ARCHIVUM MATHEMATICUM (BRNO) Tomus 44 (2008), 9–15

ON ENDOMORPHISMS OF MULTIPLICATION AND COMULTIPLICATION MODULES

H. Ansari-Toroghy and F. Farshadifar

ABSTRACT. Let R be a ring with an identity (not necessarily commutative) and let M be a left R-module. This paper deals with multiplication and comultiplication left R-modules M having right $\operatorname{End}_R(M)$ -module structures.

1. Introduction

Throughout this paper R will denote a ring with an identity (not necessarily commutative) and all modules are assumed to be left modules. Further " \subset " will denote the strict inclusion and \mathbb{Z} will denote the ring of integers.

Let M be a left R-module and let $S := \operatorname{End}_R(M)$ be the endomorphism ring of M. Then M has a structure as a right S-module so that M is an R-S bimodule. If $f : M \to M$ and $g : M \to M$, then $fg : M \to M$ defined by m(fg) = (mf)g. Also for a submodule N of M,

$$I^N := \{ f \in S : \operatorname{Im}(f) = Mf \subseteq N \}$$

and

$$I_N := \{ f \in S : N \subseteq \operatorname{Ker}(f) \}$$

are respectively a left and a right ideal of S. Further a submodule N of M is called ([3]) an open (resp. a closed) submodule of M if $N=N^{\circ}$, where $N^{\circ}=\sum_{f\in I^{N}}\operatorname{Im}(f)$ (resp. $N=\bar{N}$, where $\bar{N}=\cap_{f\in I_{N}}\operatorname{Ker}(f)$). A left R-module M is said to self-generated (resp. self-cogenerated) if each submodule of M is open (resp. is closed).

Let M be an R-module and let $S = \operatorname{End}_R(M)$. Recently a large body of researches has been done about multiplication left R-module having right S-module structures. An R-module M is said to be a multiplication R-module if for every submodule N of M there exists a two-sided ideal I of R such that N = IM.

In [2], H. Ansari-Toroghy and F. Farshadifar introduced the concept of a comultiplication R-module and proved some results which are dual to those of multiplication R-modules. An R-module M is said to be a *comultiplication* R-module if for every submodule N of M there exists a two-sided ideal I of R such that $N = (0:_M I)$.

²⁰⁰⁰ Mathematics Subject Classification: Primary: 13C99.

Key words and phrases: endomorphisms, multiplication modules, comultiplication modules. Received September 28, 2006, revised October 2007. Editor J. Trlifaj.

This paper deals with multiplication and comultiplication left R-modules M having right $\operatorname{End}_R(M)$ -modules structures. In section three of this paper, among the other results, we have shown that every comultiplication R-module is co-Hopfian and generalized Hopfian. Further if M is a comultiplication module satisfying ascending chain condition on submodules N such that M/N is a comultiplication R-module, then M satisfies Fitting's Lemma. Also it is shown that if R is a commutative ring and M is a multiplication R-module and S is a domain, then for every maximal submodule P of M, I^P is a maximal ideal of S.

2. Previous results

In this section we will provide the definitions and results which are necessary in the next section.

Definition 2.1.

- (a) M is said to be (see [9]) a multiplication R-module if for any submodule N of M there exists a two-sided ideal I of R such that N = IM.
- (b) M is said to be a comultiplication R-module if for any submodule N of M there exists a two-sided ideal I of R such that $N = (0:_M I)$. For example if p is a prime number, then $\mathbb{Z}(p^{\infty})$ is a comultiplication \mathbb{Z} -module but \mathbb{Z} (as a \mathbb{Z} -module) is not a comultiplication module (see [2]).
- (c) Let N be a non-zero submodule of M. Then N is said to be (see [1]) large or essential (resp. small) if for every non-zero submodule L of M, $N \cap L \neq 0$ (resp. L + N = M implies that L = M).
- (d) M is said to be (see [7]) Hopfian (resp. generalized Hopfian (gH for short)) if every surjective endomorphism f of M is an isomorphism (resp. has a small kernel).
- (e) M is said to be (see [8]) co-Hopfian (resp. weakly co-Hopfian) if every injective endomorphism f of M is an isomorphism (resp. an essential homomorphism).
- (f) An R-module M is said to satisfy Fitting's Lemma if for each $f \in \operatorname{End}_R(M)$ there exists an integer $n \geq 1$ such that $M = \operatorname{Ker}(f^n) \bigoplus \operatorname{Im}(f^n)$ (see [5]).
- (g) Let M be an R-module and let I be an ideal of R. Then IM is called to be *idempotent* if $I^2M = IM$.

