ON ENDOMORPHISMS OF MULTIPLICATION AND COMULTIPLICATION MODULES

H. Ansari-Toroghy and F. Farshadifar

Abstract

Let R be a ring with an identity (not necessarily commutative) and let M be a left R-module. This paper deals with multiplication and comultiplication left R-modules M having right $\operatorname{End}_{R}(M)$-module structures.

1. Introduction

Throughout this paper R will denote a ring with an identity (not necessarily commutative) and all modules are assumed to be left modules. Further " \subset " will denote the strict inclusion and \mathbb{Z} will denote the ring of integers.

Let M be a left R-module and let $S:=\operatorname{End}_{R}(M)$ be the endomorphism ring of M. Then M has a structure as a right S-module so that M is an $R-S$ bimodule. If $f: M \rightarrow M$ and $g: M \rightarrow M$, then $f g: M \rightarrow M$ defined by $m(f g)=(m f) g$. Also for a submodule N of M,

$$
I^{N}:=\{f \in S: \operatorname{Im}(f)=M f \subseteq N\}
$$

and

$$
I_{N}:=\{f \in S: N \subseteq \operatorname{Ker}(f)\}
$$

are respectively a left and a right ideal of S. Further a submodule N of M is called ([3]) an open (resp. a closed) submodule of M if $N=N^{\circ}$, where $N^{\circ}=$ $\sum_{f \in I^{N}} \operatorname{Im}(f)$ (resp. $N=\bar{N}$, where $\bar{N}=\cap_{f \in I_{N}} \operatorname{Ker}(f)$). A left R-module M is said to self-generated (resp. self-cogenerated) if each submodule of M is open (resp. is closed).

Let M be an R-module and let $S=\operatorname{End}_{R}(M)$. Recently a large body of researches has been done about multiplication left R-module having right S-module structures. An R-module M is said to be a multiplication R-module if for every submodule N of M there exists a two-sided ideal I of R such that $N=I M$.

In [2], H. Ansari-Toroghy and F. Farshadifar introduced the concept of a comultiplication R-module and proved some results which are dual to those of multiplication R-modules. An R-module M is said to be a comultiplication R-module if for every submodule N of M there exists a two-sided ideal I of R such that $N=\left(0:_{M} I\right)$.

[^0]This paper deals with multiplication and comultiplication left R-modules M having right $\operatorname{End}_{R}(M)$-modules structures. In section three of this paper, among the other results, we have shown that every comultiplication R-module is co-Hopfian and generalized Hopfian. Further if M is a comultiplication module satisfying ascending chain condition on submodules N such that M / N is a comultiplication R-module, then M satisfies Fitting's Lemma. Also it is shown that if R is a commutative ring and M is a multiplication R-module and S is a domain, then for every maximal submodule P of M, I^{P} is a maximal ideal of S.

2. Previous results

In this section we will provide the definitions and results which are necessary in the next section.

Definition 2.1.

(a) M is said to be (see [9]) a multiplication R-module if for any submodule N of M there exists a two-sided ideal I of R such that $N=I M$.
(b) M is said to be a comultiplication R-module if for any submodule N of M there exists a two-sided ideal I of R such that $N=\left(0:_{M} I\right)$. For example if p is a prime number, then $\mathbb{Z}\left(p^{\infty}\right)$ is a comultiplication \mathbb{Z}-module but \mathbb{Z} (as a \mathbb{Z}-module) is not a comultiplication module (see [2]).
(c) Let N be a non-zero submodule of M. Then N is said to be (see [1) large or essential (resp. small) if for every non-zero submodule L of $M, N \cap L \neq 0$ (resp. $L+N=M$ implies that $L=M$).
(d) M is said to be (see [7]) Hopfian (resp. generalized Hopfian ($g H$ for short)) if every surjective endomorphism f of M is an isomorphism (resp. has a small kernel).
(e) M is said to be (see [8]) co-Hopfian (resp. weakly co-Hopfian) if every injective endomorphism f of M is an isomorphism (resp. an essential homomorphism).
(f) An R-module M is said to satisfy Fitting's Lemma if for each $f \in \operatorname{End}_{R}(M)$ there exists an integer $n \geq 1$ such that $M=\operatorname{Ker}\left(f^{n}\right) \bigoplus \operatorname{Im}\left(f^{n}\right)$ (see [5]).
(g) Let M be an R-module and let I be an ideal of R. Then $I M$ is called to be idempotent if $I^{2} M=I M$.

