DERIVATIONS OF THE SUBALGEBRAS INTERMEDIATE THE GENERAL LINEAR LIE ALGEBRA AND THE DIAGONAL SUBALGEBRA OVER COMMUTATIVE RINGS

Dengyin Wang and Xian Wang

Abstract

Let R be an arbitrary commutative ring with identity, $g l(n, R)$ the general linear Lie algebra over $R, d(n, R)$ the diagonal subalgebra of $\operatorname{gl}(n, R)$. In case 2 is a unit of R, all subalgebras of $\operatorname{gl}(n, R)$ containing $d(n, R)$ are determined and their derivations are given. In case 2 is not a unit partial results are given.

1. Introduction

Let R be a commutative ring with identity, R^{*} the subset of R consisting of all invertible elements in $R, I(R)$ the set consisting of all ideals of R. Let $\operatorname{gl}(n, R)$ be the general linear Lie algebra consisting of all $n \times n$ matrices over R and with the bracket operation: $[x, y]=x y-y x$. We denote by $d(n, R)$ (resp., $t(n, R)$) the subset of $\operatorname{gl}(n, R)$ consisting of all $n \times n$ diagonal (resp., upper triangular) matrices over R. Let E be the identity matrix in $\operatorname{gl}(n, R), R E$ the set $\{r E \mid r \in R\}$ consisting of all scalar matrices, and $E_{i, j}$ the matrix in $\operatorname{gl}(n, R)$ whose sole nonzero entry 1 is in the (i, j) position. For $A \in \operatorname{gl}(n, R)$, we denote by A^{\prime} the transpose of A.

For R-modules M and K, we denote by $\operatorname{Hom}_{R}(M, K)$ the set of all homomorphisms of R-modules from M to $K . \operatorname{Hom}_{R}(M, M)$ is abbreviated to $\operatorname{Hom}_{R}(M)$. For $1 \leq i \leq n$, $\chi_{i}: d(n, R) \rightarrow R$, defined by $\chi_{i}\left(\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)\right)=d_{i}$, is a standard homomorphism from $d(n, R)$ to R.

Recently, significant work has been done in studying automorphisms and derivations of matrix Lie algebras (or sometimes matrix algebras) and their subalgebras (see [1]-[7]). Derivations of the parabolic subalgebras of $\mathrm{gl}(n, R)$ were described in [7]. Derivations of the subalgebras of $t(n, R)$ containing $d(n, R)$ were determined in [6]. In this article, when 2 is a unit of R, all subalgebras of $\operatorname{gl}(n, R)$ containing $d(n, R)$ are determined and their derivations are given. In case 2 is not a unit partial results are given.

[^0]
2. The subalgebras of $\operatorname{gl}(n, R)$ containing $d(n, R)$

Definition 2.1. Let $\Phi=\left\{A_{i, j} \in I(R) \mid 1 \leq i, j \leq n\right\}$ be a subset of $I(R)$ consisting of n^{2} ideals of R. We call Φ a flag of ideals of R, if
(1) $A_{i, i}=R, i=1,2, \ldots, n$.
(2) $A_{i, k} A_{k, j} \subseteq A_{i, j}$ for any $i, j, k(1 \leq i, j, k \leq n)$.

Example 2.2. If $i \neq j$, let $A_{i, j}$ be 0 , and let $A_{i, i}=R$ for $i=1,2, \ldots, n$. Then $\Phi=\left\{A_{i, j} \mid 1 \leq i, j \leq n\right\}$ is a flag of ideals of R.
Example 2.3. If all $A_{i, j}$ are taken to be R, then $\Phi=\left\{A_{i, j} \mid 1 \leq i, j \leq n\right\}$ is a flag of ideals of R.

Theorem 2.4. If $\Phi=\left\{A_{i, j} \mid 1 \leq i, j \leq n\right\}$ is a flag of ideals of R, then $L_{\Phi}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} E_{i, j}$ is a subalgebra of $\operatorname{gl}(n, R)$ containing d (n, R).
Proof. Suppose that $\Phi=\left\{A_{i, j} \mid 1 \leq i, j \leq n\right\}$ is a flag of ideals of R and $L_{\Phi}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} E_{i, j}$. Let

$$
x=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} E_{i, j} \in L_{\Phi}, \quad y=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i, j} E_{i, j} \in L_{\Phi},
$$

where $a_{i, j}, b_{i, j} \in A_{i, j}$. It is obvious that $r x+s y \in L_{\Phi}$ for any $r, s \in R$. Notice that

$$
[x, y]=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i, j} E_{i, j}, \quad \text { where } \quad c_{i, j}=\sum_{k=1}^{n}\left(a_{i, k} b_{k, j}-b_{i, k} a_{k, j}\right)
$$

By assumption (2) on Φ, we know that $\left(a_{i, k} b_{k, j}-b_{i, k} a_{k, j}\right) \in A_{i, j}$, forcing $c_{i, j} \in A_{i, j}$ and $[x, y] \in L_{\Phi}$. Hence L_{Φ} is a subalgebra of $\operatorname{gl}(n, R)$. Assumption (1) on Φ shows that L_{Φ} contains $d(n, R)$.

