THE JET PROLONGATIONS OF 2-FIBRED MANIFOLDS AND THE FLOW OPERATOR

Weodzimierz M. Mikulski

Abstract

Let r, s, m, n, q be natural numbers such that $s \geq r$. We prove that any $2-\mathcal{F} \mathcal{M}_{m, n, q}$-natural operator $A: T_{2 \text {-proj }} \rightsquigarrow T J^{(s, r)}$ transforming 2-projectable vector fields V on (m, n, q)-dimensional 2-fibred manifolds $Y \rightarrow$ $X \rightarrow M$ into vector fields $A(V)$ on the (s, r)-jet prolongation bundle $J^{(s, r)} Y$ is a constant multiple of the flow operator $\mathcal{J}^{(s, r)}$.

All manifolds and maps are assumed to be of class C^{∞}. Manifolds are assumed to be finite dimensional and without boundaries.

The category of all manifolds and maps is denoted by $\mathcal{M} f$. The category of all fibred manifolds (surjective submersions $X \rightarrow M$ between manifolds) and fibred maps is denoted by $\mathcal{F M}$. The category of all fibred manifolds with m-dimensional bases and n-dimensional fibres and their fibred embeddings is denoted by $\mathcal{F} \mathcal{M}_{m, n}$. The category of 2-fibred manifold (pairs of surjective submersions $Y \rightarrow X \rightarrow M$ between manifolds) and their 2-fibred maps is denoted by $2-\mathcal{F M}$. The category of all fibred manifolds $Y \rightarrow X \rightarrow M$ such that $X \rightarrow M$ is an $\mathcal{F} \mathcal{M}_{m, n}$-object and their 2-fibred maps covering $\mathcal{F} \mathcal{M}_{m, n}$-maps is denoted by $2-\mathcal{F} \mathcal{M}_{m, n}$. The category of all fibred manifolds $Y \rightarrow X \rightarrow M$ such that $X \rightarrow M$ is an $\mathcal{F} \mathcal{M}_{m, n}$-object and $Y \rightarrow X$ is an $\mathcal{F} \mathcal{M}_{m+n, q^{-}}$-object and their 2-fibred embeddings is denoted by $2-\mathcal{F} \mathcal{M}_{m, n, q}$. The standard 2- $\mathcal{F} \mathcal{M}_{m, n, q}$-object is denoted by $\mathbf{R}^{m, n, q}=\left(\mathbf{R}^{m} \times \mathbf{R}^{n} \times \mathbf{R}^{q} \rightarrow\right.$ $\mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. The usual coordinates on $\mathbf{R}^{m, n, q}$ are denoted by x^{1}, \ldots, x^{m}, $y^{1}, \ldots, y^{n}, z^{1}, \ldots, z^{q}$.

Taking into consideration some idea from [1] one can generalize the concept of jets as follows. Let r and s be integers such that $s \geq r$. Let $Y \rightarrow X \rightarrow M$ be a $2-\mathcal{F} \mathcal{M}_{m, n}$-object. Sections $\sigma_{1}, \sigma_{2}: X \rightarrow Y$ of $Y \rightarrow X$ have the same (s, r)-jet $j_{x}^{(s, r)} \sigma_{1}=j_{x}^{(s, r)} \sigma_{2}$ at $x \in X$ iff

$$
j_{x}^{s-r}\left(J^{r} \sigma_{1} \mid X_{p_{0}(x)}\right)=j_{x}^{s-r}\left(J^{r} \sigma_{2} \mid X_{p_{0}(x)}\right),
$$

where $J^{r} \sigma_{i}: X \rightarrow J^{r} Y$ is the r-jet map $J^{r} \sigma_{i}(x)=j_{x}^{r} \sigma_{i}, x \in X$, and $X_{p_{0}(x)}$ is the fibre of $X \rightarrow M$ through x. Equivalently $j_{x}^{(s, r)} \sigma_{1}=j_{x}^{(s, r)} \sigma_{2}$ iff (in some and then in every $2-\mathcal{F} \mathcal{M}_{m, n}$-coordinates) $D_{(\alpha, \beta)} \sigma_{1}(x)=D_{(\alpha, \beta)} \sigma_{2}(x)$ for all $\alpha \in(\mathbf{N} \cup\{0\})^{m}$ and $\beta \in(\mathbf{N} \cup\{0\})^{n}$ with $|\alpha| \leq r$ and $|\alpha|+|\beta| \leq s$, where $D_{(\alpha, \beta)}$ denotes the