3. Main results

Lemma 3.1. Let R be any ring. Every comultiplication R-module is co-Hopfian.
Proof. Let M be a comultiplication R-module and let $f: M \rightarrow M$ be a monomorphism. There exists a two-sided ideal I of R such that $\operatorname{Im}(f)=\left(0:_{M} I\right)$. Now let $m \in M$ so that $m f \in \operatorname{Im}(f)$. Then for each $a \in I$, we have $(a m) f=a(m f)=0$. It follows that $a m \in \operatorname{Ker}(f)=0$. This implies that $a m=0$ so that $m \in\left(0:_{M} I\right)=$ $M f$. Hence we have $M \subseteq M f$ so that f is epic. It follows that M is a co-Hopfian R-module.

The following examples shows that not every comultiplication (resp. Artinian) R-module is an Artinian (resp. a comultiplication) R-module.

Example 3.2. Let p be a prime number. Then let R be the ring with underlying group

$$
R=\operatorname{End}_{\mathbb{Z}}\left(\mathbb{Z}\left(p^{\infty}\right)\right) \oplus \mathbb{Z}\left(p^{\infty}\right),
$$

and with multiplication

$$
\left(n_{1}, q_{1}\right) \cdot\left(n_{2}, q_{2}\right)=\left(n_{1} n_{2}, n_{1} q_{2}+n_{2} q_{1}\right)
$$

Osofsky has shown that R is a non-Artinian injective cogenerator (see [6] Exa. 24.34.1]). In fact R is a commutative ring. Hence R is a comultiplication R-module by [6, Prop. 23.13].

Example 3.3. Let F be a field, and let $M=\oplus_{i=1}^{n} F_{i}$, where $F_{i}=F$ for $i=$ $1,2, \ldots, n$. Clearly M is an Artinian non-comultiplication F-module.

Theorem 3.4. Let M be a comultiplication module satisfying ascending chain condition on submodules N such that M / N is a comultiplication R-module. Then M satisfies Fitting's Lemma.

Proof. Let $f \in \operatorname{End}_{R}(M)$ and consider the sequence
Ker $f \subseteq \operatorname{Ker} f^{2} \subseteq \cdots$.
Since every submodule of a comultiplication R-module is a comultiplication R-module by [2], for each n we have $M / \operatorname{Ker} f^{n} \cong \operatorname{Im} f^{n}$ implies that $M / \operatorname{Ker} f^{n}$ is a comultiplication R-module. Hence by hypothesis there exists a positive integer n such that $\operatorname{Ker}\left(f^{n}\right)=\operatorname{Ker}\left(f^{n+h}\right)$ for all $h \geq 1$. Set $f_{1}^{n}=\left.f^{n}\right|_{M\left(f^{n}\right)}$. Then $f_{1}^{n} \in \operatorname{End}_{R}\left(M\left(f^{n}\right)\right)$. Further we will show that f_{1}^{n} is monic. To see this let $x \in \operatorname{Ker}\left(f_{1}^{n}\right)$. Then $x=y\left(f^{n}\right)$ for some $y \in M$ and we have $x\left(f^{n}\right)=0$. It follows that $y\left(f^{2 n}\right)=0$ so that

$$
y \in \operatorname{Ker}\left(f^{2 n}\right)=\operatorname{Ker}\left(f^{n}\right)
$$

Hence we have $x=0$. But $(M) f^{n}$ is a comultiplication R-module and every comultiplication R-module is co-Hopfian by Lemma 3.1. So we conclude that f_{1}^{n} is an automorphism. In particular, $M\left(f^{n}\right) \cap \operatorname{Ker}\left(f^{n}\right)=0$. Now let $x \in M$. Since f_{1}^{n} is epimorphism, then there exists $y \in M$ such that $x\left(f^{n}\right)=y\left(f^{2 n}\right)$. Hence $\left(x-y\left(f^{n}\right)\right)\left(f^{n}\right)=0$. It follows that $x-y\left(f^{n}\right) \in \operatorname{Ker}\left(f^{n}\right)$. Now the result follows from this because $x=y\left(f^{n}\right)+\left(x-y\left(f^{n}\right)\right)$.

Corollary 3.5. Let M be an indecomposable comultiplication module satisfying ascending chain condition on submodules N such that M / N is a comultiplication R-module. Let $f \in \operatorname{End}_{R}(M)$. Then the following are equivalent.
(i) f is a monomorphism.
(ii) f is an epimorphism.
(iii) f is an automorphism.
(iv) f is not nilpotent.