The following result shows that these L_{Φ} nearly exhaust all subalgebras of $\mathrm{gl}(n, R)$ containing $d(n, R)$.
Theorem 2.5. If L is a subalgebra of $\operatorname{gl}(n, R)$ containing $d(n, R)$, then there exists a flag $\Phi=\left\{A_{i, j} \mid 1 \leq i, j \leq n\right\}$ of ideals of R such that

$$
2 L \subseteq L_{\Phi} \subseteq L
$$

Proof. Let L be a subalgebra of $\operatorname{gl}(n, R)$ containing $d(n, R)$. For $\forall i, j(1 \leq i, j \leq n)$, define

$$
A_{i, j}=\left\{a_{i, j} \in R \mid a_{i, j} E_{i, j} \in L\right\}
$$

and set

$$
\begin{aligned}
\Phi & =\left\{A_{i, j} \mid 1 \leq i, j \leq n\right\}, \\
L_{\Phi} & =\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} E_{i, j} .
\end{aligned}
$$

In the following, we will prove that Φ is a flag of ideals of R, and $2 L \subseteq L_{\Phi} \subseteq L$. It's obvious that all $A_{i, j}$ are ideals of R and $A_{i, i}=R$ for $i=1,2, \cdots, n$. If $i \neq j$
and $a_{i, k} \in A_{i, k}, a_{k, j} \in A_{k, j}$, then by $\left[a_{i, k} E_{i, k}, a_{k, j} E_{k, j}\right]=a_{i, k} a_{k, j} E_{i, j} \in L$, we see that $a_{i, k} a_{k, j} \in A_{i, j}$, forcing $A_{i, k} A_{k, j} \subseteq A_{i, j}$. If $i=j$, since $A_{i, i}=R$, we also have that $A_{i, k} A_{k, j} \subseteq A_{i, j}$. Thus Φ is a flag of ideals of R. It is easy to see that $L_{\Phi} \subseteq L$. On the other hand, for $x=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} E_{i, j} \in L$, if $k \neq l$, then by

$$
\begin{aligned}
& {\left[E_{k, k},\left[E_{l, l},-x\right]\right]=a_{k, l} E_{k, l}+a_{l, k} E_{l, k} \in L} \\
& {\left[E_{k, k}, a_{k, l} E_{k, l}+a_{l, k} E_{l, k}\right]=a_{k, l} E_{k, l}-a_{l, k} E_{l, k} \in L}
\end{aligned}
$$

we see that $2 a_{k, l} E_{k, l} \in L, 2 a_{l, k} E_{l, k} \in L$. This shows that $2 a_{k, l} \in A_{k, l}, 2 a_{l, k} \in A_{l, k}$, forcing $2 x \in L_{\Phi}$. So $2 L \subseteq L_{\Phi}$.
Corollary 2.6. Assume that $2 \in R^{*}$, then L is a subalgebra of $\operatorname{gl}(n, R)$ containing $d(n, R)$ if and only if there exists a flag $\Phi=\left\{A_{i, j} \mid 1 \leq i, j \leq n\right\}$ of ideals of R such that $L=L_{\Phi}$.

Remark 2.7. Without the assumption $2 \in R^{*}$, Corollary 2.6 does not hold. The following is an example. Let R be $Z / 2 Z$ (Z is the ring of all integer numbers), then R has only two ideals: 0 and R. Set $L=\left\{\left.\left(\begin{array}{ll}a & b \\ b & c\end{array}\right) \right\rvert\, a, b, c \in Z / 2 Z\right\}$. Then L is a subalgebra of $\mathrm{gl}(2, Z / 2 Z)$ containing $d(2, Z / 2 Z)$, but $L \neq L_{\Phi}$ for any flag $\Phi=\left\{A_{i, j} \mid 1 \leq i, j \leq 2\right\}$ of ideals of R.

3. Construction of certain derivations of L_{Φ}

Let $L_{\Phi}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} E_{i, j}$ be a fixed subalgebra of $\operatorname{gl}(n, R)$ containing $d(n, R)$, with $\Phi=\left\{A_{i, j} \in I(R) \mid 1 \leq i, j \leq n\right\}$ a flag of ideals of R. We denote by Der L_{Φ} the set consisting of all derivations of L_{Φ}. We now construct certain derivations of L_{Φ} for building the derivation algebra $\operatorname{Der} L_{\Phi}$ of L_{Φ}. For $A_{i, j} \in \Phi$, let $B_{i, j}$ denote the annihilator of $A_{i, j}$ in R, i.e., $B_{i, j}=\left\{r \in R \mid r A_{i j}=0\right\}$.

(A) Inner derivations

Let $x \in L_{\Phi}$, then ad $x: L_{\Phi} \rightarrow L_{\Phi}, y \mapsto[x, y]$, is a derivation of L_{Φ}, called the inner derivation of L_{Φ} induced by x. Let ad L_{Φ} denote the set consisting of all ad $x, x \in L_{\Phi}$, which forms an ideal of Der L_{Φ}.

(B) Transpose derivations

Definition 3.3. Let $\Pi=\left\{\pi_{i, j} \in \operatorname{Hom}_{R}\left(A_{i, j}, A_{j, i}\right) \mid 1 \leq i, j \leq n\right\}$ be a set consisting of n^{2} homomorphisms of R-modules. We call Π suitable for transpose derivations, if the following conditions are satisfied for all $i, j(1 \leq i, j \leq n)$:
(1) $\pi_{i, i}=0$;
(2) $\pi_{i, j}\left(A_{i, k} A_{k, j}\right)=0$ for all k which satisfies $k \neq i$ and $k \neq j$;
(3) $\pi_{i, j}\left(A_{i, j}\right) \subseteq B_{k, j}$ and $\pi_{i, j}\left(A_{i, j}\right) \subseteq B_{i, k}$ for all k which satisfies $k \neq i$ and $k \neq j$;
(4) $2 \pi_{i, j}\left(A_{i, j}\right)=0$.

Remark. In case 2 is a unit, (4) means that $\pi_{i, j}$ are necessarily zero maps.
Using the homomorphism $\Pi=\left\{\pi_{i, j} \in \operatorname{Hom}_{R}\left(A_{i, j}, A_{j, i}\right) \mid 1 \leq i, j \leq n\right\}$ which is suitable for transpose derivations, we define $\phi_{\Pi}: L_{\Phi} \rightarrow L_{\Phi}$ by sending any $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} E_{i, j} \in L_{\Phi}$ to $\sum_{i=1}^{n} \sum_{j=1}^{n} \pi_{i, j}\left(a_{i, j}\right) E_{j, i}$.