[^0]iterated partial derivative corresponding to (α, β). Thus we have the so called (s, r)-jets prolongation bundle
$$
J^{(s, r)} Y=\left\{j_{x}^{(s, r)} \sigma \mid \sigma: X \rightarrow Y \text { is a section of } Y \rightarrow X, x \in X\right\} .
$$

Given a $2-\mathcal{F} \mathcal{M}_{m, n}$-map $f: Y_{1} \rightarrow Y_{2}$ of two $2-\mathcal{F} \mathcal{M}_{m, n^{-}}$objects covering $\mathcal{F} \mathcal{M}_{m, n^{-}}$ -map $f: X_{1} \rightarrow X_{2}$ we have the induced map $J^{(s, r)} f: J^{(s, r)} Y_{1} \rightarrow J^{(s, r)} Y_{2}$ given by $J^{(s, r)} f\left(j_{x}^{(s, r)} \sigma\right)=j_{\underline{f}(x)}^{(s, r)}\left(f \circ \sigma \circ \underline{f}^{-1}\right), j_{x}^{(s, r)} \sigma \in J^{(s, r)} Y_{1}$. The correspondence $J^{(s, r)}: 2-\mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{F} \mathcal{M}$ is a (fiber product preserving) bundle functor.

Let $Y \rightarrow X \rightarrow M$ be an $2-\mathcal{F} \mathcal{M}_{m, n, q}$-object. A vector field V on Y is called 2-projectable if there exist (unique) vector fields V_{1} on X and V_{0} on M such that V is related with V_{1} and V_{1} is related with V_{0} (with respect to the 2-fibred manifold projections). Equivalently, the flow ExptV of V is formed by (local) $2-\mathcal{F} \mathcal{M}_{m, n, q^{-}}$ -isomorphisms. Thus we can apply functor $J^{(s, r)}$ to ExptV and obtain new flow $J^{(s, r)}(\operatorname{ExptV})$ on $J^{(s, r)} Y$. Consequently we obtain vector field $\mathcal{J}^{(s, r)} V$ on $J^{(s, r)} Y$. The corresponding $2-\mathcal{F} \mathcal{M}_{m, n, q}$-natural operator $\mathcal{J}^{(s, r)}: T_{2 \text {-proj }} \rightsquigarrow T J^{(s, r)}$ is called the flow operator (of $J^{(s, r)}$).

The main result of the present note is the following classification theorem.
Theorem 1. Let r, s, m, n, q be natural numbers such that $s \geq r$. Any $2-\mathcal{F} \mathcal{M}_{m, n, q^{-}}$ -natural operator $A: T_{2 \text {-proj }} \rightsquigarrow T J^{(s, r)}$ is a constant multiple of the flow operator $\mathcal{J}^{(s, r)}$.

Thus Theorem 1 extends the result from [2] on 2-fibred manifolds. More precisely, in [2] it is proved that any $\mathcal{F} \mathcal{M}_{m, n}$-natural operator A lifting projectable vector fields V from fibred manifolds $Y \rightarrow M$ to vector fields $A(V)$ on $J^{r} Y$ is a constant multiple of the flow operator.

In the proof of Theorem 1 we will use the method from [4] (a Weil algebra technique). We start with the proof of the following lemma. Let $A: T_{2 \text {-proj }} \rightsquigarrow T J^{(s, r)}$ be a natural operator in question.

Lemma 1. The natural operator A is determined by the restriction $\left.A\left(\frac{\partial}{\partial x^{1}}\right) \right\rvert\,$ $\left(J^{(s, r)}\left(\mathbf{R}^{m, n, q}\right)\right)_{(0,0)}$, where $(0,0) \in \mathbf{R}^{m} \times \mathbf{R}^{n}$.
Proof. The assertion is an immediate consequence of the naturality and regularity of A and the fact that any 2 -projectable vector field which is not $(Y \rightarrow M)$-vertical is related with $\frac{\partial}{\partial x^{1}}$ by an $2-\mathcal{F} \mathcal{M}_{m, n, q^{-}}$-map.

Now we prove
Lemma 2. Let A be the operator. Let $\pi: J^{(s, r)} Y \rightarrow X$ be the projection. Then there exists the unique real number c and the unique π-vertical operator \mathcal{V} : $T_{2 \text {-proj }} \rightsquigarrow$ $T J^{(s, r)}$ with $\mathcal{V}(0)=0$ such that $A=c \mathcal{J}^{(s, r)}+\mathcal{V}$.