Proof. $(\mathrm{i}) \Rightarrow($ ii). This is clear by Lemma 3.1.
(iii) \Rightarrow (ii). This is clear.
(iii) \Rightarrow (iv). Assume that f is an automorphism. Then $M=M f$. Hence,

$$
M=M f=M\left(f^{2}\right)=\cdots .
$$

If f were nilpotent, then M would be zero.
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$. Assume that f is an epimorphism. Then $M=M f$. Hence

$$
M=M f=M\left(f^{2}\right)=\cdots .
$$

By Theorem 3.4, there is a positive integer n such that

$$
M=\operatorname{Ker}\left(f^{n}\right) \oplus \operatorname{Im}\left(f^{n}\right) .
$$

Hence $M=\operatorname{Ker}\left(f^{n}\right) \oplus M$, so $\operatorname{Ker}\left(f^{n}\right)=0$. Thus, $\operatorname{Ker}(f)=0$.
(ii) \Rightarrow (iii). This follows from (ii) \Rightarrow (i).
(iv) \Rightarrow (iii). Suppose that f is not nilpotent. By Theorem 3.4, there exists a positive integer n such that $M=M f^{n} \bigoplus \operatorname{Ker} f^{n}$. Since M is indecomposable R-module, it follows that $\operatorname{Ker} f^{n}=0$ or $M f^{n}=0$. Since f is not nilpotent, we must have $\operatorname{Ker} f^{n}=0$. This implies that f is monic. This in turn implies that f is epic by Lemma 3.1. Hence the proof is completed.

Example 3.6. Let $A=K[x, y]$ be the polynomial ring over a field K in two indeterminates x, y. Then $\bar{A}=A /\left(x^{2}, y^{2}\right)$ is a comultiplication \bar{A}-module. But $\bar{A} / \bar{A} \overline{x y}$ is not a comultiplication \bar{A}-module (see [6, Exa. 24.4]). Therefore, not every homomorphic image of a comultiplication module is a comultiplication module.

Remark 3.7. In the Corollary 3.5 the condition M satisfying ascending chain condition on submodules N such that M / N is a comultiplication R-module can not be omitted. For example $M=\mathbb{Z}\left(p^{\infty}\right)$ is an indecomposable comultiplication \mathbb{Z}-module but not satisfying ascending chain condition on submodules N such that M / N is a comultiplication \mathbb{Z}-module. Define $f: \mathbb{Z}\left(p^{\infty}\right) \rightarrow \mathbb{Z}\left(p^{\infty}\right)$ by $x \rightarrow p x$. Clearly f is an epimorphism with $\operatorname{Ker} f=\mathbb{Z}(1 / p+\mathbb{Z})$. Hence f is not a monomorphism.

Lemma 3.8. Let M be a comultiplication R-module and let N be an essential submodule of M. If the right ideal I_{N} of $\operatorname{End}_{R}(M)$ is non-zero, then it is small in $\operatorname{End}_{R}(M)$.

Proof. Let J be any right ideal of $S=\operatorname{End}_{R}(M)$ such that $I_{N}+J=S$. Then $1_{M}=f+j$ for some $f \in I_{N}$ and $j \in J$. Since $\operatorname{Ker}\left(1_{M}-f\right) \cap N=0$ and N is an essential submodule of M, it follows that j is a monomorphism. Hence by Lemma 3.1, j is an automorphism so that $J=S$. Hence I_{N} is a small right ideal of S.

Proposition 3.9. Let M be a comultiplication R-module and let N be a submodule of M such that M / N is a faithful R-module. Then M / N is a co-Hopfian R-module.

Proof. Let $f: M / N \rightarrow M / N$ be an R-monomorphism and $(M / N) f=K / N$, with $N \subseteq K \subseteq M$. Since M is a comultiplication R-module there exists a two-sided ideal I of R such that $K=\left(0:_{M} I\right)$. Now

$$
(I(M / N)) f=I(M / N) f=I(K / N)=0 .
$$

Since f is monic, it follows that $I(M / N)=0$. This in turn implies that $I \subseteq$ $\operatorname{Ann}_{R}(M / N)=0$. Hence we have $K=M$ so that f is an epimorphism.

Lemma 3.10. Every comultiplication R-module is $g H$.
Proof. Let M be comultiplication R-module and let $f: M \rightarrow M$ be an epimorphism and assume that $\operatorname{Ker}(f)+K=M$, where K is a submodule of M. So $K f=M f=M$. Since M is a comultiplication module, there exists a two-sided ideal J of R such that $K=\left(0:_{M} J\right)$. Now

$$
0=0 f=\left(J\left(0:_{M} J\right)\right) f=J(K f)=J M
$$

It follows that $J \subseteq \operatorname{Ann}_{R}(M)$. Hence we have $K=\left(0:_{M} J\right)=M$. This shows that $\operatorname{Ker}(f)$ is a small submodule of M. So the proof is completed.

