THE JET PROLONGATIONS OF 2-FIBRED MANIFOLDS AND THE FLOW OPERATOR

Włodzimierz M. Mikulski

ABSTRACT. Let r, s, m, n, q be natural numbers such that $s \ge r$. We prove that any 2- $\mathcal{FM}_{m,n,q}$ -natural operator $A: T_{2\text{-proj}} \rightsquigarrow TJ^{(s,r)}$ transforming 2-projectable vector fields V on (m, n, q)-dimensional 2-fibred manifolds $Y \rightarrow X \rightarrow M$ into vector fields A(V) on the (s, r)-jet prolongation bundle $J^{(s,r)}Y$ is a constant multiple of the flow operator $\mathcal{J}^{(s,r)}$.

All manifolds and maps are assumed to be of class C^{∞} . Manifolds are assumed to be finite dimensional and without boundaries.

The category of all manifolds and maps is denoted by $\mathcal{M}f$. The category of all fibred manifolds (surjective submersions $X \to M$ between manifolds) and fibred maps is denoted by \mathcal{FM} . The category of all fibred manifolds with *m*-dimensional bases and *n*-dimensional fibres and their fibred embeddings is denoted by $\mathcal{FM}_{m,n}$. The category of 2-fibred manifold (pairs of surjective submersions $Y \to X \to M$ between manifolds) and their 2-fibred maps is denoted by $2\mathcal{FM}$. The category of all fibred manifolds $Y \to X \to M$ such that $X \to M$ is an $\mathcal{FM}_{m,n}$ -object and their 2-fibred maps covering $\mathcal{FM}_{m,n}$ -maps is denoted by $2\mathcal{FM}_{m,n}$. The category of all fibred manifolds $Y \to X \to M$ such that $X \to M$ is an $\mathcal{FM}_{m,n}$ -object and $Y \to X$ is an $\mathcal{FM}_{m+n,q}$ -object and their 2-fibred embeddings is denoted by $2\mathcal{FM}_{m,n}$. The standard $2\mathcal{FM}_{m,n,q}$ -object is denoted by $\mathbf{R}^{m,n,q} = (\mathbf{R}^m \times \mathbf{R}^n \times \mathbf{R}^q \to \mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^m)$. The usual coordinates on $\mathbf{R}^{m,n,q}$ are denoted by x^1, \ldots, x^m , $y^1, \ldots, y^n, z^1, \ldots, z^q$.

Taking into consideration some idea from [1] one can generalize the concept of jets as follows. Let r and s be integers such that $s \ge r$. Let $Y \to X \to M$ be a 2- $\mathcal{FM}_{m,n}$ -object. Sections $\sigma_1, \sigma_2 \colon X \to Y$ of $Y \to X$ have the same (s, r)-jet $j_x^{(s,r)}\sigma_1 = j_x^{(s,r)}\sigma_2$ at $x \in X$ iff

$$j_x^{s-r} (J^r \sigma_1 \mid X_{p_0(x)}) = j_x^{s-r} (J^r \sigma_2 \mid X_{p_0(x)}),$$

where $J^r \sigma_i \colon X \to J^r Y$ is the *r*-jet map $J^r \sigma_i(x) = j_x^r \sigma_i, x \in X$, and $X_{p_0(x)}$ is the fibre of $X \to M$ through *x*. Equivalently $j_x^{(s,r)} \sigma_1 = j_x^{(s,r)} \sigma_2$ iff (in some and then in every 2- $\mathcal{FM}_{m,n}$ -coordinates) $D_{(\alpha,\beta)}\sigma_1(x) = D_{(\alpha,\beta)}\sigma_2(x)$ for all $\alpha \in (\mathbf{N} \cup \{0\})^m$ and $\beta \in (\mathbf{N} \cup \{0\})^n$ with $|\alpha| \leq r$ and $|\alpha| + |\beta| \leq s$, where $D_{(\alpha,\beta)}$ denotes the

²⁰⁰⁰ Mathematics Subject Classification: Primary: 58A20.