3. Main results

Lemma 3.1. Let R be any ring. Every comultiplication R-module is co-Hopfian.

Proof. Let M be a comultiplication R-module and let $f: M \to M$ be a monomorphism. There exists a two-sided ideal I of R such that $\mathrm{Im}(f) = (0:_M I)$. Now let $m \in M$ so that $mf \in \mathrm{Im}(f)$. Then for each $a \in I$, we have (am)f = a(mf) = 0. It follows that $am \in \mathrm{Ker}(f) = 0$. This implies that am = 0 so that $m \in (0:_M I) = Mf$. Hence we have $M \subseteq Mf$ so that f is epic. It follows that M is a co-Hopfian R-module.

The following examples shows that not every comultiplication (resp. Artinian) R-module is an Artinian (resp. a comultiplication) R-module.

Example 3.2. Let p be a prime number. Then let R be the ring with underlying group

$$R = \operatorname{End}_{\mathbb{Z}}(\mathbb{Z}(p^{\infty})) \oplus \mathbb{Z}(p^{\infty}),$$

and with multiplication

$$(n_1,q_1)\cdot(n_2,q_2)=(n_1n_2,n_1q_2+n_2q_1).$$

Osofsky has shown that R is a non-Artinian injective cogenerator (see [6, Exa. 24.34.1]). In fact R is a commutative ring. Hence R is a comultiplication R-module by [6, Prop. 23.13].

Example 3.3. Let F be a field, and let $M = \bigoplus_{i=1}^{n} F_i$, where $F_i = F$ for i = 1, 2, ..., n. Clearly M is an Artinian non-comultiplication F-module.

Theorem 3.4. Let M be a comultiplication module satisfying ascending chain condition on submodules N such that M/N is a comultiplication R-module. Then M satisfies Fitting's Lemma.

Proof. Let $f \in \operatorname{End}_R(M)$ and consider the sequence

$$\operatorname{Ker} f \subseteq \operatorname{Ker} f^2 \subseteq \cdots$$
.

Since every submodule of a comultiplication R-module is a comultiplication R-module by [2], for each n we have $M/\operatorname{Ker} f^n\cong Imf^n$ implies that $M/\operatorname{Ker} f^n$ is a comultiplication R-module. Hence by hypothesis there exists a positive integer n such that $\operatorname{Ker}(f^n)=\operatorname{Ker}(f^{n+h})$ for all $h\geq 1$. Set $f_1^n=f^n\mid_{M(f^n)}$. Then $f_1^n\in\operatorname{End}_R(M(f^n))$. Further we will show that f_1^n is monic. To see this let $x\in\operatorname{Ker}(f_1^n)$. Then $x=y(f^n)$ for some $y\in M$ and we have $x(f^n)=0$. It follows that $y(f^{2n})=0$ so that

$$y \in \operatorname{Ker}(f^{2n}) = \operatorname{Ker}(f^n)$$
.

Hence we have x=0. But $(M)f^n$ is a comultiplication R-module and every comultiplication R-module is co-Hopfian by Lemma 3.1. So we conclude that f_1^n is an automorphism. In particular, $M(f^n) \cap \operatorname{Ker}(f^n) = 0$. Now let $x \in M$. Since f_1^n is epimorphism, then there exists $y \in M$ such that $x(f^n) = y(f^{2n})$. Hence $(x-y(f^n))(f^n) = 0$. It follows that $x-y(f^n) \in \operatorname{Ker}(f^n)$. Now the result follows from this because $x = y(f^n) + (x-y(f^n))$.

Corollary 3.5. Let M be an indecomposable comultiplication module satisfying ascending chain condition on submodules N such that M/N is a comultiplication R-module. Let $f \in \operatorname{End}_R(M)$. Then the following are equivalent.

- (i) f is a monomorphism.
- (ii) f is an epimorphism.
- (iii) f is an automorphism.
- (iv) f is not nilpotent.

Proof. (i) \Rightarrow (ii). This is clear by Lemma 3.1.

