lie algebra,

MC(g′) = {s = s1t + s2t
2 + . . . ∈ g′1 ⊗ (t) | [s, s] = 0}

therefore clearly s := αt ∈ MC(g′) for each α ∈ Γ(M,∧2TM) defining a Poisson
structure. We see that Def(g′) contains the moduli space of Poisson structures
on M .

– Construction of g′′. It is the dg Lie algebra of polydiffenential operators,

g′′ =
⊕

n≥0

Dn
poly(M) ,

where

Dn
poly(M) ⊂ Cn+1

Hoch

(

C∞(M), C∞(M)
)

consists of Hochschild cochains (Definition 2.1) of the algebra C∞(M) that are
given by polydifferential operators. It is clear that D∗

poly(M) is closed under
the Hochschild differential and the Gerstenhaber bracket, so the dg-Lie structure
of Proposition 5.7 restricts to a dg-Lie structure on g′′. The analysis of Exam-
ple 5.16 shows that Def(g′′) represents equivalence classes of star products.
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– The weak equivalence. Consider the map f1 : g′ → g′′ defined by

f1(ξ0, . . . , ξk)(g0, . . . , gk) :=
1

(k + 1)!

∑

σ∈Sk+1

sgn(σ)

k
∏

i=0

ξσ(i)(gi) ,

for ξ0, . . . , ξk ∈ Γ(M, TM) and g0, . . . , gk ∈ C∞(M). It is easy to show that
f1 : (g′, d = 0) → (g′′, δHoch) is a chain map. Moreover, a version of the Kostant-
Hochschild-Rosenberg theorem for smooth manifolds proved in [23] states that f1

is a cohomology isomorphism. Unfortunately, f1 does not commute with brackets.
The following central statement of Kontsevich’s approach to deformation quanti-
zation says that f1 is, however, the linear part of an L∞-map:

Formality Theorem. The map f1 can be extended to an L∞-homomorphism
f = (f1, f2, f3, . . .) : g′ → g′′.

The formality theorem implies that g′ and g′′ are weakly equivalent in the cat-
egory of L∞-algebras. In other words, the dg-Lie algebra of polydifferential op-
erators is weakly equivalent to its cohomology. The ‘formality’ in the name of
the theorem is justified by rational homotopy theory where formal algebras are
algebras having the homotopy type of their cohomology.

Kontsevich’s construction of higher fi’s involves coefficients given as integrals
over compactifications of certain configuration spaces. An independent approach
of Tamarkin [43] based entirely on homological algebra uses a solution of the
Deligne conjecture, see also an overview [18] containing references to original
sources. �
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