Proof. Define $C=T \pi \circ A\left(\frac{\partial}{\partial x^{1}}\right):\left(J^{(s, r)}\left(\mathbf{R}^{m, n, q}\right)\right)_{(0,0)} \rightarrow T_{(0,0)}\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)$. Using the invariance of A with respect to $2-\mathcal{F} \mathcal{M}_{m, n, q}$-maps

$$
\left(x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}, \tau z^{1}, \ldots, \tau z^{q}\right)
$$

for $\tau>0$ and putting $t \rightarrow 0$ we get that $C\left(j_{(0,0)}^{(s, r)}(\sigma)\right)=C\left(j_{(0,0)}^{(s, r)}(0)\right)$, where 0 is the zero section. Then using the invariance of A with respect to

$$
\left(x^{1}, \tau x^{2}, \ldots, \tau x^{m}, \tau y^{1}, \ldots, \tau y^{n}, \tau z^{1}, \ldots, \tau z^{q}\right)
$$

for $\tau>0$ and putting $t \rightarrow 0$ we get that $C\left(j_{(0,0)}^{(s, r)}(0)\right)=c \frac{\partial}{\partial x^{1} \mid 0}$ for some $c \in \mathbf{R}$. We put $\mathcal{V}=A-c \mathcal{J}^{(s, r)}$. Then \mathcal{V} is of vertical type because of Lemma 1. Clearly, $A=c \mathcal{J}^{(s, r)}+\mathcal{V}$.

It remains to show that $\mathcal{V}(0)=0$. Clearly, the flow of $\mathcal{V}(0)$ is a family of natural automorphisms $J^{(s, r)} \rightarrow J^{(s, r)}$. Since the 2- $\mathcal{F} \mathcal{M}_{m, n, q^{-}}$orbit of $j_{(0,0)}^{(s, r)}(0)$ is the whole $\left(J^{(s, r)}\left(\mathbf{R}^{m, n, q}\right)\right)_{(0,0)}$ (any element $j_{(0,0)}^{(s, r)} \sigma \in\left(J^{(s, r)}\left(\mathbf{R}^{m, n, q}\right)\right)_{(0,0)}$ is transformed by $2-\mathcal{F} \mathcal{M}_{m, n, q^{-} \text {-map }}$

$$
(x, y, z-\sigma(x, y))
$$

into $\left.j_{(0,0)}^{(s, r)}(0)\right)$, then any natural automorphism $\mathcal{E}: J^{(s, r)} \rightarrow J^{(s, r)}$ is determined by $\mathcal{E}\left(j_{(0,0)}^{(s, r)}(0)\right)$. Then using the invariance of \mathcal{E} with respect to

$$
\left(\tau x^{1}, \ldots, \tau x^{m}, \tau y^{1}, \ldots, \tau y^{n}, \tau z^{1}, \ldots, \tau z^{q}\right)
$$

for $\tau>0$ and putting $\tau \rightarrow 0$ we get $\mathcal{E}\left(j_{(0,0)}^{(s, r)}(0)\right)=j_{(0,0)}^{(s, r)}(0)$. Then $\mathcal{E}=$ id and then $\mathcal{V}(0)=0$.

Define a bundle functor $F: \mathcal{M} f \rightarrow \mathcal{F M}$ by

$$
F N=\left(J^{(s, r)}\left(\mathbf{R}^{m} \times \mathbf{R}^{n} \times N\right)\right)_{(0,0)}, \quad F f=\left(J^{(s, r)}\left(\mathrm{id}_{\mathbf{R}^{m}} \times \mathrm{id}_{\mathbf{R}^{n}} \times f\right)\right)_{(0,0)}
$$

Lemma 3. The bundle functor $F: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ is product preserving.
Proof. It is clear.
Let $B=F \mathbf{R}$ be the Weil algebra corresponding to F.
Lemma 4. We have $B=\mathcal{D}_{m+n}^{s} / \underline{B}$, where $\mathcal{D}_{m+n}^{s}=J_{(0,0)}^{s}\left(\mathbf{R}^{m+n}, \mathbf{R}\right)$ and $\underline{B}=$ $\left\langle j_{(0,0)}^{s}\left(x^{1}\right), \ldots, j_{(0,0)}^{s}\left(x^{m}\right)\right\rangle^{r+1}$ is the $(r+1)$-power of the ideal $\left\langle j_{(0,0)}^{s}\left(x^{1}\right), \ldots\right.$, $\left.j_{(0,0)}^{s}\left(x^{m}\right)\right\rangle$, generated by the elements as indicate.
Proof. It is a simple observation.
We have the obvious action $H: G_{m, n}^{s} \times B \rightarrow B$,