- (iii)⇒(ii). This is clear.
- (iii) \Rightarrow (iv). Assume that f is an automorphism. Then M = Mf. Hence,

$$M = Mf = M(f^2) = \cdots.$$

If f were nilpotent, then M would be zero.

(ii) \Rightarrow (i). Assume that f is an epimorphism. Then M = Mf. Hence

$$M = Mf = M(f^2) = \cdots$$

By Theorem 3.4, there is a positive integer n such that

$$M = \operatorname{Ker}(f^n) \oplus \operatorname{Im}(f^n)$$
.

Hence $M = \text{Ker}(f^n) \oplus M$, so $\text{Ker}(f^n) = 0$. Thus, Ker(f) = 0.

- $(ii) \Rightarrow (iii)$. This follows from $(ii) \Rightarrow (i)$.
- (iv) \Rightarrow (iii). Suppose that f is not nilpotent. By Theorem 3.4, there exists a positive integer n such that $M = Mf^n \bigoplus \operatorname{Ker} f^n$. Since M is indecomposable R-module, it follows that $\operatorname{Ker} f^n = 0$ or $Mf^n = 0$. Since f is not nilpotent, we must have $\operatorname{Ker} f^n = 0$. This implies that f is monic. This in turn implies that f is epic by Lemma 3.1. Hence the proof is completed.

Example 3.6. Let A = K[x,y] be the polynomial ring over a field K in two indeterminates x, y. Then $\overline{A} = A/(x^2,y^2)$ is a comultiplication \overline{A} -module. But $\overline{A}/\overline{A}\overline{xy}$ is not a comultiplication \overline{A} -module (see [6, Exa. 24.4]). Therefore, not every homomorphic image of a comultiplication module is a comultiplication module.

Remark 3.7. In the Corollary 3.5 the condition M satisfying ascending chain condition on submodules N such that M/N is a comultiplication R-module can not be omitted. For example $M = \mathbb{Z}(p^{\infty})$ is an indecomposable comultiplication \mathbb{Z} -module but not satisfying ascending chain condition on submodules N such that M/N is a comultiplication \mathbb{Z} -module. Define $f \colon \mathbb{Z}(p^{\infty}) \to \mathbb{Z}(p^{\infty})$ by $x \to px$. Clearly f is an epimorphism with $\operatorname{Ker} f = \mathbb{Z}(1/p + \mathbb{Z})$. Hence f is not a monomorphism.

Lemma 3.8. Let M be a comultiplication R-module and let N be an essential submodule of M. If the right ideal I_N of $\operatorname{End}_R(M)$ is non-zero, then it is small in $\operatorname{End}_R(M)$.

Proof. Let J be any right ideal of $S = \operatorname{End}_R(M)$ such that $I_N + J = S$. Then $1_M = f + j$ for some $f \in I_N$ and $j \in J$. Since $\operatorname{Ker}(1_M - f) \cap N = 0$ and N is an essential submodule of M, it follows that j is a monomorphism. Hence by Lemma 3.1, j is an automorphism so that J = S. Hence I_N is a small right ideal of S. \square

Proposition 3.9. Let M be a comultiplication R-module and let N be a submodule of M such that M/N is a faithful R-module. Then M/N is a co-Hopfian R-module.

Proof. Let $f: M/N \to M/N$ be an R-monomorphism and (M/N)f = K/N, with $N \subseteq K \subseteq M$. Since M is a comultiplication R-module there exists a two-sided ideal I of R such that $K = (0:_M I)$. Now

$$(I(M/N))f = I(M/N)f = I(K/N) = 0.$$

Since f is monic, it follows that I(M/N) = 0. This in turn implies that $I \subseteq \operatorname{Ann}_R(M/N) = 0$. Hence we have K = M so that f is an epimorphism. \square

Lemma 3.10. Every comultiplication R-module is gH.

Proof. Let M be comultiplication R-module and let $f: M \to M$ be an epimorphism and assume that Ker(f) + K = M, where K is a submodule of M. So Kf = Mf = M. Since M is a comultiplication module, there exists a two-sided ideal J of R such that $K = (0:_M J)$. Now

$$0 = 0f = (J(0:_M J))f = J(Kf) = JM.$$

It follows that $J \subseteq \operatorname{Ann}_R(M)$. Hence we have $K = (0:_M J) = M$. This shows that $\operatorname{Ker}(f)$ is a small submodule of M. So the proof is completed.

