TRANSLATIVE PACKING OF A CONVEX BODY BY SEQUENCES OF ITS HOMOTHETIC COPIES

Janusz Januszewski

Abstract

Every sequence of positive or negative homothetic copies of a planar convex body C whose total area does not exceed 0.175 times the area of C can be translatively packed in C.

Let C be a planar convex body with area $|C|$. Moreover, let $\left(C_{i}\right)$ be a finite or infinite sequence of homothetic copies of C. We say that $\left(C_{i}\right)$ can be translatively packed in C if there exist translations σ_{i} such that $\sigma_{i} C_{i}$ are subsets of C and that they have pairwise disjoint interiors. Denote by $\phi(C)$ the greatest number such that every sequence of (positive or negative) homothetic copies of C whose total area does not exceed $\phi(C)|C|$ can be translatively packed in C. In [2] it is showed that $\phi(T)=\frac{2}{9} \approx 0.222$ for any triangle T. Moreover, $\phi(S)=0.5$ for any square S (see [6]). By considerations presented in [7] or in Section 2.11 of [1] we have $\phi(C) \geq 0.125$. The aim of the paper is to prove that $\phi(C) \geq 0.175$ for any convex body C. It is very likely that $\phi(C) \geq \frac{2}{9}$ for any convex body C.

We say that a rectangle is of type $a \times h$ if one of its sides, of length a, is parallel to the first coordinate axis and the other side has length h. Moreover, let $\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right]=\left\{(x, y) ; a_{1} \leq x \leq a_{2}, b_{1} \leq y \leq b_{2}\right\}$.

The packing method presented in the proof of Theorem is similar to that from 3].
Lemma 1. Let S be a rectangle of side lengths h_{1} and h_{2}. Every sequence of squares of sides parallel to the sides of S and of side lengths not greater than λ can be translatively packed in S provided $\lambda \leq h_{1}$ and $\lambda \leq h_{2}$ and the total area of squares in the sequence does not exceed $\frac{1}{2}|S|$.
Lemma 2. Let S be a rectangle of side lengths h_{1} and h_{2}. Every sequence of squares of sides parallel to the sides of S and of side lengths not greater than λ can be translatively packed in S provided $\lambda<h_{1}$ and $\lambda<h_{2}$ and the total area of squares in the sequence does not exceed $\lambda^{2}+\left(h_{1}-\lambda\right)\left(h_{2}-\lambda\right)$.

Lemma 3. For each convex body C there exist homothetic rectangles P and R such that P is inscribed in C, R is circumscribed about C and that $\frac{1}{2}|R| \leq|C| \leq 2|P|$.

Lemma 1 was proved by Moon and Moser in [6], Lemma 2 by Meir and Moser in [5] and Lemma 3 by Lassak in [4].

[^0]

FIG. 1

Theorem. Every (finite or infinite) sequence of positive or negative homothetic copies of a planar convex body C whose total area does not exceed $0.175|C|$ can be translatively packed in C.

Proof. Let C be a planar convex body, let C_{i} be a homothetic copy of C with a ratio μ_{i} and let $\lambda_{i}=\left|\mu_{i}\right|$ for $i=1,2, \ldots$ Moreover, assume that $\sum\left|C_{i}\right| \leq 0.175|C|$. We can assume, without loss of generality, that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0$. Obviously, $\lambda_{1} \leq \sqrt{0.175}<0.42$. Let R be the rectangle described in Lemma 3. Moreover, let $P \subset C$ be a rectangle homothetic to R and of the area $|P|=\frac{1}{4}|R|$. Because of the affine invariant nature of the problem, we can assume that P and R are squares and that $R=[0,1] \times[0,1]$ (see Figure 1). Let p and r be numbers such that $P=\left[p, p+\frac{1}{2}\right] \times\left[r, r+\frac{1}{2}\right]$ and let $q=\frac{1}{2}-p, s=\frac{1}{2}-r$. We can assume that $s \geq p \geq q$ (see Figure 1).

Observe that it is possible to place C_{1} in $C \cap\left(\left[0, t_{1}\right] \times[0,1]\right)$, where

$$
t_{1}=\lambda_{1}(1+2 p)
$$

Indeed, it is possible to pack C_{1} in $C \cap\left(\left[t-\lambda_{1}, t\right] \times[0,1]\right)$, where $\frac{\frac{1}{2}}{\lambda_{1}}=\frac{p}{t-\lambda_{1}}$ (see Figure 2). Consequently, $t=\lambda_{1}(1+2 p)$.

