CANONICAL 1-FORMS ON HIGHER ORDER ADAPTED FRAME BUNDLES

JAN KUREK AND WŁODZIMIERZ M. MIKULSKI

ABSTRACT. Let (M, \mathcal{F}) be a foliated m + n-dimensional manifold M with n-dimensional foliation \mathcal{F} . Let V be a finite dimensional vector space over \mathbf{R} . We describe all canonical $(\mathcal{F}ol_{m,n}\text{-invariant})$ V-valued 1-forms $\Theta \colon TP^r(M, \mathcal{F}) \to V$ on the r-th order adapted frame bundle $P^r(M, \mathcal{F})$ of (M, \mathcal{F}) .

All manifolds and maps are assumed to be of class \mathcal{C}^{∞} .

A definition of foliations can be found in [2]. Let $\mathcal{F}ol_{m,n}$ be the category of foliated m + n-dimensional manifolds with *n*-dimensional foliations and their foliation respecting local diffeomorphisms. Let (M, \mathcal{F}) be a $\mathcal{F}ol_{m,n}$ -object. Then we have an adapted *r*-th order frame bundle

$$P^{r}(M,\mathcal{F}) = \left\{ j_{0}^{r}\varphi \mid \varphi \colon (\mathbf{R}^{m+n},\mathcal{F}^{m,n}) \to (M,\mathcal{F}) \text{ is a } \mathcal{F}ol_{m,n}\text{-map} \right\}$$

over M of (M, \mathcal{F}) with the target projection, where $\mathcal{F}^{m,n} = \{\{a\} \times \mathbb{R}^n\}_{a \in \mathbb{R}^m}$ is the *n*-dimensional canonical foliation on \mathbb{R}^{m+n} . We see that $P^r(M, \mathcal{F})$ is a principal bundle with the standard Lie group $G^r_{m,n} = P^r(\mathbb{R}^{m+n}, \mathcal{F}^{m,n})_0$ (with the multiplication given by the composition of jets) acting on the right on $P^r(M, \mathcal{F})$ by the composition of jets. Every $\mathcal{F}ol_{m,n}$ -map $\psi: (M_1, \mathcal{F}_1) \to (M_2, \mathcal{F}_2)$ induces a local fibred diffeomorphism (even a principal bundle local isomorphism) $P^r\psi: P^r(M_1, \mathcal{F}_1) \to$ $P^r(M_2, \mathcal{F}_2)$ given by $P^r\psi(j_0^r\varphi) = j_0^r(\psi \circ \varphi)$.

Definition 1. Let V be a finite dimensional vector space over **R**. We recall that a $\mathcal{F}ol_{m,n}$ -canonical V-valued 1-form Θ on P^r is a family of $\mathcal{F}ol_{m,n}$ -invariant V-valued 1-forms $\Theta_{(M,\mathcal{F})}: TP^r(M,\mathcal{F}) \to V$ on $P^r(M,\mathcal{F})$ for any $\mathcal{F}ol_{m,n}$ -object (M,\mathcal{F}) . The invariance means that the V-valued 1-forms $\Theta_{(M_1,\mathcal{F}_1)}$ and $\Theta_{(M_2,\mathcal{F}_2)}$ are $P^r\Phi$ -related $(P^r\Phi^*\Theta_{(M_2,\mathcal{F}_2)} = \Theta_{(M_1,\mathcal{F}_1)})$ for any $\mathcal{F}ol_{m,n}$ -map $\Phi: (M_1,\mathcal{F}_1) \to (M_2,\mathcal{F}_2)$.

It is rather-known the following $\mathcal{F}ol_{m,n}$ -canonical \mathbb{R}^{m+n} -valued 1-form on $P^1(M,\mathcal{F})$.

Example 1. For every $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) we define an \mathbb{R}^{m+n} -valued 1-form $\theta_{(M,\mathcal{F})}$ on $P^1(M,\mathcal{F})$ as follows. Consider the target projection $\beta \colon P^1(M,\mathcal{F}) \to M$

²⁰⁰⁰ Mathematics Subject Classification: Primary: 58A20; Secondary: 58A32.

Key words and phrases: foliated manifold, infinitesimal automorphism, higher order adapted frame bundle, canonical 1-form.

Received July 24, 2007, revised October 2007. Editor I. Kolář.

given by $\beta(j_0^r \varphi) = \varphi(0)$, an element $u = j_0^1 \psi \in P^1(M, \mathcal{F})$ and a tangent vector $X = j_0^1 c \in T_u(P^1(M, \mathcal{F}))$. We define the form $\theta = \theta_{(M, \mathcal{F})}$ by

$$\theta(X) = u^{-1} \circ T\beta(X) = j_0^1(\psi^{-1} \circ \beta \circ c) \in T_0 \mathbf{R}^{m+n} = \mathbf{R}^{m+n}.$$

Let us notice that if n = 0 then $(M, \mathcal{F}) = M$ and $P^1(M, \mathcal{F}) = P^1(M)$ and $\theta_{(M,\mathcal{F})} = \theta_M$ is the well-known canonical \mathbb{R}^m -valued 1-form on the frame bundle P^1M .

