CANONICAL 1-FORMS ON HIGHER ORDER ADAPTED FRAME BUNDLES

Jan Kurek and WŁodzimierz M. Mikulski

Abstract

Let (M, \mathcal{F}) be a foliated $m+n$-dimensional manifold M with n-dimensional foliation \mathcal{F}. Let V be a finite dimensional vector space over \mathbf{R}. We describe all canonical (\mathcal{F} ol ${ }_{m, n}$-invariant) V-valued 1-forms $\Theta: T P^{r}(M, \mathcal{F})$ $\rightarrow V$ on the r-th order adapted frame bundle $P^{r}(M, \mathcal{F})$ of (M, \mathcal{F}).

All manifolds and maps are assumed to be of class \mathcal{C}^{∞}.
A definition of foliations can be found in [2]. Let $\mathcal{F}_{o} l_{m, n}$ be the category of foliated $m+n$-dimensional manifolds with n-dimensional foliations and their foliation respecting local diffeomorphisms. Let (M, \mathcal{F}) be a $\mathcal{F} o l_{m, n}$-object. Then we have an adapted r-th order frame bundle

$$
P^{r}(M, \mathcal{F})=\left\{j_{0}^{r} \varphi \mid \varphi:\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right) \rightarrow(M, \mathcal{F}) \text { is a } \mathcal{F}_{o l} l_{m, n} \text {-map }\right\}
$$

over M of (M, \mathcal{F}) with the target projection, where $\mathcal{F}^{m, n}=\left\{\{a\} \times \mathbf{R}^{n}\right\}_{a \in \mathbf{R}^{m}}$ is the n-dimensional canonical foliation on \mathbf{R}^{m+n}. We see that $P^{r}(M, \mathcal{F})$ is a principal bundle with the standard Lie group $G_{m, n}^{r}=P^{r}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)_{0}$ (with the multiplication given by the composition of jets) acting on the right on $P^{r}(M, \mathcal{F})$ by the composition of jets. Every \mathcal{F} ol $l_{m, n}$-map $\psi:\left(M_{1}, \mathcal{F}_{1}\right) \rightarrow\left(M_{2}, \mathcal{F}_{2}\right)$ induces a local fibred diffeomorphism (even a principal bundle local isomorphism) $P^{r} \psi: P^{r}\left(M_{1}, \mathcal{F}_{1}\right) \rightarrow$ $P^{r}\left(M_{2}, \mathcal{F}_{2}\right)$ given by $P^{r} \psi\left(j_{0}^{r} \varphi\right)=j_{0}^{r}(\psi \circ \varphi)$.

Definition 1. Let V be a finite dimensional vector space over \mathbf{R}. We recall that a $\mathcal{F} o l_{m, n}$-canonical V-valued 1-form Θ on P^{r} is a family of \mathcal{F} ol $l_{m, n}$-invariant V-valued 1-forms $\Theta_{(M, \mathcal{F})}: T P^{r}(M, \mathcal{F}) \rightarrow V$ on $P^{r}(M, \mathcal{F})$ for any $\mathcal{F}_{o l} l_{m, n}$-object (M, \mathcal{F}). The invariance means that the V-valued 1-forms $\Theta_{\left(M_{1}, \mathcal{F}_{1}\right)}$ and $\Theta_{\left(M_{2}, \mathcal{F}_{2}\right)}$ are $P^{r} \Phi$-related $\left(P^{r} \Phi^{*} \Theta_{\left(M_{2}, \mathcal{F}_{2}\right)}=\Theta_{\left(M_{1}, \mathcal{F}_{1}\right)}\right)$ for any \mathcal{F} ol $l_{m, n}$-map $\Phi:\left(M_{1}, \mathcal{F}_{1}\right) \rightarrow\left(M_{2}, \mathcal{F}_{2}\right)$.

It is rather-known the following $\mathcal{F} o l_{m, n}$-canonical \mathbf{R}^{m+n}-valued 1-form on $P^{1}(M, \mathcal{F})$.