Consider four cases. In all cases we show that if C_{1}, C_{2}, \ldots cannot be translatively packed in C, then $\sum \lambda_{i}^{2}>0.175$, i.e. $\sum\left|C_{i}\right|=\sum \lambda_{i}^{2}|C|>0.175|C|$, which is again a contradiction.

Case 1, when $\lambda_{1} \leq \frac{p}{1+2 p}$.
Obviously, it is possible to place C_{1} in $C \cap\left([0, p] \times\left[r, \frac{1}{2}+r\right]\right)$. Since $\lambda_{2} \leq \lambda_{1}$ and $s \geq p$, it is possible to pack C_{2} in $C \cap\left(\left[p, \frac{1}{2}+p\right] \times[1-s, 1]\right)$ (see Figure 1$]$.

By Lemma 2 we know that any sequence of squares of side lengths not greater than λ_{3} whose total area does not exceed $\lambda_{3}^{2}+\left(\frac{1}{2}-\lambda_{3}\right)^{2}$ can be translatively packed in $\frac{1}{2} \times \frac{1}{2}$. Each C_{i} is contained in a square R_{i} of sides parallel to the sides of R and with area $\left|R_{i}\right|=\left|C_{i}\right| /|C|$. Consequently, if the total area of C_{3}, C_{4}, \ldots

Fig. 2
does not exceed $\left[\lambda_{3}^{2}+\left(\frac{1}{2}-\lambda_{3}\right)^{2}\right]|C|$, then the bodies can be translatively packed in $P=\frac{1}{2} \times \frac{1}{2}$.

This implies that if C_{1}, C_{2}, \ldots cannot be translatively packed in C, then

$$
\sum\left|C_{i}\right|=\sum \lambda_{i}^{2}|C|>\lambda_{1}^{2}|C|+\lambda_{2}^{2}|C|+\left[\lambda_{3}^{2}+\left(\frac{1}{2}-\lambda_{3}\right)^{2}\right]|C|
$$

Hence
$\sum \lambda_{i}^{2}>\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\left(\frac{1}{2}-\lambda_{3}\right)^{2} \geq 3 \lambda_{3}^{2}+\left(\frac{1}{2}-\lambda_{3}\right)^{2}=4 \lambda_{3}^{2}-\lambda_{3}+\frac{1}{4} \geq 0.1875$.
Case 2, when $\lambda_{1}>\frac{p}{1+2 p}$ and $\lambda_{2} \leq \frac{p}{1+2 p}$.
We place C_{1} in $C \cap\left(\left[0, t_{1}\right] \times\left[r, \frac{1}{2}+r\right]\right) \quad$ (see Figure 2 and we place C_{2} in $C \cap\left(\left[p, \frac{1}{2}+p\right] \times[1-s, 1]\right)$. The remaining bodies C_{3}, C_{4}, \ldots are packed in $\left[t_{1}, \frac{1}{2}+p\right] \times\left[r, \frac{1}{2}+r\right]$.

By Lemma 2 we deduce that if $\left(C_{i}\right)$ cannot be translatively packed in C, then the sum of λ_{i}^{2} is greater than

$$
\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\left(\frac{1}{2}+p-t_{1}-\lambda_{3}\right)\left(\frac{1}{2}-\lambda_{3}\right) .
$$

Consequently,

$$
\sum \lambda_{i}^{2}>\lambda_{1}^{2}+2 \lambda_{3}^{2}+\left[\frac{1}{2}+p\left(1-2 \lambda_{1}\right)-\lambda_{1}-\lambda_{3}\right]\left(\frac{1}{2}-\lambda_{3}\right) .
$$

Since $\lambda_{1}<\frac{1}{2}$ and $p \geq \frac{1}{4}$, we have $\sum \lambda_{i}^{2} \geq f_{1}\left(\lambda_{1}, \lambda_{3}\right)$, where

$$
f_{1}\left(\lambda_{1}, \lambda_{3}\right)=\lambda_{1}^{2}+2 \lambda_{3}^{2}+\left(\frac{3}{4}-\frac{3}{2} \lambda_{1}-\lambda_{3}\right)\left(\frac{1}{2}-\lambda_{3}\right) .
$$

By using the standard method of finding the absolute minimum of the function of two variables it is easy to check that $f_{1}\left(\lambda_{1}, \lambda_{3}\right) \geq f_{1}\left(\frac{7}{26}, \frac{11}{78}\right)>0.185$.
Case 3, when $\lambda_{2}>\frac{p}{1+2 p}$ and $p>0.41$.