Lemma 3.4. The map ϕ_{Π} as defined above, is a derivation of L_{Φ}.
Proof. Let

$$
\begin{array}{ll}
x=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} E_{i, j} \in L_{\Phi}, & a_{i, j} \in A_{i, j}, \\
y=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i, j} E_{i, j} \in L_{\Phi}, & b_{i, j} \in A_{i, j} .
\end{array}
$$

Obviously, $\phi_{\Pi}(r x+s y)=r \phi_{\Pi}(x)+s \phi_{\Pi}(y)$ for $\forall r, s \in R$. Write

$$
[x, y]=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i, j} E_{i, j}, \quad \text { where } \quad c_{i, j}=\sum_{k=1}^{n}\left(a_{i, k} b_{k, j}-b_{i, k} a_{k, j}\right) .
$$

Because Π is suitable for transpose derivations, we have that

$$
\begin{aligned}
\phi_{\Pi}([x, y]) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \pi_{i, j}\left(c_{i, j}\right) E_{j, i}=\sum_{i=1}^{n} \sum_{j=1}^{n} \pi_{i, j}\left(\sum_{k=1}^{n}\left(a_{i, k} b_{k, j}-b_{i, k} a_{k, j}\right)\right) E_{j, i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\left(a_{i, i}-a_{j, j}\right) \pi_{i, j}\left(b_{i, j}\right)+\left(b_{j, j}-b_{i, i}\right) \pi_{i, j}\left(a_{i, j}\right)\right] E_{j, i}
\end{aligned}
$$

(by assumption (2)).
On the other hand,

$$
\begin{aligned}
{\left[\phi_{\Pi}(x), y\right]+\left[x, \phi_{\Pi}(y)\right]=} & \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\sum _ { k = 1 } ^ { n } \left(\pi_{k, j}\left(a_{k, j}\right) b_{k, i}-b_{j, k} \pi_{i, k}\left(a_{i, k}\right)\right.\right. \\
& \left.\left.-\pi_{k, j}\left(b_{k, j}\right) a_{k, i}+a_{j, k} \pi_{i, k}\left(b_{i, k}\right)\right)\right] E_{j, i} \\
= & \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\left(a_{j, j}-a_{i, i}\right) \pi_{i, j}\left(b_{i, j}\right)+\left(b_{i, i}-b_{j, j}\right) \pi_{i, j}\left(a_{i, j}\right)\right] E_{j, i}
\end{aligned}
$$

(by assumption (3)).
By assumption (4) on Π, we see that $\phi_{\Pi}([x, y])=\left[\phi_{\Pi}(x), y\right]+\left[x, \phi_{\Pi}(y)\right]$. Hence ϕ_{Π} is a derivation of L_{Φ}.
ϕ_{Π} is called a transpose derivation of L_{Φ}.

(C) Ring derivations

Definition 3.5. Let $\Sigma=\left\{\sigma_{i, j} \in \operatorname{Hom}_{R}\left(A_{i, j}\right), \sigma \in \operatorname{Hom}_{R}(d(n, R)) \mid 1 \leq i, j \leq n\right\}$ be a set consisting of $n^{2}+1$ endomorphisms of R-modules. We call Σ suitable for ring derivations if the following conditions are satisfied for $\forall i, j(1 \leq i, j \leq n)$:
(1) $\chi_{i}(\sigma(D))-\chi_{j}(\sigma(D)) \subseteq\left(B_{i, j} \cap B_{j, i}\right)$ for $\forall D \in d(n, R)$;
(2) $\sigma\left(a_{i, j} a_{j, i}\left(E_{i, i}-E_{j, j}\right)\right)=\left(\sigma_{i, j}\left(a_{i, j}\right) a_{j, i}+a_{i, j} \sigma_{j, i}\left(a_{j, i}\right)\right)\left(E_{i, i}-E_{j, j}\right), \forall a_{i, j} \in$ $A_{i, j}, \forall a_{j, i} \in A_{j, i} ;$
(3) $\sigma_{i, i}=0, i=1,2, \ldots n$
(4) When $i \neq j, \sigma_{i, j}\left(a_{i, k} a_{k, j}\right)=\sigma_{i, k}\left(a_{i, k}\right) a_{k, j}+a_{i, k} \sigma_{k, j}\left(a_{k, j}\right)$ for $\forall k(1 \leq k \leq$ $n), \forall a_{i, k} \in A_{i, k}$ and $\forall a_{k, j} \in A_{k, j}$.

Using $\Sigma=\left\{\sigma_{i, j} \in \operatorname{Hom}_{R}\left(A_{i, j}\right), \sigma \in \operatorname{Hom}_{R}(d(n, R)) \mid 1 \leq i, j \leq n\right\}$ which is suitable for ring derivations, we define $\phi_{\Sigma}: L_{\Phi} \rightarrow L_{\Phi}$ by sending any $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j}$ $E_{i, j} \in L_{\Phi}$ to $\sum_{1 \leq i \neq j \leq n} \sigma_{i, j}\left(a_{i, j}\right) E_{i, j}+\sigma\left(\sum_{k=1}^{n} a_{k, k} E_{k, k}\right)$.