Example 1. For every $\mathcal{F}_{o l} l_{m, n}$-object (M, \mathcal{F}) we define an \mathbf{R}^{m+n}-valued 1-form $\theta_{(M, \mathcal{F})}$ on $P^{1}(M, \mathcal{F})$ as follows. Consider the target projection $\beta: P^{1}(M, \mathcal{F}) \rightarrow M$

[^0]given by $\beta\left(j_{0}^{r} \varphi\right)=\varphi(0)$, an element $u=j_{0}^{1} \psi \in P^{1}(M, \mathcal{F})$ and a tangent vector $X=j_{0}^{1} c \in T_{u}\left(P^{1}(M, \mathcal{F})\right)$. We define the form $\theta=\theta_{(M, \mathcal{F})}$ by
$$
\theta(X)=u^{-1} \circ T \beta(X)=j_{0}^{1}\left(\psi^{-1} \circ \beta \circ c\right) \in T_{0} \mathbf{R}^{m+n}=\mathbf{R}^{m+n}
$$

Let us notice that if $n=0$ then $(M, \mathcal{F})=M$ and $P^{1}(M, \mathcal{F})=P^{1}(M)$ and $\theta_{(M, \mathcal{F})}=\theta_{M}$ is the well-known canonical \mathbf{R}^{m}-valued 1-form on the frame bundle $P^{1} M$.

To present a general example of $\mathcal{F}_{\text {ol }}^{m, n}$-canonical V-valued 1-forms on P^{r} we need the following lemma.

Lemma 1. Let (M, \mathcal{F}) be a $\mathcal{F}_{o l} l_{m, n}$-object. Then any vector $v \in T_{w} P^{r}(M, \mathcal{F}), w \in$ $\left(P^{r}(M, \mathcal{F})\right)_{x}, x \in M$ is of the form $\mathcal{P}^{r} X_{w}$ for some infinitesimal automorphism $X \in \mathcal{X}(M, \mathcal{F})$, where $\mathcal{P}^{r} X \in \mathcal{X}\left(P^{r}(M, \mathcal{F})\right)$ is the flow lifting of X to $P^{r}(M, \mathcal{F})$. Moreover $j_{x}^{r} X$ is uniquely determined.

Remark 1. We inform that a vector field X on M is an infinitesimal automorphism of (M, \mathcal{F}) iff the flow $\{\operatorname{Expt} X\}$ of X is formed by local $\mathcal{F}_{\text {ol }}^{m, n}$-maps $(M, \mathcal{F}) \rightarrow$ (M, \mathcal{F}) or (equivalently) $[X, Y]$ is tangent to \mathcal{F} for any Y tangent to \mathcal{F}. The space $\mathcal{X}(M, \mathcal{F})$ of all infinitesimal automorphisms of (M, \mathcal{F}) is a Lie subalgebra in $\mathcal{X}(M)$. Given an infinitesimal automorphism $X \in \mathcal{X}(M, \mathcal{F})$, the flow lifting $\mathcal{P}^{r} X$ is a vector field on $P^{r}(M, \mathcal{F})$ such that if $\left\{\Phi_{t}\right\}$ is the flow of X then $\left\{P^{r}\left(\Phi_{t}\right)\right\}$ is the flow of $\mathcal{P}^{r} X$. (Since Φ_{t} are $\mathcal{F} o l_{m, n}$-maps we can apply functor P^{r}.)
Proof of Lemma 1. We can of course assume that $(M, \mathcal{F})=\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$ and $x=0$. Since $P^{r}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$ is in usual way a principal subbundle of $P^{r}\left(\mathbf{R}^{m+n}\right)$, then by well-known manifold version of the lemma, we find $X \in \mathcal{X}\left(\mathbf{R}^{m+n}\right)$ such that $v=\mathcal{P}^{r} X_{w}$ and $j_{0}^{r} X$ is determined uniquely. An infinitesimal automorphism $Y \in \mathcal{X}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$ gives $\mathcal{P}^{r} Y_{w}$ which is tangent to $P^{r}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$. On the other hand the dimension of $P^{r}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$ and the dimension of the space of r-jets $j_{0}^{r} Y$ of $Y \in \mathcal{X}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$ are equal. Then the lemma follows from the dimension argument because flow operators are linear.
Example 2. Let $\lambda: J_{0}^{r-1}\left(T_{\text {Inf }-\operatorname{Aut}}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)\right) \rightarrow V$ be an \mathbf{R}-linear map, where $J_{0}^{r-1}\left(T_{\text {Inf - Aut }}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)$ is the vector space of all $(r-1)$-jets $j_{0}^{r-1} X$ at $0 \in \mathbf{R}^{m+n}$ of infinitesimal automorphisms $X \in \mathcal{X}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$. Given a $\mathcal{F}_{o l} l_{m, n}$-object (M, \mathcal{F}), we define a V-valued 1-form $\Theta_{(M, \mathcal{F})}^{\lambda}: T P^{r}(M, \mathcal{F}) \rightarrow V$ on $P^{r}(M, \mathcal{F})$ as follows. Let $v \in T_{w} P^{r}(M, \mathcal{F}), w=j_{0}^{r} \varphi \in\left(P^{r}(M, \mathcal{F})\right)_{x}, x \in M$. By Lemma $1, v=\mathcal{P}^{r} X_{w}$ for some infinitesimal automorphism $X \in \mathcal{X}(M, \mathcal{F})$, and $j_{x}^{r} X$ is uniquely determined. Then it is determined the $(r-1)$-jet $j_{0}^{r-1}\left(\left(\varphi^{-1}\right)_{*} X\right)$ at 0 of the image $\left(\varphi^{-1}\right)_{*} X$ of X by φ^{-1}. We put