Key words and phrases: (s, r)-jet, bundle functor, natural operator, flow operator, 2-fibred manifold, 2-projectable vector field.

Received March 13, 2007. Editor I. Kolář.

iterated partial derivative corresponding to (α, β) . Thus we have the so called (s, r)-jets prolongation bundle

$$J^{(s,r)}Y = \left\{ j_x^{(s,r)}\sigma \mid \sigma \colon X \to Y \text{ is a section of } Y \to X, \ x \in X \right\}.$$

Given a 2- $\mathcal{FM}_{m,n}$ -map $f: Y_1 \to Y_2$ of two 2- $\mathcal{FM}_{m,n}$ -objects covering $\mathcal{FM}_{m,n}$ --map $\underline{f}: X_1 \to X_2$ we have the induced map $J^{(s,r)}f: J^{(s,r)}Y_1 \to J^{(s,r)}Y_2$ given by $J^{(s,r)}f(j_x^{(s,r)}\sigma) = j_{\underline{f}(x)}^{(s,r)}(f \circ \sigma \circ \underline{f}^{-1}), \ j_x^{(s,r)}\sigma \in J^{(s,r)}Y_1$. The correspondence $J^{(s,r)}: 2-\mathcal{FM}_{m,n} \to \mathcal{FM}$ is a (fiber product preserving) bundle functor.

Let $Y \to X \to M$ be an 2- $\mathcal{FM}_{m,n,q}$ -object. A vector field V on Y is called 2-projectable if there exist (unique) vector fields V_1 on X and V_0 on M such that Vis related with V_1 and V_1 is related with V_0 (with respect to the 2-fibred manifold projections). Equivalently, the flow ExptV of V is formed by (local) 2- $\mathcal{FM}_{m,n,q}$ isomorphisms. Thus we can apply functor $J^{(s,r)}$ to ExptV and obtain new flow $J^{(s,r)}(\text{ExptV})$ on $J^{(s,r)}Y$. Consequently we obtain vector field $\mathcal{J}^{(s,r)}V$ on $J^{(s,r)}Y$. The corresponding 2- $\mathcal{FM}_{m,n,q}$ -natural operator $\mathcal{J}^{(s,r)}: T_{2-\text{proj}} \rightsquigarrow TJ^{(s,r)}$ is called the flow operator (of $J^{(s,r)}$).

The main result of the present note is the following classification theorem.

Theorem 1. Let r, s, m, n, q be natural numbers such that $s \ge r$. Any 2- $\mathcal{FM}_{m,n,q}$ -natural operator $A: T_{2\text{-proj}} \rightsquigarrow TJ^{(s,r)}$ is a constant multiple of the flow operator $\mathcal{J}^{(s,r)}$.

Thus Theorem 1 extends the result from [2] on 2-fibred manifolds. More precisely, in [2] it is proved that any $\mathcal{FM}_{m,n}$ -natural operator A lifting projectable vector fields V from fibred manifolds $Y \to M$ to vector fields A(V) on J^rY is a constant multiple of the flow operator.

In the proof of Theorem 1 we will use the method from [4] (a Weil algebra technique). We start with the proof of the following lemma. Let $A: T_{2-\text{proj}} \rightsquigarrow TJ^{(s,r)}$ be a natural operator in question.

Lemma 1. The natural operator A is determined by the restriction $A\left(\frac{\partial}{\partial x^1}\right) | (J^{(s,r)}(\mathbf{R}^{m,n,q}))_{(0,0)}$, where $(0,0) \in \mathbf{R}^m \times \mathbf{R}^n$.

Proof. The assertion is an immediate consequence of the naturality and regularity of A and the fact that any 2-projectable vector field which is not $(Y \to M)$ -vertical is related with $\frac{\partial}{\partial x^1}$ by an 2- $\mathcal{FM}_{m,n,q}$ -map.