Lemma 3.6. The map ϕ_{Σ}, as defined above, is a derivation of L_{Φ}.
Proof. Let $x=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} E_{i, j} \in L_{\Phi}, y=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i, j} E_{i, j} \in L_{\Phi}$, where $a_{i, j}, b_{i, j}$ lie in $A_{i, j}$. It is obvious that $\phi_{\Sigma}(r x+s y)=r \phi_{\Sigma}(x)+s \phi_{\Sigma}(y)$ for any $r, s \in$ R. We know $[x, y]=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i, j} E_{i, j}$, where $c_{i, j}=\sum_{k=1}^{n}\left(a_{i, k} b_{k, j}-b_{i, k} a_{k, j}\right)$. Because Σ is suitable for ring derivations, we have that

$$
\begin{aligned}
\phi_{\Sigma}([x, y])= & \sum_{1 \leq i \neq j \leq n}\left[\sum_{k=1}^{n}\left(\sigma_{i, j}\left(a_{i, k} b_{k, j}-b_{i, k} a_{k, j}\right)\right)\right] E_{i, j} \\
& +\sigma\left[\sum_{i=1}^{n} \sum_{k=1}^{n}\left(a_{i, k} b_{k, i}-b_{i, k} a_{k, i}\right) E_{i, i}\right] \\
= & \sum_{1 \leq i \neq j \leq n}\left[\sum_{k=1}^{n}\left(\sigma_{i, j}\left(a_{i, k} b_{k, j}-b_{i, k} a_{k, j}\right)\right)\right] E_{i, j} \\
& +\sigma\left(\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i, k} b_{k, i}\left(E_{i, i}-E_{k, k}\right)\right) \\
\text { (note that } & \left.\sum_{i=1}^{n} \sum_{k=1}^{n}\left(a_{i, k} b_{k, i}-b_{i, k} a_{k, i}\right) E_{i, i}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i, k} b_{k, i}\left(E_{i, i}-E_{k, k}\right)\right) \\
= & \sum_{1 \leq i \neq j \leq n}\left[\sum _ { k = 1 } ^ { n } \left(\sigma_{i, k}\left(a_{i, k}\right) b_{k, j}+a_{i, k} \sigma_{k, j}\left(b_{k, j}\right)\right.\right. \\
& \left.\left.-\sigma_{i, k}\left(b_{i, k}\right) a_{k, j}-b_{i, k} \sigma_{k, j}\left(a_{k, j}\right)\right)\right] E_{i, j} \\
& +\sum_{i=1}^{n} \sum_{k=1}^{n}\left[\sigma_{i, k}\left(a_{i, k}\right) b_{k, i}+a_{i, k} \sigma_{k, i}\left(b_{k, i}\right)\right]\left(E_{i, i}-E_{k, k}\right)
\end{aligned}
$$

(by assumption (2) and (4)).
On the other hand,

$$
\begin{aligned}
{\left[\phi_{\Sigma}(x), y\right] } & +\left[x, \phi_{\Sigma}(y)\right]=\left[\sum_{1 \leq i \neq j \leq n} \sigma_{i, j}\left(a_{i, j}\right) E_{i, j}+\sigma\left(\sum_{i=1}^{n} a_{i, i} E_{i, i}\right), y\right] \\
& +\left[x, \sum_{1 \leq i \neq j \leq n} \sigma_{i, j}\left(b_{i, j}\right) E_{i, j}+\sigma\left(\sum_{i=1}^{n} b_{i, i} E_{i, i}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[\sum_{1 \leq i \neq j \leq n} \sigma_{i, j}\left(a_{i, j}\right) E_{i, j}, y\right]+\left[x, \sum_{1 \leq i \neq j \leq n} \sigma_{i, j}\left(b_{i, j}\right) E_{i, j}\right] } \\
& \text { (by assumption (1)) } \\
= & {\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{i, j}\left(a_{i, j}\right) E_{i, j}, y\right]+\left[x, \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{i, j}\left(b_{i, j}\right) E_{i, j}\right] }
\end{aligned}
$$

(by assumption (3))

$$
=\sum_{1 \leq i \neq j \leq n}\left[\sum_{k=1}^{n} \sigma_{i, k}\left(a_{i, k}\right) b_{k, j}-b_{i, k} \sigma_{k, j}\left(a_{k, j}\right)\right.
$$

$$
\left.-\sigma_{i, k}\left(b_{i, k}\right) a_{k, j}+a_{i, k} \sigma_{k, j}\left(b_{k, j}\right)\right] E_{i, j}
$$

$$
+\sum_{i=1}^{n}\left[\sum_{k=1}^{n} \sigma_{i, k}\left(a_{i, k}\right) b_{k, i}+b_{k, i} \sigma_{i, k}\left(a_{i, k}\right)\right.
$$

$$
\left.-\sigma_{i, k}\left(b_{i, k}\right) a_{k, i}-a_{k, i} \sigma_{i, k}\left(b_{i, k}\right)\right] E_{i, i}
$$

$$
=\sum_{1 \leq i \neq j \leq n}\left[\sum_{k=1}^{n} \sigma_{i, k}\left(a_{i, k}\right) b_{k, j}-b_{i, k} \sigma_{k, j}\left(a_{k, j}\right)\right.
$$

$$
\left.-\sigma_{i, k}\left(b_{i, k}\right) a_{k, j}+a_{i, k} \sigma_{k, j}\left(b_{k, j}\right)\right] E_{i, j}
$$

$$
+\sum_{i=1}^{n} \sum_{k=1}^{n}\left[\sigma_{i, k}\left(a_{i, k}\right) b_{k, i}+b_{k, i} \sigma_{i, k}\left(a_{i, k}\right)\right]\left(E_{i, i}-E_{k, k}\right)
$$

We see that

$$
\left[\phi_{\Sigma}(x), y\right]+\left[x, \phi_{\Sigma}(y)\right]=\phi_{\Sigma}([x, y]) .
$$

Hence ϕ_{Σ} is a derivation of L_{Φ}.
ϕ_{Σ} is called a ring derivation of L_{Φ}.

4. The derivation algebra of L_{Φ}

If $n>1$, for each fixed $k(1 \leq k \leq n-1)$, we assume that $n=k q+p$ with q and p two non-negative integers and $p \leq k-1$. Let $D_{k}=\operatorname{diag}\left(E_{k}, 2 E_{k}, \ldots, q E_{k}\right.$, $\left.(q+1) E_{p}\right) \in d(n, R), k=1,2, \ldots, n-1$ (where E_{k} denotes the $k \times k$ identity matrix). Let $\Phi=\left\{A_{i, j} \in I(R) \mid 1 \leq i<j \leq n\right\}$ be a flag of ideals of R, we denote $\sum_{1 \leq i \neq j \leq n} A_{i, j} E_{i, j}$ by w.
Theorem 4.1. Let R be an arbitrary commutative ring with identity, $n \geq 1$,

$$
L_{\Phi}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} E_{i, j}
$$

a subalgebra of $\mathrm{gl}(n, R)$ containing $d(n, R)$ with $\Phi=\left\{A_{i, j} \in I(R) \mid 1 \leq i<j \leq n\right\}$ a flag of ideals of R. Then every derivation of L_{Φ} may be uniquely written as the
sum of an inner derivation induced by an element in w, a transpose derivation and a ring derivation.