$$
\Theta_{(M, \mathcal{F})}^{\lambda}(v):=\lambda\left(j_{0}^{r-1}\left(\left(\varphi^{-1}\right)_{*} X\right)\right) .
$$

Clearly, $\Theta^{\lambda}=\left\{\Theta_{(M, \mathcal{F})}^{\lambda}\right\}$ is a $\mathcal{F}_{o l} l_{m, n}$-canonical V-valued 1-form on P^{r}.
The main result of the present short note is the following classification theorem.
Theorem 1. Any \mathcal{F} ol $m_{m, n}$-canonical V-valued 1 -form on P^{r} is Θ^{λ} for some unique \mathbf{R}-linear map $\lambda: J_{0}^{r-1}\left(T_{\text {Inf - Aut }}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)\right) \rightarrow V$.

In the proof of Theorem 1 we use the following fact.
Lemma 2. Let $X, Y \in \mathcal{X}(M, \mathcal{F})$ be infinitesimal automorphisms of (M, \mathcal{F}) and $x \in M$ be a point. Suppose that $j_{x}^{r-1} X=j_{x}^{r-1} Y$ and X_{x} is not-tangent to \mathcal{F}. Then there exists a (locally defined) $\mathcal{F}_{\text {ol }}^{m, n}$-map $\Phi:(M, \mathcal{F}) \rightarrow(M, \mathcal{F})$ such that $j_{x}^{r}(\Phi)=j_{x}^{r}\left(\mathrm{id}_{M}\right)$ and $\Phi_{*} X=Y$ near x.
Proof. A direct modification of the proof of Lemma 42.4 in [1].
Proof of Theorem 1. Let Θ be a $\mathcal{F} o l_{m, n}$-canonical V-valued 1-form on P^{r}. We must define $\lambda: J_{0}^{r-1}\left(T_{\text {Inf }-\operatorname{Aut}}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)\right) \rightarrow V$ by

$$
\lambda(\xi):=\Theta_{\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)}\left(\mathcal{P}^{r} \tilde{X}_{j_{0}^{r}\left(\mathrm{id}_{\mathbf{R}^{m+n}}\right)}\right)
$$

for all $\xi \in J_{0}^{r-1}\left(T_{\operatorname{Inf}-\operatorname{Aut}}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)$, where given ξ in question, \tilde{X} is a unique (a unique germ at 0 of) infinitesimal automorphism of $\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$ such that $j_{0}^{r-1} \tilde{X}=\xi$ and the coefficients of \tilde{X} with respect to the basis of the canonical vector fields $\frac{\partial}{\partial x^{i}} \in \mathcal{X}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)(i=1, \ldots, m+n)$ are polynomials of degree $\leq r-1$.