Now we prove

Lemma 2. Let A be the operator. Let $\pi: J^{(s,r)}Y \to X$ be the projection. Then there exists the unique real number c and the unique π -vertical operator $\mathcal{V}: T_{2-\text{proj}} \rightsquigarrow TJ^{(s,r)}$ with $\mathcal{V}(0) = 0$ such that $A = c\mathcal{J}^{(s,r)} + \mathcal{V}$.

Proof. Define $C = T\pi \circ A(\frac{\partial}{\partial x^1}) : (J^{(s,r)}(\mathbf{R}^{m,n,q}))_{(0,0)} \to T_{(0,0)}(\mathbf{R}^m \times \mathbf{R}^n)$. Using the invariance of A with respect to $2 - \mathcal{FM}_{m,n,q}$ -maps

$$(x^1,\ldots,x^m,y^1,\ldots,y^n,\tau z^1,\ldots,\tau z^q)$$

for $\tau > 0$ and putting $t \to 0$ we get that $C(j_{(0,0)}^{(s,r)}(\sigma)) = C(j_{(0,0)}^{(s,r)}(0))$, where 0 is the zero section. Then using the invariance of A with respect to

$$(x^1, \tau x^2, \ldots, \tau x^m, \tau y^1, \ldots, \tau y^n, \tau z^1, \ldots, \tau z^q)$$

for $\tau > 0$ and putting $t \to 0$ we get that $C(j_{(0,0)}^{(s,r)}(0)) = c \frac{\partial}{\partial x^1|_0}$ for some $c \in \mathbf{R}$. We put $\mathcal{V} = A - c\mathcal{J}^{(s,r)}$. Then \mathcal{V} is of vertical type because of Lemma 1. Clearly, $A = c\mathcal{J}^{(s,r)} + \mathcal{V}$.

It remains to show that $\mathcal{V}(0) = 0$. Clearly, the flow of $\mathcal{V}(0)$ is a family of natural automorphisms $J^{(s,r)} \to J^{(s,r)}$. Since the 2- $\mathcal{FM}_{m,n,q}$ -orbit of $j^{(s,r)}_{(0,0)}(0)$ is the whole $(J^{(s,r)}(\mathbf{R}^{m,n,q}))_{(0,0)}$ (any element $j^{(s,r)}_{(0,0)}\sigma \in (J^{(s,r)}(\mathbf{R}^{m,n,q}))_{(0,0)}$ is transformed by 2- $\mathcal{FM}_{m,n,q}$ -map

$$(x, y, z - \sigma(x, y))$$

into $j_{(0,0)}^{(s,r)}(0)$, then any natural automorphism $\mathcal{E}: J^{(s,r)} \to J^{(s,r)}$ is determined by $\mathcal{E}(j_{(0,0)}^{(s,r)}(0))$. Then using the invariance of \mathcal{E} with respect to

$$(\tau x^1, \ldots, \tau x^m, \tau y^1, \ldots, \tau y^n, \tau z^1, \ldots, \tau z^q)$$

for $\tau > 0$ and putting $\tau \to 0$ we get $\mathcal{E}(j_{(0,0)}^{(s,r)}(0)) = j_{(0,0)}^{(s,r)}(0)$. Then \mathcal{E} = id and then $\mathcal{V}(0) = 0$.

Define a bundle functor $F \colon \mathcal{M}f \to \mathcal{F}\mathcal{M}$ by

$$FN = \left(J^{(s,r)}(\mathbf{R}^m \times \mathbf{R}^n \times N)\right)_{(0,0)}, \quad Ff = \left(J^{(s,r)}(\mathrm{id}_{\mathbf{R}^m} \times \mathrm{id}_{\mathbf{R}^n} \times f)\right)_{(0,0)}.$$

Lemma 3. The bundle functor $F \colon \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is product preserving.