We place C_{1} in $C \cap\left(\left[0, t_{1}\right] \times\left[r, \frac{1}{2}+r\right]\right)$. The remaining copies C_{2}, C_{3}, \ldots are packed in $\left[t_{1}, \frac{1}{2}+p\right] \times\left[r, \frac{1}{2}+r\right]$. If $\left(C_{i}\right)$ cannot be translatively packed in C, then

$$
\sum \lambda_{i}^{2}>\lambda_{1}^{2}+\lambda_{2}^{2}+\left(\frac{1}{2}+p-\lambda_{1}-2 \lambda_{1} p-\lambda_{2}\right)\left(\frac{1}{2}-\lambda_{2}\right)
$$

By taking 0.41 instead of p we obtain that

$$
\sum \lambda_{i}^{2}>\lambda_{1}^{2}+\lambda_{2}^{2}+\left(0.91-1.82 \lambda_{1}-\lambda_{2}\right)\left(0.5-\lambda_{2}\right)
$$

A standard computation shows that this value is greater than 0.175 .
Case 4, when $\lambda_{2}>\frac{p}{1+2 p}$ and $p \leq 0.41$.
First of all, we show that $t_{1}+t_{2}+\lambda_{3} \leq 1$, where $t_{2}=\lambda_{2}(1+2 q)$. By $p+\frac{1}{2}+q=1$ we have $t_{2}=\lambda_{2}(2-2 p)$. If $\lambda_{3}>1-t_{1}-t_{2}$, then

$$
\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}>\lambda_{1}^{2}+\lambda_{2}^{2}+\left[1-\lambda_{1}(1+2 p)-\lambda_{2}(2-2 p)\right]^{2}
$$

By $\lambda_{1} \geq \lambda_{2}$ and $p<0.41$ we have

$$
\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}>\lambda_{1}^{2}+\lambda_{2}^{2}+\left(1-1.82 \lambda_{1}-1.18 \lambda_{2}\right)^{2}
$$

It is easy to check that this value is greater than 0.175 , which is a contradiction.
We place C_{1} in $C \cap\left(\left[0, t_{1}\right] \times\left[r, \frac{1}{2}+r\right]\right)$ and we place C_{2} in $C \cap\left(\left[1-t_{2}, 1\right] \times\left[r, \frac{1}{2}+r\right]\right)$. The remaining bodies C_{3}, C_{4}, \ldots are packed in $\left[t_{1}, 1-t_{2}\right] \times\left[r, \frac{1}{2}+r\right]$. By Lemma 1 we deduce that if $\left(C_{i}\right)$ cannot be translatively packed in C, then

$$
\sum \lambda_{i}^{2}>\lambda_{1}^{2}+\lambda_{2}^{2}+\frac{1}{2} \cdot \frac{1}{2}\left[1-\lambda_{1}(1+2 p)-\lambda_{2}(2-2 p)\right] .
$$

By taking 0.41 instead of p we obtain that

$$
\sum \lambda_{i}^{2}>\lambda_{1}^{2}-0.455 \lambda_{1}+\lambda_{2}^{2}-0.295 \lambda_{2}+0.25
$$

A standard computation shows that this value is greater than 0.175 .

References

[1] Böröczky, Jr., K., Finite packing and covering, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge 154 (2004).
[2] Januszewski, J., A note on translative packing a triangle by sequences of its homothetic copies, Period. Math. Hungar. 52 (2) (2006), 27-30.
[3] Januszewski, J., Translative packing of a convex body by sequences of its positive homothetic copies, Acta Math. Hungar. 117 (4) (2007), 349-360.
[4] Lassak, M., Approximation of convex bodies by rectangles, Geom. Dedicata 47 (1993), 111-117.
[5] Meir, A., Moser, L., On packing of squares and cubes, J. Combin. Theory 5 (1968), 126-134.
[6] Moon, J. W., Moser, L., Some packing and covering theorems, Colloq. Math. 17 (1967), 103-110.
[7] Novotny, P., A note on packing clones, Geombinatorics 11 (1) (2001), 29-30.

Institute of Mathematics and Physics
University of Technology and Life Sciences
ul. Kaliskiego 7, 85-796 Bydgoszcz, Poland
E-mail: januszew@utp.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary: 52C15.
 Key words and phrases: translative packing, convex body. Received July 2, 2007, revised March, 2008. Editor J. Nešetřil.