We are going to show that $\Theta=\Theta^{\lambda}$. Because of the \mathcal{F} ol $l_{m, n}$-invariance it remains to show that

$$
\begin{equation*}
\Theta_{\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)}(v)=\Theta_{\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)}^{\lambda}(v) \tag{*}
\end{equation*}
$$

for any $v \in T_{j_{0}^{r}\left(\mathrm{id}_{\mathbf{R}^{m+n}}\right)} P^{r}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$.
By the definition of λ and Θ^{λ} we have $(*)$ for any v of the form $\mathcal{P}^{r} \tilde{X}_{j_{0}^{r}\left(\mathrm{id}_{\mathbf{R}^{m+n}}\right),}$, where \tilde{X} is an infinitesimal automorphism of $\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$ such that the coefficients of \tilde{X} with respect to the basis of canonical vector fields on \mathbf{R}^{m+n} are polynomials of degree $\leq r-1$.

Now, let v be arbitrary in question. Then by Lemma $1, v$ is of the form $v=$ $\mathcal{P}^{r} X_{j_{0}^{r}\left(\mathrm{id}_{\mathbf{R}^{m+n}}\right)}$ for some infinitesimal automorphism X of $\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$. Clearly (because of a density argument), we can additionally assume that X_{0} is not tangent to $\mathcal{F}^{m, n}$. Let \tilde{X} be an infinitesimal automorphism of $\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$ such that $j_{0}^{r-1} \tilde{X}=j_{0}^{r-1} X$ and the coefficients of \tilde{X} with respect to the basis of constant vector fields on \mathbf{R}^{m+n} are polynomials of degree $\leq r-1$. Let $\tilde{v}=\mathcal{P}^{r} \tilde{X}_{j_{0}^{r}\left(\mathrm{id}_{\mathbf{R}^{m+n}}\right)}$. Then (we have observed above) it holds $\Theta_{\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)}(\tilde{v})=\Theta_{\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)}^{\lambda}(\tilde{v})$. On the other hand by Lemma 2 , there is a $\mathcal{F}_{o l_{m, n}-\operatorname{map}} \Phi:\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right) \rightarrow\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)$ such that $j_{0}^{r} \Phi=j_{0}^{r}\left(\mathrm{id}_{\mathbf{R}^{m+n}}\right)$ and $\Phi_{*} \tilde{X}=X$ near 0 . Since $j_{0}^{r} \Phi=\mathrm{id}$, Φ preserves $j_{0}^{r}\left(\operatorname{id}_{\mathbf{R}^{m+n}}\right)$. Then since $\Phi_{*} \tilde{X}=X, \Phi$ sends \tilde{v} into v. Then because of the invariance of Θ and Θ^{λ} with respect to Φ, we obtain $\Theta_{\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)}(v)=\Theta_{\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)}(\tilde{v})=$ $\Theta_{\left(\mathbf{R}^{m+n}, \mathcal{F}^{m+n}\right)}^{\lambda}(\tilde{v})=\Theta_{\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)}^{\lambda}(v)$.

In the case $r=1$, we have $J_{0}^{0}\left(T_{\operatorname{Inf}-\operatorname{Aut}}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)\right) \tilde{=} \mathbf{R}^{m+n}$. Then by Theorem 1, the vector space of \mathcal{F} ol $l_{m, n}$-canonical V-valued 1 -forms on P^{1} is $(m+$ $n) \operatorname{dim}(V)$-dimensional. Then (because of a dimension argument) we have.
Corollary 1. Any $\mathcal{F}_{\text {ol }}^{m, n}$-canonical V-valued 1 -form $\Theta=\left\{\Theta_{(M, \mathcal{F})}\right\}$ on P^{1} is of the form

$$
\Theta_{(M, \mathcal{F})}=\lambda \circ \theta_{(M, \mathcal{F})}: T P^{1}(M, \mathcal{F}) \rightarrow V
$$