Proof. It is clear.

Let $B = F\mathbf{R}$ be the Weil algebra corresponding to F.

Lemma 4. We have $B = \mathcal{D}_{m+n}^s / \underline{B}$, where $\mathcal{D}_{m+n}^s = J_{(0,0)}^s(\mathbf{R}^{m+n}, \mathbf{R})$ and $\underline{B} = \langle j_{(0,0)}^s(x^1), \ldots, j_{(0,0)}^s(x^m) \rangle^{r+1}$ is the (r+1)-power of the ideal $\langle j_{(0,0)}^s(x^1), \ldots, j_{(0,0)}^s(x^m) \rangle$, generated by the elements as indicate.

Proof. It is a simple observation.

We have the obvious action $H: G^s_{m,n} \times B \to B$,

$$H(j_{(0,0)}^{s}\psi,[j_{(0,0)}^{s}\gamma]) = [j_{(0,0)}^{s}(\gamma \circ \psi^{-1})]$$

for any $\mathcal{FM}_{,m,n}$ -map $\psi : (\mathbf{R}^m \times \mathbf{R}^n, (0,0)) \to (\mathbf{R}^m \times \mathbf{R}^n, (0,0))$ and $\gamma : \mathbf{R}^{m+n} \to \mathbf{R}$. This action is by algebra automorphisms.

Lemma 5. For any derivation $D \in Der(B)$ we have the implication: if

$$H(j^s_{(0,0)}(\tau \operatorname{id})) \circ D \circ H(j^s_{(0,0)}(\tau^{-1} \operatorname{id})) \to 0 \quad as \quad \tau \to 0 \quad then \quad D = 0.$$

Proof. Let $D \in Der(B)$ be such that

$$H(j^s_{(0,0)}(\tau \operatorname{id})) \circ D \circ H(j^s_{(0,0)}(\tau^{-1} \operatorname{id})) \to 0 \quad \text{as} \quad \tau \to 0$$

For i = 1, ..., m and j = 1, ..., n write $D([j^s_{(0,0)}(x^i)]) = \sum a^i_{\alpha\beta} [j^s_{(0,0)}(x^\alpha y^\beta)]$ and $D([j^s_{(0,0)}(y^j)]) = \sum b^j_{\alpha\beta} [j^s_{(0,0)}(x^\alpha y^\beta)]$ for some (unique) real numbers $a^i_{\alpha\beta}$ and $b^j_{\alpha\beta}$, where the sums are over all $\alpha \in (\mathbf{N} \cup \{0\})^m$ and $\beta \in (\mathbf{N} \cup \{0\})^n$ with $|\alpha| \leq r$ and $|\alpha| + |\beta| \leq s$. We have

$$H(j_{(0,0)}^{s}(\tau \operatorname{id})) \circ D \circ H(j_{(0,0)}^{s}(\tau^{-1} \operatorname{id})) ([j_{(0,0)}^{s}(x^{i})]) = \sum a_{\alpha\beta}^{i} \frac{1}{\tau^{|\alpha|+|\beta|-1}} [j_{(0,0)}^{s}(x^{\alpha}y^{\beta})]$$

Then from the assumption on D it follows that $a^i_{\alpha\beta} = 0$ if $(\alpha, \beta) \neq ((0), (0))$. Similarly, $b^j_{\alpha\beta} = 0$ if $(\alpha, \beta) \neq ((0), (0))$. Then $D([j^s_{(0,0)}(x^i)]) = a^i_{(0)(0)}[j^s_{(0,0)}(1)]$ and $D([j^s_{(0,0)}(y^j)]) = b^j_{(0)(0)}[j^s_{(0,0)}(1)]$ for i = 1, ..., m and j = 1, ..., n. Then (since $[j^s_{(0,0)}((x^i)^{r+1})] = 0$ and D is a differentiation) we have

$$\begin{aligned} 0 &= D\big([j^s_{(0,0)}((x^i)^{r+1})]\big) = (r+1)\big[j^s_{(0,0)}((x^i)^r)\big]D\big([j^s_{(0,0)}(x^i)]\big) \\ &= (r+1)a^i_{(0)(0)}\big[j^s_{(0,0)}((x^i)^r)\big]\,. \end{aligned}$$