To present a general example of $\mathcal{F}ol_{m,n}$ -canonical V-valued 1-forms on P^r we need the following lemma.

Lemma 1. Let (M, \mathcal{F}) be a $\mathcal{F}ol_{m,n}$ -object. Then any vector $v \in T_w P^r(M, \mathcal{F})$, $w \in (P^r(M, \mathcal{F}))_x$, $x \in M$ is of the form $\mathcal{P}^r X_w$ for some infinitesimal automorphism $X \in \mathcal{X}(M, \mathcal{F})$, where $\mathcal{P}^r X \in \mathcal{X}(P^r(M, \mathcal{F}))$ is the flow lifting of X to $P^r(M, \mathcal{F})$. Moreover $j_x^r X$ is uniquely determined.

Remark 1. We inform that a vector field X on M is an infinitesimal automorphism of (M, \mathcal{F}) iff the flow {ExptX} of X is formed by local $\mathcal{F}ol_{m,n}$ -maps $(M, \mathcal{F}) \to$ (M, \mathcal{F}) or (equivalently) [X, Y] is tangent to \mathcal{F} for any Y tangent to \mathcal{F} . The space $\mathcal{X}(M, \mathcal{F})$ of all infinitesimal automorphisms of (M, \mathcal{F}) is a Lie subalgebra in $\mathcal{X}(M)$. Given an infinitesimal automorphism $X \in \mathcal{X}(M, \mathcal{F})$, the flow lifting $\mathcal{P}^r X$ is a vector field on $P^r(M, \mathcal{F})$ such that if $\{\Phi_t\}$ is the flow of X then $\{P^r(\Phi_t)\}$ is the flow of $\mathcal{P}^r X$. (Since Φ_t are $\mathcal{F}ol_{m,n}$ -maps we can apply functor P^r .)

Proof of Lemma 1. We can of course assume that $(M, \mathcal{F}) = (\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ and x = 0. Since $P^r(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ is in usual way a principal subbundle of $P^r(\mathbf{R}^{m+n})$, then by well-known manifold version of the lemma, we find $X \in \mathcal{X}(\mathbf{R}^{m+n})$ such that $v = \mathcal{P}^r X_w$ and $j_0^r X$ is determined uniquely. An infinitesimal automorphism $Y \in \mathcal{X}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ gives $\mathcal{P}^r Y_w$ which is tangent to $P^r(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$. On the other hand the dimension of $P^r(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ and the dimension of the space of r-jets $j_0^r Y$ of $Y \in \mathcal{X}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ are equal. Then the lemma follows from the dimension argument because flow operators are linear.

Example 2. Let $\lambda: J_0^{r-1}(T_{\text{Inf}-\text{Aut}}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) \to V$ be an **R**-linear map, where $J_0^{r-1}(T_{\text{Inf}-\text{Aut}}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n}))$ is the vector space of all (r-1)-jets $j_0^{r-1}X$ at $0 \in \mathbf{R}^{m+n}$ of infinitesimal automorphisms $X \in \mathcal{X}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$. Given a $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) , we define a V-valued 1-form $\Theta_{(M,\mathcal{F})}^{\lambda}: TP^r(M,\mathcal{F}) \to V$ on $P^r(M,\mathcal{F})$ as follows. Let $v \in T_w P^r(M,\mathcal{F}), w = j_0^r \varphi \in (P^r(M,\mathcal{F}))_x, x \in M$. By Lemma 1, $v = \mathcal{P}^r X_w$ for some infinitesimal automorphism $X \in \mathcal{X}(M,\mathcal{F})$, and $j_x^r X$ is uniquely determined. Then it is determined the (r-1)-jet $j_0^{r-1}((\varphi^{-1})_*X)$ at 0 of the image $(\varphi^{-1})_*X$ of X by φ^{-1} . We put

$$\Theta^{\lambda}_{(M,\mathcal{F})}(v) := \lambda \left(j_0^{r-1}((\varphi^{-1})_* X) \right)$$

Clearly, $\Theta^{\lambda} = \{\Theta^{\lambda}_{(M,\mathcal{F})}\}$ is a $\mathcal{F}ol_{m,n}$ -canonical V-valued 1-form on P^r .

The main result of the present short note is the following classification theorem. **Theorem 1.** Any $\mathcal{F}ol_{m,n}$ -canonical V-valued 1-form on P^r is Θ^{λ} for some unique **R**-linear map $\lambda: J_0^{r-1}(T_{\text{Inf}-\text{Aut}}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) \to V.$ In the proof of Theorem 1 we use the following fact.