Proof. If $n=1$, then it's easy to determine $\operatorname{Der} L_{\Phi}$. From now on, we assume that $n>1$. Let ϕ be a derivation of L_{Φ}. In the following we give the proof by steps.
Step 1: There exists $W_{0} \in w$ such that $d(n, R)$ is stable under $\phi+\operatorname{ad} W_{0}$.
For $k=1,2, \ldots, n$, we set $v_{k}=\sum_{i=k}^{n} \sum_{j=1}^{i-k+1} A_{i, j} E_{i, j}$. Denote $L_{\Phi} \cap t(n, R)$ by t. For any $H \in d(n, R)$, suppose that

$$
\phi(H) \equiv\left(\sum_{1 \leq i<j \leq n} a_{j, i}(H) E_{j, i}\right)(\bmod t)
$$

where $a_{j, i}(H) \in A_{j, i}$ are relative to H. By $\left[D_{1}, H\right]=0$, we have that

$$
\left[H, \phi\left(D_{1}\right)\right]=\left[D_{1}, \phi(H)\right]
$$

which follows that

$$
\sum_{1 \leq i<j \leq n}\left(\chi_{j}(H)-\chi_{i}(H)\right) a_{j, i}\left(D_{1}\right) E_{j, i}=\sum_{1 \leq i<j \leq n}\left(\chi_{j}\left(D_{1}\right)-\chi_{i}\left(D_{1}\right)\right) a_{j, i}(H) E_{j, i}
$$

This yields that
$\left(\chi_{j}(H)-\chi_{i}(H)\right) a_{j, i}\left(D_{1}\right)=\left(\chi_{j}\left(D_{1}\right)-\chi_{i}\left(D_{1}\right)\right) a_{j, i}(H), \quad \forall i, j(1 \leq i<j \leq n-1)$.
In particular, we have that

$$
a_{i+1, i}(H)=\left(\chi_{i+1}(H)-\chi_{i}(H)\right) a_{i+1, i}\left(D_{1}\right), \quad i=1,2, \ldots, n
$$

Let $X_{1}=\sum_{i=1}^{n-1} a_{i+1, i}\left(D_{1}\right) E_{i+1, i} \in L_{\Phi}$, then $\left(\phi+\operatorname{ad} X_{1}\right)(d(n, R)) \subseteq t+v_{3}$. If $n=2$, this step is completed. If $n>2$, for any $H \in d(n, R)$, we now suppose that

$$
\left(\phi+\operatorname{ad} X_{1}\right)(H) \equiv\left(\sum_{1 \leq i<j \leq n-1} b_{j+1, i}(H) E_{j+1, i}\right)(\bmod t)
$$

where $b_{j+1, i}(H) \in A_{j+1, i}$ are relative to H. By $\left[D_{2}, H\right]=0$, we have that

$$
\left[H,\left(\phi+\operatorname{ad} X_{1}\right)\left(D_{2}\right)\right]=\left[D_{2},\left(\phi+\operatorname{ad} X_{1}\right)(H)\right]
$$

which follows that

$$
\begin{aligned}
& \sum_{1 \leq i<j \leq n-1}\left(\chi_{j+1}(H)-\chi_{i}(H)\right) b_{j+1, i}\left(D_{2}\right) E_{j+1, i} \\
&=\sum_{1 \leq i<j \leq n-1}\left(\chi_{j+1}\left(D_{2}\right)-\chi_{i}\left(D_{2}\right)\right) b_{j+1, i}(H) E_{j+1, i}
\end{aligned}
$$

This yields that

$$
\left(\chi_{j+1}(H)-\chi_{i}(H)\right) b_{j+1, i}\left(D_{2}\right)=\left(\chi_{j+1}\left(D_{2}\right)-\chi_{i}\left(D_{2}\right)\right) b_{j+1, i}(H)
$$

for all $i, j(1 \leq i<j \leq n-1)$. In particular, we have that

$$
b_{i+2, i}(H)=\left(\chi_{i+2}(H)-\chi_{i}(H)\right) b_{i+2, i}\left(D_{2}\right), \quad i=1,2, \ldots, n-2 .
$$

Let $X_{2}=\sum_{i=1}^{n-2} b_{i+2, i}\left(D_{2}\right) E_{i+2, i}$, then $\left(\phi+\operatorname{ad} X_{1}+\operatorname{ad} X_{2}\right)(d(n, R)) \subseteq t+v_{4}$. If $n=3$, this step is completed. If $n>3$, we repeat above process. After $n-2$ steps,
we may assume that $\left(\phi+\sum_{i=1}^{n-2}\right.$ ad $\left.X_{i}\right)(d(n, R)) \subseteq t+v_{n}$. For any $H \in d$, suppose that $\left(\phi+\sum_{i=1}^{n-2}\right.$ ad $\left.X_{i}\right)(H) \equiv c_{n, 1}(H) E_{n, 1}(\bmod t)$, where $c_{n, 1}(H) \in A_{n, 1}$ is relative to H. By $\left[D_{n-1}, H\right]=0$, we have that

$$
\left[H,\left(\phi+\sum_{i=1}^{n-2} \text { ad } X_{i}\right)\left(D_{n-1}\right)\right]=\left[D_{n-1},\left(\phi+\sum_{i=1}^{n-2} \text { ad } X_{i}\right)(H)\right]
$$

which follows that

$$
\left(\chi_{n}(H)-\chi_{1}(H)\right) c_{n, 1}\left(D_{n-1}\right)=\left(\chi_{n}\left(D_{n-1}\right)-\chi_{1}\left(D_{n-1}\right)\right) c_{n, 1}(H)
$$