Proposition 3.11.

- (a) Assume that whenever $f, g \in \operatorname{End}_R(M)$ with fg = 0 then we have gf = 0. If M is a self-generated (resp. self-cogenerated) R-module, then M is Hopfian (resp. co-Hopfian).
- (b) Let M be a self-generated (resp. self-cogenerated) R-module and let S be a left Noetherian (resp. right Artinian) ring. Then M is a Noetherian S-module.

Proof. (a) Let $S = \operatorname{End}_R(M)$ and let $g \colon M \to M$ be an epimorphism. Let f be any element of $I^{\operatorname{Ker}(g)}$. Then $Mf \subseteq \operatorname{Ker}(g)$, so M(fg) = (Mf)g = 0. Hence, fg = 0. By our assumption, gf = 0. Since g is an epimorphism, we have

$$Mf = (Mg)f = M(gf) = 0.$$

Thus, if M is self-generated,

$$\operatorname{Ker}(g) = \sum_{f \in I^{\operatorname{Ker}(g)}} \operatorname{Im}(f) = 0.$$

Hence M is a Hopfian R-module. The proof is similar when M is a self-cogenerated R-module.

(b) Let

$$N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$$

be an ascending chain of S-submodules of M. This induces the sequence

$$I^{N_1} \subset I^{N_2} \subset \cdots \subset I^{N_k} \subset \cdots$$
.

Now there exists a positive integer s such that for each $0 \le i$, $I^{N_s} = I^{N_{i+s}}$. Since M is a self-generated R-module, we have $N_s = MI^{N_s} = MI^{N_{i+s}} = N_{i+s}$ for every $0 \le i$. Thus M is a Noetherian S-module. For right Artinian case when M is a self-cogenerator R-module, the proof is similar. So the proof is completed. \square

Theorem 3.12. Let M be a multiplication R-module and let N be a submodule of M.

(a) If R is a commutative ring, and I is an ideal of R such that IM is an idempotent submodule of M, then IM is gH.

- (b) If R is a commutative ring and N is faithful, then N is weakly co-Hopfian.
- (c) If M is a quasi-injective, N is qH.

Proof. (a) Let I be an ideal of R such that IM be an idempotent submodule of M. Let $f:IM \to IM$ be an epimorphism and assume that $\operatorname{Ker}(f) + L = IM$, where L is a submodule of IM. Then we have $I(\operatorname{Ker}(f)) + IL = IM$. Let $\operatorname{Ker}(f) = JM$ for some ideal J of R. Since R is a commutative ring, we have

$$0 = I(\operatorname{Ker}(f))f = (IJM)f = J(IM)f = JIM = IJM = I(\operatorname{Ker}(f)).$$

Thus by the above arguments, IL = IM so that $IM \subseteq L$. It follows that IM = L so that IM is a generalized Hopfian R-module.

(b) Let I be an ideal of R such that N = IM. Let $f: N \to N$ be an injective homomorphism and assume that $Nf \cap K = 0$, where K is a submodule of N. Then there exist ideals J_1 and J_2 of R such that $Nf = J_1M$ and $K = J_2M$. Then we have

$$0 = K \cap Nf = K \cap (IM)f = (J_2M) \cap (IM)f = J_2M \cap J_1M \supseteq J_2J_1M.$$

Hence $J_2J_1M=0$. Now we have

$$(IJ_2M)f = J_2(IM)f = J_2J_1M = 0.$$

Since f is monic, $J_2N = IJ_2M = 0$. Since N is a faithful R-module, we have $J_2 = 0$ so that K = 0. Hence Nf is essential in N. It implies that N is a weakly co-Hopfian R-module as desired.

(c) Let $f: N \to N$ be an epimorphism and let $\operatorname{Ker}(f) + K = N$, where K is a submodule of N. Since M is quasi-injective, we can extend f to $g: M \to M$. But as M is a multiplication module, $Kg \subseteq K$, therefore $Kf \subseteq K$. On the other hand, Kf = N since f is epimorphism. Therefore K = N. Hence K = N is a generalized Hopfian K = N-module as desired.

Proposition 3.13. Let R be a commutative ring and let M be a multiplication R-module. Let $S = \operatorname{End}_R(M)$ be a domain. Then the following assertions hold.