Lemma 2. Let $X, Y \in \mathcal{X}(M, \mathcal{F})$ be infinitesimal automorphisms of (M, \mathcal{F}) and $x \in M$ be a point. Suppose that $j_x^{r-1}X = j_x^{r-1}Y$ and X_x is not-tangent to \mathcal{F} . Then there exists a (locally defined) $\mathcal{F}ol_{m,n}$ -map $\Phi \colon (M, \mathcal{F}) \to (M, \mathcal{F})$ such that $j_x^r(\Phi) = j_x^r(\operatorname{id}_M)$ and $\Phi_*X = Y$ near x.

Proof. A direct modification of the proof of Lemma 42.4 in [1].

Proof of Theorem 1. Let Θ be a $\mathcal{F}ol_{m,n}$ -canonical V-valued 1-form on P^r . We must define $\lambda: J_0^{r-1}(T_{\mathrm{Inf}-\mathrm{Aut}}(\mathbf{R}^{m+n},\mathcal{F}^{m,n})) \to V$ by

$$\lambda(\xi) := \Theta_{(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})} \left(\mathcal{P}^r \tilde{X}_{j_0^r(\mathrm{id}_{\mathbf{R}^{m+n}})} \right)$$

for all $\xi \in J_0^{r-1}(T_{\text{Inf}-\text{Aut}}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n}))$, where given ξ in question, \tilde{X} is a unique (a unique germ at 0 of) infinitesimal automorphism of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ such that $j_0^{r-1}\tilde{X} = \xi$ and the coefficients of \tilde{X} with respect to the basis of the canonical vector fields $\frac{\partial}{\partial x^i} \in \mathcal{X}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ $(i = 1, \dots, m+n)$ are polynomials of degree $\leq r-1$.

We are going to show that $\Theta = \Theta^{\lambda}$. Because of the $\mathcal{F}ol_{m,n}$ -invariance it remains to show that

(*)
$$\Theta_{(\mathbf{R}^{m+n},\mathcal{F}^{m,n})}(v) = \Theta_{(\mathbf{R}^{m+n},\mathcal{F}^{m,n})}^{\lambda}(v)$$

for any $v \in T_{j_0^r(\mathrm{id}_{\mathbf{R}^{m+n}})}P^r(\mathbf{R}^{m+n}, \mathcal{F}^{m,n}).$

By the definition of λ and Θ^{λ} we have (*) for any v of the form $\mathcal{P}^{r}\tilde{X}_{j_{0}^{r}(\mathrm{id}_{\mathbf{R}^{m+n}})}$, where \tilde{X} is an infinitesimal automorphism of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ such that the coefficients of \tilde{X} with respect to the basis of canonical vector fields on \mathbf{R}^{m+n} are polynomials of degree $\leq r-1$.

Now, let v be arbitrary in question. Then by Lemma 1, v is of the form $v = \mathcal{P}^r X_{j_0^r(\mathrm{id}_{\mathbf{R}^{m+n}})}$ for some infinitesimal automorphism X of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$. Clearly (because of a density argument), we can additionally assume that X_0 is not tangent to $\mathcal{F}^{m,n}$. Let \tilde{X} be an infinitesimal automorphism of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ such that $j_0^{r-1}\tilde{X} = j_0^{r-1}X$ and the coefficients of \tilde{X} with respect to the basis of constant vector fields on \mathbf{R}^{m+n} are polynomials of degree $\leq r-1$. Let $\tilde{v} = \mathcal{P}^r \tilde{X}_{j_0^r(\mathrm{id}_{\mathbf{R}^{m+n}})}$. Then (we have observed above) it holds $\Theta_{(\mathbf{R}^{m+n},\mathcal{F}^{m,n})}(\tilde{v}) = \Theta_{(\mathbf{R}^{m+n},\mathcal{F}^{m,n})}^{\lambda}(\tilde{v})$. On the other hand by Lemma 2, there is a $\mathcal{F}ol_{m,n}$ -map $\Phi \colon (\mathbf{R}^{m+n},\mathcal{F}^{m,n}) \to (\mathbf{R}^{m+n},\mathcal{F}^{m,n})$ such that $j_0^r \Phi = j_0^r(\mathrm{id}_{\mathbf{R}^{m+n}})$ and $\Phi_* \tilde{X} = X$ near 0. Since $j_0^r \Phi = \mathrm{id}$, Φ preserves $j_0^r(\mathrm{id}_{\mathbf{R}^{m+n}})$. Then since $\Phi_* \tilde{X} = X$, Φ sends \tilde{v} into v. Then because of the invariance of Θ and Θ^{λ} with respect to Φ , we obtain $\Theta_{(\mathbf{R}^{m+n},\mathcal{F}^{m,n})}(v) = \Theta_{(\mathbf{R}^{m+n},\mathcal{F}^{m,n})}(\tilde{v}) = \Theta_{(\mathbf{R}^{m+n},\mathcal{F}^{m,n})}(\tilde{v}) = \Theta_{(\mathbf{R}^{m+n},\mathcal{F}^{m,n})}(\tilde{v}) = \Theta_{(\mathbf{R}^{m+n},\mathcal{F}^{m,n})}(v)$.