So we have that

$$
c_{n, 1}(H)=\left(\chi_{n}(H)-\chi_{1}(H)\right) c_{n, 1}\left(D_{n-1}\right) .
$$

Let $X_{n-1}=c_{n, 1}\left(D_{n-1}\right) E_{n, 1}$, then $\left(\phi+\sum_{i+1}^{n-1}\right.$ ad $\left.X_{i}\right)(d(n, R)) \subseteq t$. If we choose $X_{0}=\sum_{i=1}^{n-1} X_{i}$, then $\left(\phi+\operatorname{ad} X_{0}\right)(d(n, R)) \subseteq t$.

Similarly, we may further choose $Y_{0} \in \sum_{j=1}^{n} \sum_{i=1}^{j-1} A_{i, j} E_{i, j}$ (the process is omitted) such that $\left(\phi+\operatorname{ad} X_{0}+\operatorname{ad} Y_{0}\right)(d(n, R)) \subseteq d(n, R)$.

Thus we may choose $W_{0}=X_{0}+Y_{0} \in w$ such that $\left(\phi+\operatorname{ad} W_{0}\right)(d(n, R)) \subseteq d(n, R)$. Denote $\phi+\operatorname{ad} W_{0}$ by ϕ_{1}, then $\phi_{1}(d(n, R)) \subseteq d(n, R)$.
Step 2: If $k \neq l$, then $A_{k, l} E_{k, l}+A_{l, k} E_{l, k}$ is stable under ϕ_{1}.
For any fixed $b_{k, l} \in A_{k, l}$, we suppose that $\phi_{1}\left(b_{k, l} E_{k, l}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} E_{i, j}$, where $a_{i, j} \in A_{i, j}$. By applying ϕ_{1} to $\left[E_{k, k}, b_{k, l} E_{k, l}\right]=b_{k, l} E_{k, l}$, we have that

$$
\left[\phi_{1}\left(E_{k, k}\right), b_{k, l} E_{k, l}\right]+\left[E_{k, k}, \phi_{1}\left(b_{k, l} E_{k, l}\right)\right]=\phi_{1}\left(b_{k, l} E_{k, l}\right) .
$$

This follows that

$$
\begin{equation*}
\left[\phi_{1}\left(E_{k, k}\right), b_{k, l} E_{k, l}\right]+\left[E_{k, k}, \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} E_{i, j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} E_{i, j} \ldots \tag{*}
\end{equation*}
$$

Note that $\phi_{1}\left(E_{k, k}\right) \in d(n, R)$ (by Step 1), thus $\left[\phi_{1}\left(E_{k, k}\right), b_{k, l} E_{k, l}\right] \in A_{k, l} E_{k, l}$. It is easy to see that $\left[E_{k, k}, \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} E_{i, j}\right]=\sum_{j=1}^{n} a_{k, j} E_{k, j}-\sum_{i=1}^{n} a_{i, k} E_{i, k}$. By comparing the two sides of $(*)$, we see that $a_{i, j}=0$ when $i \neq k$ and $j \neq k$. For the same reason, we know that $a_{i, j}=0$ when $i \neq l$ and $j \neq l$. Hence $\phi_{1}\left(b_{k, l} E_{k, l}\right) \in A_{k, l} E_{k, l}+A_{l, k} E_{l, k}$, which leads to $\phi_{1}\left(A_{k, l} E_{k, l}\right) \subseteq A_{k, l} E_{k, l}+A_{l, k} E_{l, k}$. Similarly, $\phi_{1}\left(A_{l, k} E_{l, k}\right) \subseteq A_{k, l} E_{k, l}+A_{l, k} E_{l, k}$. So $A_{k, l} E_{k, l}+A_{l, k} E_{l, k}$ is stable under ϕ_{1}.
Step 3: There exists a ring derivation ϕ_{Σ} such that each $A_{k, l} E_{k, l}(k \neq l)$ is send by $\phi_{1}-\phi_{\Sigma}$ to $A_{l, k} E_{l, k}$ and $d(n, R)$ is send by it to 0 .

We denote the the restriction of ϕ_{1} to $d(n, R)$ by σ, and let $\sigma_{i, i}: A_{i, i} \rightarrow A_{i, i}$ be zero. By Step 2 , we know that $A_{k, l} E_{k, l}+A_{l, k} E_{l, k}$ is stable under ϕ_{1} if $k \neq l$. Now for any $k, l(1 \leq k, l \leq n)$ we define the map $\sigma_{k, l}$ from $A_{k, l}$ to itself according to the following rule:
(a) $\sigma_{k, l}=0$ when $k=l$;
(b) If $k \neq l$, define $\sigma_{k, l}: A_{k, l} \rightarrow A_{k, l}$ such that for any $a_{k, l} \in A_{k, l}, \sigma_{k, l}\left(a_{k, l}\right)$ satisfies the condition: $\phi_{1}\left(a_{k, l} E_{k, l}\right) \equiv \sigma_{k, l}\left(a_{k, l}\right) E_{k, l}\left(\bmod A_{l, k} E_{l, k}\right)$.

Then $\sigma, \sigma_{k, l}(k \neq l)$ are all endomorphism of the R-modules. Set $\Sigma=\left\{\sigma_{i, j} \in\right.$ $\left.\operatorname{Hom}_{R}\left(A_{i, j}\right), \sigma \mid 1 \leq i, j \leq n\right\}$. We intend to prove that Σ is suitable for ring derivations.