- (a) Each non-zero element of S is a monomorphism.
- (b) If I and J are ideals of S such that $I \neq J$, then $MI \neq MJ$.

Proof. (a) Assume that $0 \neq g \in S$. Then there exist ideals I and J of R such that Im(g) = JM and Ker(g) = IM. Now we have

$$0 = (\operatorname{Ker}(g))g = (IM)g = I(Mg) = IJM.$$

It implies that $IJ \subseteq \operatorname{Ann}_R(M)$. Since S is a domain, $\operatorname{Ann}_R(M)$ is a prime ideal of R by [2, 2.3]. Hence $I \subseteq \operatorname{Ann}_R(M)$ or $J \subseteq \operatorname{Ann}_R(M)$ so that IM = 0 or JM = 0. It turns out that $\operatorname{Ker}(g) = 0$ as desired.

(b) Since R is a commutative ring, M is a multiplication S-module. Hence for $0 \neq m \in M$ there exists an ideal K of S such that mS = MK. Now we assume that MI = MJ. Since R is a commutative ring, S is a commutative ring by [4]. Hence

$$mI = mSI = (MK)I = (MI)K = (MJ)K = (MK)J = mSJ = mJ$$
.

Choose $f \in I \setminus J$. Then since $mf \in mI = mJ$, there exists $h \in J$ such that mh = mf. Thus we have m(h - f) = 0. Further $h - f \neq 0$. So by using part (a), we have $m \in \text{Ker}(h - f) = 0$. But this is a contradiction and the proof is completed.

Corollary 3.14. Let R be a commutative ring and M be a multiplication R-module. Set $S = \operatorname{End}_R(M)$ and $\operatorname{Im}(J) = \sum_{f \in J} \operatorname{Im}(f)$, where J is an ideal of S. If J is a proper ideal of a domain S, then $\operatorname{Im}(J)$ is a proper submodule of M.

Proof. This is an immediate consequence of Proposition 3.13 (b).

Theorem 3.15. Let R be a commutative ring and let M be a multiplication R-module such that $S = \operatorname{End}_R(M)$ is a domain. Then for every maximal submodule P of M, I^P is a maximal ideal of S.

Proof. Since $\mathrm{Id}_M \in S$ and $\mathrm{Id}_M \notin I^P$, we have $I^P \neq S$. Now assume that U is an ideal of S such that $I^P \subseteq U \subseteq S$. Then if MU = M, then by Corollary 3.14, U = S. If MU = P, then $U \subseteq I^P$, so $U = I^P$. Hence I^P is a maximal ideal of S and the proof is completed.

Example 3.16. Let R be a commutative ring and let P be a prime ideal of R. Set M = R/P. Then M is a multiplication R-module and $S = \operatorname{End}_R(M)$ is a domain. Hence by Theorem 3.15, for every maximal submodule N of M, I^N is a maximal ideal of S.

Acknowledgement. The authors would like to thank the referee for his invaluable comments.

References

- [1] Anderson, W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
- [2] Ansari-Toroghy, H., Farshadifar, F., *The dual notion of multiplication modules*, Taiwanese J. Math. (to appear).
- [3] Bae, Soon-Sook, On submodule inducing prime ideals of endomorphism ring, East Asian Math. 16 (1) (2000), 33–48.
- [4] Choi, C. W., Multiplication modules and endomorphisms, Math. J. Toyama Univ. 18 (1995), 1–8.
- [5] Choi, C. W., Smith, P. F., On endomorphisms of multiplication modules, J. Korean Math. Soc. 31 (1) (1994), 89–95.
- [6] Faith, C., Algebra II: Ring theory, Springer-Verlag, New York-Heidelberg-Berlin, 1976.
- [7] Ghorbani, A., Haghang, A., Generalized Hopfian modules, J. Algebra 255 (2002), 324–341.
- [8] Haghang, A., Vedali, M. R., Modules whose injective endomorphism are essential, J. Algebra 243 (2001), 765–779.
- [9] Lomp, Ch. E., Prime elements in partially ordered groupoid applied to modules and Hopf algebra actions, J. Algebra Appl. 4 (1) (2005), 77–98.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE, GUILAN UNIVERSITY
P. O. BOX 1914, RASHT, IRAN

E-mail: ansari@guilan.ac.ir, Farshadifar@guilan.ac.ir