$$
H\left(j_{(0,0)}^{s} \psi,\left[j_{(0,0)}^{s} \gamma\right]\right)=\left[j_{(0,0)}^{s}\left(\gamma \circ \psi^{-1}\right)\right]
$$

for any $\mathcal{F M} \mathcal{M}_{, m, n}$-map $\psi:\left(\mathbf{R}^{m} \times \mathbf{R}^{n},(0,0)\right) \rightarrow\left(\mathbf{R}^{m} \times \mathbf{R}^{n},(0,0)\right)$ and $\gamma: \mathbf{R}^{m+n} \rightarrow$ \mathbf{R}. This action is by algebra automorphisms.

Lemma 5. For any derivation $D \in \operatorname{Der}(B)$ we have the implication: if

$$
H\left(j_{(0,0)}^{s}(\tau \mathrm{id})\right) \circ D \circ H\left(j_{(0,0)}^{s}\left(\tau^{-1} \mathrm{id}\right)\right) \rightarrow 0 \quad \text { as } \quad \tau \rightarrow 0 \quad \text { then } \quad D=0
$$

Proof. Let $D \in \operatorname{Der}(B)$ be such that

$$
H\left(j_{(0,0)}^{s}(\tau \mathrm{id})\right) \circ D \circ H\left(j_{(0,0)}^{s}\left(\tau^{-1} \mathrm{id}\right)\right) \rightarrow 0 \quad \text { as } \quad \tau \rightarrow 0 .
$$

For $i=1, \ldots, m$ and $j=1, \ldots, n$ write $D\left(\left[j_{(0,0)}^{s}\left(x^{i}\right)\right]\right)=\sum a_{\alpha \beta}^{i}\left[j_{(0,0)}^{s}\left(x^{\alpha} y^{\beta}\right)\right]$ and $D\left(\left[j_{(0,0)}^{s}\left(y^{j}\right)\right]\right)=\sum b_{\alpha \beta}^{j}\left[j_{(0,0)}^{s}\left(x^{\alpha} y^{\beta}\right)\right]$ for some (unique) real numbers $a_{\alpha \beta}^{i}$ and $b_{\alpha \beta}^{j}$, where the sums are over all $\alpha \in(\mathbf{N} \cup\{0\})^{m}$ and $\beta \in(\mathbf{N} \cup\{0\})^{n}$ with $|\alpha| \leq r$ and $|\alpha|+|\beta| \leq s$. We have
$H\left(j_{(0,0)}^{s}(\tau \mathrm{id})\right) \circ D \circ H\left(j_{(0,0)}^{s}\left(\tau^{-1} \mathrm{id}\right)\right)\left(\left[j_{(0,0)}^{s}\left(x^{i}\right)\right]\right)=\sum a_{\alpha \beta}^{i} \frac{1}{\tau^{|\alpha|+|\beta|-1}}\left[j_{(0,0)}^{s}\left(x^{\alpha} y^{\beta}\right)\right]$.
Then from the assumption on D it follows that $a_{\alpha \beta}^{i}=0$ if $(\alpha, \beta) \neq((0),(0))$. Similarly, $b_{\alpha \beta}^{j}=0$ if $(\alpha, \beta) \neq((0),(0))$. Then $D\left(\left[j_{(0,0)}^{s}\left(x^{i}\right)\right]\right)=a_{(0)(0)}^{i}\left[j_{(0,0)}^{s}(1)\right]$ and $D\left(\left[j_{(0,0)}^{s}\left(y^{j}\right)\right]\right)=b_{(0)(0)}^{j}\left[j_{(0,0)}^{s}(1)\right]$ for $i=1, \ldots, m$ and $j=1, \ldots, n$. Then (since $\left[j_{(0,0)}^{s}\left(\left(x^{i}\right)^{r+1}\right)\right]=0$ and D is a differentiation) we have

$$
\begin{aligned}
0=D\left(\left[j_{(0,0)}^{s}\left(\left(x^{i}\right)^{r+1}\right)\right]\right) & =(r+1)\left[j_{(0,0)}^{s}\left(\left(x^{i}\right)^{r}\right)\right] D\left(\left[j_{(0,0)}^{s}\left(x^{i}\right)\right]\right) \\
& =(r+1) a_{(0)(0)}^{i}\left[j_{(0,0)}^{s}\left(\left(x^{i}\right)^{r}\right)\right] .
\end{aligned}
$$