Proposition 3.11.

(a) Assume that whenever $f, g \in \operatorname{End}_{R}(M)$ with $f g=0$ then we have $g f=0$. If M is a self-generated (resp. self-cogenerated) R-module, then M is Hopfian (resp. co-Hopfian).
(b) Let M be a self-generated (resp. self-cogenerated) R-module and let S be a left Noetherian (resp. right Artinian) ring. Then M is a Noetherian S-module.

Proof. (a) Let $S=\operatorname{End}_{R}(M)$ and let $g: M \rightarrow M$ be an epimorphism. Let f be any element of $I^{\operatorname{Ker}(g)}$. Then $M f \subseteq \operatorname{Ker}(g)$, so $M(f g)=(M f) g=0$. Hence, $f g=0$. By our assumption, $g f=0$. Since g is an epimorphism, we have

$$
M f=(M g) f=M(g f)=0
$$

Thus, if M is self-generated,

$$
\operatorname{Ker}(g)=\sum_{f \in I^{\operatorname{Ker}(g)}} \operatorname{Im}(f)=0
$$

Hence M is a Hopfian R-module. The proof is similar when M is a self-cogenerated R-module.
(b) Let

$$
N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \cdots
$$

be an ascending chain of S-submodules of M. This induces the sequence

$$
I^{N_{1}} \subseteq I^{N_{2}} \subseteq \cdots \subseteq I^{N_{k}} \subseteq \cdots
$$

Now there exists a positive integer s such that for each $0 \leq i, I^{N_{s}}=I^{N_{i+s}}$. Since M is a self-generated R-module, we have $N_{s}=M I^{N_{s}}=M I^{N_{i+s}}=N_{i+s}$ for every $0 \leq i$. Thus M is a Noetherian S-module. For right Artinian case when M is a self-cogenerator R-module, the proof is similar. So the proof is completed.

Theorem 3.12. Let M be a multiplication R-module and let N be a submodule of M.
(a) If R is a commutative ring, and I is an ideal of R such that $I M$ is an idempotent submodule of M, then $I M$ is $g H$.
(b) If R is a commutative ring and N is faithful, then N is weakly co-Hopfian.
(c) If M is a quasi-injective, N is $g H$.

Proof. (a) Let I be an ideal of R such that $I M$ be an idempotent submodule of M. Let $f: I M \rightarrow I M$ be an epimorphism and assume that $\operatorname{Ker}(f)+L=I M$, where L is a submodule of $I M$. Then we have $I(\operatorname{Ker}(f))+I L=I M$. Let $\operatorname{Ker}(f)=J M$ for some ideal J of R. Since R is a commutative ring, we have

$$
0=I(\operatorname{Ker}(f)) f=(I J M) f=J(I M) f=J I M=I J M=I(\operatorname{Ker}(f))
$$

Thus by the above arguments, $I L=I M$ so that $I M \subseteq L$. It follows that $I M=L$ so that $I M$ is a generalized Hopfian R-module.
(b) Let I be an ideal of R such that $N=I M$. Let $f: N \rightarrow N$ be an injective homomorphism and assume that $N f \cap K=0$, where K is a submodule of N. Then there exist ideals J_{1} and J_{2} of R such that $N f=J_{1} M$ and $K=J_{2} M$. Then we have

$$
0=K \cap N f=K \cap(I M) f=\left(J_{2} M\right) \cap(I M) f=J_{2} M \cap J_{1} M \supseteq J_{2} J_{1} M
$$

Hence $J_{2} J_{1} M=0$. Now we have

$$
\left(I J_{2} M\right) f=J_{2}(I M) f=J_{2} J_{1} M=0
$$

Since f is monic, $J_{2} N=I J_{2} M=0$. Since N is a faithful R-module, we have $J_{2}=0$ so that $K=0$. Hence $N f$ is essential in N. It implies that N is a weakly co-Hopfian R-module as desired.
(c) Let $f: N \rightarrow N$ be an epimorphism and let $\operatorname{Ker}(f)+K=N$, where K is a submodule of N. Since M is quasi-injective, we can extend f to $g: M \rightarrow M$. But as M is a multiplication module, $K g \subseteq K$, therefore $K f \subseteq K$. On the other hand, $K f=N$ since f is epimorphism. Therefore $K=N$. Hence N is a generalized Hopfian R-module as desired.

Proposition 3.13. Let R be a commutative ring and let M be a multiplication R-module. Let $S=\operatorname{End}_{R}(M)$ be a domain. Then the following assertions hold.
(a) Each non-zero element of S is a monomorphism.
(b) If I and J are ideals of S such that $I \neq J$, then $M I \neq M J$.