Then $a_{(0)(0)}^i = 0$ as $[j_{(0,0)}^s((x^i)^r)] \neq 0$. Similarly, $b_{(0)(0)}^j = 0$. Then D = 0 because the $[j_{(0,0)}^s(x^i)]$ and $[j_{(0,0)}^s(y^j)]$ generate the algebra B.

Proof of Theorem 1. Operator \mathcal{V} from Lemma 2 defines (by the restriction) $\mathcal{M}f_q$ -natural vector fields $\tilde{\mathcal{V}}_t = \mathcal{V}(t\frac{\partial}{\partial x^1})|FN$ on FN for any $t \in \mathbf{R}$. Clearly, \mathcal{V} is determined by $\tilde{\mathcal{V}}_1$. By Lemma 2, $\tilde{\mathcal{V}}_0 = 0$. By [2], $\tilde{\mathcal{V}}_t = \operatorname{op}(D_t)$ for some $D_t \in \operatorname{Der}(B)$. Then using the invariance of \mathcal{V} with respect to

$$(\tau x^1,\ldots,\tau x^m,\tau y^1,\ldots,\tau y^n,z^1,\ldots,z^q)$$

for $\tau \neq 0$ and putting $\tau \to 0$ we obtain that

$$H(j_{(0,0)}^s(\tau \operatorname{id})) \circ D_t \circ H(j_{(0,0)}^s(\tau^{-1} \operatorname{id})) \to 0 \quad \text{as} \quad \tau \to 0.$$

Then $D_t = 0$ because of Lemma 5. Then $\mathcal{V} = 0$, and then $A = c\mathcal{J}^{(s,r)}$ as well. \Box

Remark 1. There is another (non-equivalent) generalization of jets. Let $s \ge r$. Let $Y \to X \to M$ be a 2-fibred manifold. By [2], sections $\sigma_1, \sigma_2 \colon X \to Y$ of $Y \to X$ have the same r, s-jets $j_x^{r,s}\sigma_1 = j_x^{r,s}\sigma_2$ at $x \in X$ iff

$$j_x^r \sigma_1 = j_x^r \sigma_2$$
 and $j_x^s (\sigma_1 \mid X_{p_o(x)}) = j_x^s (\sigma_2 \mid X_{p_o(x)})$,

where $X_{p_o(x)}$ is the fiber of $X \to M$ through x. Consequently we have the corresponding ding bundle $J^{r,s}Y$ and the corresponding (fiber product preserving) bundle functor $J^{r,s}: 2-\mathcal{FM}_{m,n} \to \mathcal{FM}$. In [3], we proved that any $2-\mathcal{FM}_{m,n,q}$ -natural operator $A: T_{2-\text{proj}} \rightsquigarrow TJ^{r,s}$ is a constant multiple of the flow operator $\mathcal{J}^{r,s}$ corresponding to $J^{r,s}$ (we used quite different method than the one in [4] or in the present note).

References

- Cabras, A., Janyška, J., Kolář, I., On the geometry of variational calculus on some functional bundles, Note Mat. 26 (2) (2006), 51–57.
- [2] Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag Berlin, 1993.
- Mikulski, W. M., The jet prolongations of fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), 441–458.
- [4] Mikulski, W. M., The natural operators lifting projectable vector fields to some fiber product preserving bundles, Ann. Polon. Math. 81 (3) (2003), 261–271.

Institute of Mathematics, Jagellonian University Reymonta 4, Kraków, Poland *E-mail*: mikulski@im.uj.edu.pl