Then $a_{(0)(0)}^{i}=0$ as $\left[j_{(0,0)}^{s}\left(\left(x^{i}\right)^{r}\right)\right] \neq 0$. Similarly, $b_{(0)(0)}^{j}=0$. Then $D=0$ because the $\left[j_{(0,0)}^{s}\left(x^{i}\right)\right]$ and $\left[j_{(0,0)}^{s}\left(y^{j}\right)\right]$ generate the algebra B.

Proof of Theorem 1. Operator \mathcal{V} from Lemma 2 defines (by the restriction) $\mathcal{M} f_{q^{-}}$natural vector fields $\left.\tilde{\mathcal{V}}_{t}=\mathcal{V}\left(t \frac{\partial}{\partial x^{1}}\right) \right\rvert\, F N$ on $F N$ for any $t \in \mathbf{R}$. Clearly, \mathcal{V} is determined by $\tilde{\mathcal{V}}_{1}$. By Lemma 2, $\tilde{\mathcal{V}}_{0}=0$. By [2], $\tilde{\mathcal{V}}_{t}=\operatorname{op}\left(D_{t}\right)$ for some $D_{t} \in \operatorname{Der}(B)$. Then using the invariance of \mathcal{V} with respect to

$$
\left(\tau x^{1}, \ldots, \tau x^{m}, \tau y^{1}, \ldots, \tau y^{n}, z^{1}, \ldots, z^{q}\right)
$$

for $\tau \neq 0$ and putting $\tau \rightarrow 0$ we obtain that

$$
H\left(j_{(0,0)}^{s}(\tau \mathrm{id})\right) \circ D_{t} \circ H\left(j_{(0,0)}^{s}\left(\tau^{-1} \mathrm{id}\right)\right) \rightarrow 0 \quad \text { as } \quad \tau \rightarrow 0
$$

Then $D_{t}=0$ because of Lemma 5 . Then $\mathcal{V}=0$, and then $A=c \mathcal{J}^{(s, r)}$ as well.
Remark 1. There is another (non-equivalent) generalization of jets. Let $s \geq r$. Let $Y \rightarrow X \rightarrow M$ be a 2-fibred manifold. By [2], sections $\sigma_{1}, \sigma_{2}: X \rightarrow Y$ of $Y \rightarrow X$ have the same r, s-jets $j_{x}^{r, s} \sigma_{1}=j_{x}^{r, s} \sigma_{2}$ at $x \in X$ iff

$$
j_{x}^{r} \sigma_{1}=j_{x}^{r} \sigma_{2} \quad \text { and } \quad j_{x}^{s}\left(\sigma_{1} \mid X_{p_{o}(x)}\right)=j_{x}^{s}\left(\sigma_{2} \mid X_{p_{o}(x)}\right),
$$

where $X_{p_{o}(x)}$ is the fiber of $X \rightarrow M$ through x. Consequently we have the corresponding bundle $J^{r, s} Y$ and the corresponding (fiber product preserving) bundle functor $J^{r, s}: 2-\mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{F} \mathcal{M}$. In [3], we proved that any $2-\mathcal{F} \mathcal{M}_{m, n, q}$-natural operator $A: T_{2 \text {-proj }} \rightsquigarrow T J^{r, s}$ is a constant multiple of the flow operator $\mathcal{J}^{r, s}$ corresponding to $J^{r, s}$ (we used quite different method than the one in [4] or in the present note).

References

[1] Cabras, A., Janyška, J., Kolář, I., On the geometry of variational calculus on some functional bundles, Note Mat. 26 (2) (2006), 51-57.
[2] Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag Berlin, 1993.
[3] Mikulski, W. M., The jet prolongations of fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), 441-458.
[4] Mikulski, W. M., The natural operators lifting projectable vector fields to some fiber product preserving bundles, Ann. Polon. Math. 81 (3) (2003), 261-271.

Institute of Mathematics, Jagellonian University
Reymonta 4, Kraków, Poland
E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary: 58A20.
 Key words and phrases: (s, r)-jet, bundle functor, natural operator, flow operator, 2 -fibred manifold, 2-projectable vector field.

 Received March 13, 2007. Editor I. Kolář.