For all $D \in d(n, R), a_{i, j} \in A_{i, j}$, by applying ϕ_{1} to $\left[D, a_{i, j} E_{i, j}\right]=\left(\chi_{i}(D)-\right.$ $\left.\chi_{j}(D)\right) a_{i, j} E_{i, j}$, we have that $a_{i, j}\left(\chi_{i}(\sigma(D))-\chi_{j}(\sigma(D))\right)=0$, leads to $\chi_{i}(\sigma(D))-$ $\chi_{j}\left(\sigma(D) \in B_{i, j}\right.$. Similarly, we may prove that $\chi_{i}(\sigma(D))-\chi_{j}(\sigma(D)) \in B_{j, i}$.

For all $i, j(1 \leq i, j \leq n), \forall a_{i, j} \in A_{i, j}, a_{j, i} \in A_{j, i}$, by applying ϕ_{1} to $\left[a_{i, j} E_{i, j}\right.$, $\left.a_{j, i} E_{j, i}\right]=a_{i, j} a_{j, i}\left(E_{i, i}-E_{j, j}\right)$, we have that $\sigma\left(a_{i, j} a_{j, i}\left(E_{i, i}-E_{j, j}\right)\right)=\left(\sigma_{i, j}\left(a_{i, j}\right) a_{j, i}+\right.$ $\left.a_{i, j} \sigma_{j, i}\left(a_{j, i}\right)\right)\left(E_{i, i}-E_{j, j}\right)$.

When $i \neq j$, for all $a_{i, k} \in A_{i, k}, a_{k, j} \in A_{k, j}$, by applying ϕ_{1} to $\left[a_{i, k} E_{i, k}, a_{k, j} E_{k, j}\right]=$ $a_{i, k} a_{k, j} E_{i, j}$, we have that

$$
\left[\sigma_{i, k}\left(a_{i, k}\right) E_{i, k}, a_{k, j} E_{k, j}\right]+\left[a_{i, k} E_{i, k}, \sigma_{k, j}\left(a_{k, j}\right) E_{k, j}\right]=\sigma_{i, j}\left(a_{i, k} a_{k, j}\right) E_{i, j}
$$

This shows that

$$
\sigma_{i, j}\left(a_{i, k} a_{k, j}\right)=\sigma_{i, k}\left(a_{i, k}\right) a_{k, j}+a_{i, k} \sigma_{k, j}\left(a_{k, j}\right)
$$

Now we see that Σ is suitable for ring derivations. Using Σ we construct the ring derivation ϕ_{Σ} as in Section 3 and denote $\phi_{1}-\phi_{\Sigma}$ by ϕ_{2}. Then we see that $\phi_{2}\left(A_{k, l} E_{k, l}\right) \subseteq A_{l, k} E_{l, k}$ for all k, l satisfy $k \neq l$ and ϕ_{2} sends $d(n, R)$ to 0 .

Step 4: ϕ_{2} exactly is a transpose derivation.
By Step 3, we know that $A_{k, l} E_{k, l}$ is send by ϕ_{2} to $A_{l, k} E_{l, k}$ when $k \neq l$ and $d(n, R)$ is send by it to 0 . Now for any $k, l(1 \leq k, l \leq n)$ we define the map $\pi_{k, l}$ from $A_{k, l}$ to $A_{l, k}$ according to the following rule:
(a) $\pi_{k, l}=0$ when $k=l$;
(b) If $k \neq l$, define $\pi_{k, l}: A_{k, l} \rightarrow A_{l, k}$ such that for any $a_{k, l} \in A_{k, l}, \sigma_{k, l}\left(a_{k, l}\right)$ satisfies the condition: $\phi_{2}\left(a_{k, l} E_{k, l}\right)=\pi_{k, l}\left(a_{k, l}\right) E_{l, k}$.
Then $\sigma_{k, l}$ is an homomorphism from the R-module $A_{k, l}$ to $A_{l, k}$. Set $\Pi=$ $\left\{\pi_{i, j} \in \operatorname{Hom}_{R}\left(A_{i, j}, A_{j, i}\right) \mid 1 \leq i, j \leq n\right\}$. We intend to prove that Π is suitable for transpose derivations. If $i \neq j$, for $\forall a_{i, k} \in A_{i, k}, \forall a_{k, j} \in A_{k, j}$, by applying ϕ_{2} to $\left[a_{i, k} E_{i, k}, a_{k, j} E_{k, j}\right]=a_{i, k} a_{k, j} E_{i, j}$, we have that

$$
\left[\pi_{i, k}\left(a_{i, k}\right) E_{k, i}, a_{k, j} E_{k, j}\right]+\left[a_{i, k} E_{i, k}, \pi_{k, j}\left(a_{k, j}\right) E_{j, k}\right]=\pi_{i, j}\left(a_{i, k} a_{k, j}\right) E_{j, i}
$$

If $k \neq i, k \neq j$, we see that the left side of above is 0 , then $\pi_{i, j}\left(a_{i, k} a_{k, j}\right)=0$, leads to $\pi_{i, j}\left(A_{i, k} A_{k, j}\right)=0$.

If $i \neq k, i \neq j, \forall a_{i, k} \in A_{i, k}, \forall a_{i, j} \in A_{i, j}$, by applying ϕ_{2} to $\left[a_{i, k} E_{i, k}, a_{i, j} E_{i, j}\right]=0$, we see that

$$
\left[\pi_{i, k}\left(a_{i, k}\right) E_{k, i}, a_{i, j} E_{i, j}\right]+\left[a_{i, k} E_{i, k}, \pi_{i, j}\left(a_{i, j}\right) E_{j, i}\right]=0
$$

This shows that

$$
\pi_{i, k}\left(a_{i, k}\right) a_{i, j} E_{k, j}-a_{i, k} \pi_{i, j}\left(a_{i, j}\right) E_{j, k}=0
$$

Thus $a_{i, k} \pi_{i, j}\left(a_{i, j}\right)=0$, leads to $A_{i, k} \pi_{i, j}\left(A_{i, j}\right)=0$ for $i \neq k$. Similarly, $A_{k, j} \pi_{i, j}\left(A_{i, j}\right)$ $=0$ for $k \neq j$.