In the case r = 1, we have $J_0^0(T_{\text{Inf} - \text{Aut}}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) = \mathbf{R}^{m+n}$. Then by Theorem 1, the vector space of $\mathcal{F}ol_{m,n}$ -canonical V-valued 1-forms on P^1 is $(m + n) \dim(V)$ -dimensional. Then (because of a dimension argument) we have.

Corollary 1. Any $\mathcal{F}ol_{m,n}$ -canonical V-valued 1-form $\Theta = \{\Theta_{(M,\mathcal{F})}\}$ on P^1 is of the form

$$\Theta_{(M,\mathcal{F})} = \lambda \circ \theta_{(M,\mathcal{F})} \colon TP^1(M,\mathcal{F}) \to V$$

for some unique linear map $\lambda \colon \mathbf{R}^{m+n} \to V$, where $\theta = \{\theta_{(M,\mathcal{F})}\}$ is the canonical \mathbf{R}^{m+n} -valued 1-form on P^1 from Example 1.

Example 3. It is easy to see that

$$H_0^{r-1}(T_{\mathrm{Inf}-\mathrm{Aut}}(\mathbf{R}^{m+n},\mathcal{F}^{m,n}))=\mathbf{R}^{m+n}\oplus\mathcal{L}ie(G_{m,n}^{r-1}).$$

Thus by Example 2 for $\lambda = \operatorname{id}_{\mathbf{R}^{m+n} \oplus \mathcal{L}ie(G_{m,n}^{r-1})}$ we have a $\mathcal{F}ol_{m,n}$ -canonical $\mathbf{R}^{m,n} \oplus \mathcal{L}ie(G_{m,n}^{r-1})$ -valued 1-form

$$\theta^{r}_{(M,\mathcal{F})} := \Theta^{\operatorname{id}_{\mathbf{R}^{m+m} \oplus \mathcal{L}ie(G^{r-1}_{m,n})}} : TP^{r}(M,\mathcal{F}) \to \mathbf{R}^{m+n} \oplus \mathcal{L}ie(G^{r-1}_{m,n})$$

on P^r . For r = 1, we have $\theta^1 = \theta$ as in Example 1. In particular, for n = 0 we obtain the well-known canonical $\mathbf{R}^m \oplus \mathcal{L}ie(G_m^{r-1})$ -valued 1-form

$$\theta_M^r \colon P^r M \to \mathbf{R}^m \oplus \mathcal{L}ie(G_m^{r-1})$$

on the *r*-order frame bundle $P^r M$.

By similar arguments as for Corollary 1 we have.

Corollary 2. Any $\mathcal{F}ol_{m,n}$ -canonical V-valued 1-form $\Theta = \{\Theta_{(M,\mathcal{F})}\}$ on P^r is of the form

$$\Theta_{(M,\mathcal{F})} = \lambda \circ \theta^r_{(M,\mathcal{F})} \colon TP^r(M,\mathcal{F}) \to V$$

for some unique linear map $\lambda \colon \mathbf{R}^{m+n} \oplus \mathcal{L}ie(G_{m,n}^{r-1}) \to V$, where θ^r is as in Example 3.

In particular (for n = 0), any canonical V-valued 1-form $\Theta = \{\Theta_M\}$ on $P^r M$ is of the form

$$\Theta_M = \lambda \circ \theta_M^r \colon TP^r M \to V$$

for some unique linear map $\lambda \colon \mathbf{R}^m \oplus \mathcal{L}ie(G_m^{r-1}) \to V$.

Remark. Recently, we obtained (by a modification of the above paper) a similar result on gauge invariant vector valued 1-forms on higher order principal prolongations of principal bundles. The paper will appear in Lobachevskii Math. J. 2008.

References

- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993.
- [2] Wolak, R. A., Geometric structures on foliated manifolds, Publications del Departamento de Geometria y Topologia, Universidad de Santiago de Compostella 76 (1989).

INSTITUTE OF MATHEMATICS, MARIA CURIE-SKLODOWSKA UNIVESITY PL. M. CURIE-SKLODOWSKIEJ 1, LUBLIN, POLAND *E-mail*: kurek@hektor.umcs.lublin.pl

Institute of Mathematics, Jagiellonian University ul. Reymonta 4, Kraków, Poland *E-mail*: mikulski@im.uj.edu.pl