for some unique linear map $\lambda: \mathbf{R}^{m+n} \rightarrow V$, where $\theta=\left\{\theta_{(M, \mathcal{F})}\right\}$ is the canonical \mathbf{R}^{m+n}-valued 1-form on P^{1} from Example 1.
Example 3. It is easy to see that

$$
J_{0}^{r-1}\left(T_{\text {Inf }-\operatorname{Aut}}\left(\mathbf{R}^{m+n}, \mathcal{F}^{m, n}\right)\right) \tilde{=\mathbf{R}^{m+n} \oplus \mathcal{L} i e\left(G_{m, n}^{r-1}\right) ~}
$$

Thus by Example 2 for $\lambda=\operatorname{id}_{\mathbf{R}^{m+n} \oplus \mathcal{L i e}\left(G_{m, n}^{r-1}\right)}$ we have a \mathcal{F} ol $l_{m, n}$-canonical $\mathbf{R}^{m, n} \oplus$ \mathcal{L} ie $\left(G_{m, n}^{r-1}\right)$-valued 1-form

$$
\theta_{(M, \mathcal{F})}^{r}:=\Theta^{\mathrm{id}_{\mathbf{R}^{m+m} \oplus \mathcal{L i e}\left(G_{m, n}^{r-1}\right)}}: T P^{r}(M, \mathcal{F}) \rightarrow \mathbf{R}^{m+n} \oplus \mathcal{L} i e\left(G_{m, n}^{r-1}\right)
$$

on P^{r}. For $r=1$, we have $\theta^{1}=\theta$ as in Example 1. In particular, for $n=0$ we obtain the well-known canonical $\mathbf{R}^{m} \oplus \mathcal{L} i e\left(G_{m}^{r-1}\right)$-valued 1-form

$$
\theta_{M}^{r}: P^{r} M \rightarrow \mathbf{R}^{m} \oplus \mathcal{L} i e\left(G_{m}^{r-1}\right)
$$

on the r-order frame bundle $P^{r} M$.
By similar arguments as for Corollary 1 we have.
Corollary 2. Any $\mathcal{F}_{\text {ol }}^{m, n}$-canonical V-valued 1 -form $\Theta=\left\{\Theta_{(M, \mathcal{F})}\right\}$ on P^{r} is of the form

$$
\Theta_{(M, \mathcal{F})}=\lambda \circ \theta_{(M, \mathcal{F})}^{r}: T P^{r}(M, \mathcal{F}) \rightarrow V
$$

for some unique linear map $\lambda: \mathbf{R}^{m+n} \oplus \mathcal{L}$ ie $\left(G_{m, n}^{r-1}\right) \rightarrow V$, where θ^{r} is as in Example 3.

In particular (for $n=0$), any canonical V-valued 1-form $\Theta=\left\{\Theta_{M}\right\}$ on $P^{r} M$ is of the form

$$
\Theta_{M}=\lambda \circ \theta_{M}^{r}: T P^{r} M \rightarrow V
$$

for some unique linear map $\lambda: \mathbf{R}^{m} \oplus \mathcal{L} i e\left(G_{m}^{r-1}\right) \rightarrow V$.
Remark. Recently, we obtained (by a modification of the above paper) a similar result on gauge invariant vector valued 1-forms on higher order principal prolongations of principal bundles. The paper will appear in Lobachevskii Math. J. 2008.

References

[1] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993.
[2] Wolak, R. A., Geometric structures on foliated manifolds, Publications del Departamento de Geometria y Topologia, Universidad de Santiago de Compostella 76 (1989).

Institute of Mathematics, Maria Curie-Sklodowska Univesity
Pl. M. Curie-Sklodowskiej 1, Lublin, Poland
E-mail: kurek@hektor.umcs.lublin.pl

Institute of Mathematics, Jagiellonian University
ul. Reymonta 4, Kraków, Poland
E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary: 58A20; Secondary: 58A32.
 Key words and phrases: foliated manifold, infinitesimal automorphism, higher order adapted frame bundle, canonical 1-form.

 Received July 24, 2007, revised October 2007. Editor I. Kolář.