Proof. (a) Assume that $0 \neq g \in S$. Then there exist ideals I and J of R such that $\operatorname{Im}(g)=J M$ and $\operatorname{Ker}(g)=I M$. Now we have

$$
0=(\operatorname{Ker}(g)) g=(I M) g=I(M g)=I J M
$$

It implies that $I J \subseteq \operatorname{Ann}_{R}(M)$. Since S is a domain, $\operatorname{Ann}_{R}(M)$ is a prime ideal of R by [2, 2.3]. Hence $I \subseteq \operatorname{Ann}_{R}(M)$ or $J \subseteq \operatorname{Ann}_{R}(M)$ so that $I M=0$ or $J M=0$. It turns out that $\operatorname{Ker}(g)=0$ as desired.
(b) Since R is a commutative ring, M is a multiplication S-module. Hence for $0 \neq m \in M$ there exists an ideal K of S such that $m S=M K$. Now we assume that $M I=M J$. Since R is a commutative ring, S is a commutative ring by [4]. Hence

$$
m I=m S I=(M K) I=(M I) K=(M J) K=(M K) J=m S J=m J
$$

Choose $f \in I \backslash J$. Then since $m f \in m I=m J$, there exists $h \in J$ such that $m h=m f$. Thus we have $m(h-f)=0$. Further $h-f \neq 0$. So by using part (a), we have $m \in \operatorname{Ker}(h-f)=0$. But this is a contradiction and the proof is completed.

Corollary 3.14. Let R be a commutative ring and M be a multiplication R-module. Set $S=\operatorname{End}_{R}(M)$ and $\operatorname{Im}(J)=\sum_{f \in J} \operatorname{Im}(f)$, where J is an ideal of S. If J is a proper ideal of a domain S, then $\operatorname{Im}(J)$ is a proper submodule of M.
Proof. This is an immediate consequence of Proposition 3.13 (b).
Theorem 3.15. Let R be a commutative ring and let M be a multiplication R-module such that $S=\operatorname{End}_{R}(M)$ is a domain. Then for every maximal submodule P of M, I^{P} is a maximal ideal of S.
Proof. Since $\operatorname{Id}_{M} \in S$ and $\operatorname{Id}_{M} \notin I^{P}$, we have $I^{P} \neq S$. Now assume that U is an ideal of S such that $I^{P} \subseteq U \subseteq S$. Then if $M U=M$, then by Corollary 3.14, $U=S$. If $M U=P$, then $U \subseteq I^{\bar{P}}$, so $U=I^{P}$. Hence I^{P} is a maximal ideal of S and the proof is completed.

Example 3.16. Let R be a commutative ring and let P be a prime ideal of R. Set $M=R / P$. Then M is a multiplication R-module and $S=\operatorname{End}_{R}(M)$ is a domain. Hence by Theorem 3.15, for every maximal submodule N of M, I^{N} is a maximal ideal of S.

Acknowledgement. The authors would like to thank the referee for his invaluable comments.

References

[1] Anderson, W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
[2] Ansari-Toroghy, H., Farshadifar, F., The dual notion of multiplication modules, Taiwanese J. Math. (to appear).
[3] Bae, Soon-Sook, On submodule inducing prime ideals of endomorphism ring, East Asian Math. 16 (1) (2000), 33-48.
[4] Choi, C. W., Multiplication modules and endomorphisms, Math. J. Toyama Univ. 18 (1995), 1-8.
[5] Choi, C. W., Smith, P. F., On endomorphisms of multiplication modules, J. Korean Math. Soc. 31 (1) (1994), 89-95.
[6] Faith, C., Algebra II: Ring theory, Springer-Verlag, New York-Heidelberg-Berlin, 1976.
[7] Ghorbani, A., Haghang, A., Generalized Hopfian modules, J. Algebra 255 (2002), 324-341.
[8] Haghang, A., Vedali, M. R., Modules whose injective endomorphism are essential, J. Algebra 243 (2001), 765-779.
[9] Lomp, Ch. E., Prime elements in partially ordered groupoid applied to modules and Hopf algebra actions, J. Algebra Appl. 4 (1) (2005), 77-98.

Department of Mathematics
Faculty of Science, Guilan University
P. O. Box 1914, Rasht, Iran

E-mail: ansari@guilan.ac.ir Farshadifar@guilan.ac.ir

[^0]: 2000 Mathematics Subject Classification: Primary: 13C99. Key words and phrases: endomorphisms, multiplication modules, comultiplication modules. Received September 28, 2006, revised October 2007. Editor J. Trlifaj.