For all $i \neq j, \forall a_{i, j} \in A_{i, j}$, by applying ϕ_{2} to $\left[E_{i, i}, a_{i, j} E_{i, j}\right]=a_{i, j} E_{i, j}$, we have that

$$
\left[E_{i, i}, \pi_{i, j}\left(a_{i, j}\right) E_{j, i}\right]=\pi_{i, j}\left(a_{i, j}\right) E_{j, i} .
$$

Since $\left[E_{i, i}, \pi_{i, j}\left(a_{i, j}\right) E_{j, i}\right]=-\pi_{i, j}\left(a_{i, j}\right) E_{j, i}$, we see that $\pi_{i, j}\left(a_{i, j}\right)=-\pi_{i, j}\left(a_{i, j}\right) E_{j, i}$. So $2 \pi_{i, j}\left(A_{i, j}\right)=0$ for $i \neq j$. Then $2 \pi_{i, j}\left(A_{i, j}\right)=0$ for $\forall i, j$.

Now we see that Π is suitable for transpose derivations. Using Π we construct the transpose derivation ϕ_{Π} as in Section 3, and denote $\phi_{2}-\phi_{\Pi}$ by ϕ_{3}. Then we see that $\phi_{3}\left(A_{k, l} E_{k, l}\right)=0$ for all k, l satisfy $k \neq l$ and $\phi_{3}(d(n, R))=0$. So $\phi_{3}=0$.

Thus $\phi=\phi_{\Pi}+\phi_{\Sigma}-\operatorname{ad} W_{0}$, as desired.
For the uniqueness of the decomposition of ϕ, we first prove that if $\phi_{\Pi}+\phi_{\Sigma}+$ ad $W_{0}=0$, then $\phi_{\Pi}=\phi_{\Sigma}=$ ad $W_{0}=0$. Suppose that $\phi_{\Pi}+\phi_{\Sigma}+\operatorname{ad} W_{0}=0$, where $W_{0} \in w$ and $\phi_{\Pi}, \phi_{\Sigma}$ are the the transpose and the ring derivation of L_{Φ}, respectively. By $\left(\phi_{\Pi}+\phi_{\Sigma}+\operatorname{ad} W_{0}\right)(d(n, R))=0$, we easily see that $W_{0}=0$. Then we have that $\phi_{\Pi}+\phi_{\Sigma}=0$. By applying $\phi_{\Pi}+\phi_{\Sigma}$ to $a_{i, j} E_{i, j}$ for $1 \leq i \neq j \leq n, a_{i, j} \in A_{i, j}$, we have that $\sigma_{i, j}\left(a_{i, j}\right) E_{i, j}+\pi_{i, j}\left(a_{i, j}\right) E_{j, i}=0$, leads to $\sigma_{i, j}\left(a_{i, j}\right)=\pi_{i, j}\left(a_{i, j}\right)=0$. This forces that $\phi_{\Pi}=\phi_{\Sigma}=0$. Now suppose that

$$
\phi=\phi_{\Pi_{1}}+\phi_{\Sigma_{1}}-\operatorname{ad} W_{1}=\phi_{\Pi_{2}}+\phi_{\Sigma_{2}}-\operatorname{ad} W_{2},
$$

is two decompositions of ϕ. Then we have that

$$
\left(\phi_{\Pi_{1}}-\phi_{\Pi_{2}}\right)+\left(\phi_{\Sigma_{1}}-\phi_{\Sigma_{2}}\right)+\left(\operatorname{ad} W_{2}-\operatorname{ad} W_{1}\right)=0 .
$$

Note that $\phi_{\Pi_{1}}-\phi_{\Pi_{2}}$ (resp., $\phi_{\Sigma_{1}}-\phi_{\Sigma_{2}}$) is also a transpose (resp., ring) derivation of L_{Φ} and ad $W_{2}-\operatorname{ad} W_{1}=a d\left(W_{2}-W_{1}\right)$. This implies that $\phi_{\Sigma_{1}}=\phi_{\Sigma_{2}}, \phi_{\Pi_{1}}=\phi_{\Pi_{2}}$ and $\operatorname{ad} W_{1}=\operatorname{ad} W_{2}$.
Acknowledgement. The authors thank the referee for his helpful suggestion.

References

[1] Benkart, G. M., Osbom, J. M., Derivations and automorphisms of non-associative matrix algebras, Trans. Amer. Math. Soc. 263 (1981), 411-430.
[2] Cao, Y., Tang, Z., Automorphisms of the Lie algebras of strictly upper triangular matrices over a commutative ring, Linear Algebra Appl. 360 (2003), 105-122.
[3] Jøndrup, S., Automorphisms of upper triangular matrix rings, Arch. Math. 49 (1987), 497-502.
[4] Jøndrup, S., The group of automorphisms of certain subalgebras of matrix algebras, J. Algebra 141 (1991), 106-114.
[5] Jøndrup, S., Automorphisms and derivations of upper triangular matrix rings, Linear Algebra Appl. 221 (1995), 205-218.
[6] Wang, D., Ou, S., Yu, Q., Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring, Linear and Multilinear Algebra 54 (2006), 369 - 377.
[7] Wang, D., Yu, Q., Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring, Linear Algebra Appl. 418 (2006), 763-774.

Department of Mathematics
China University of Mining and Technology
Xuzhou, 221008, People's Republic of China
E-mail: wdengyin@126.com

Graduate School of Natural Science and Technology
Okayama University
Okayama 700-8530, Japan

[^0]: 2000 Mathematics Subject Classification: primary 13C10; secondary 17B40, 17B45.
 Key words and phrases: the general linear Lie algebra, derivations of Lie algebras, commutative rings.

 Received August 15, 2007, revised March 2008. Editor J. Slovák.

