DERIVATIONS OF THE SUBALGEBRAS INTERMEDIATE THE GENERAL LINEAR LIE ALGEBRA AND THE DIAGONAL SUBALGEBRA OVER COMMUTATIVE RINGS

DENGYIN WANG AND XIAN WANG

ABSTRACT. Let R be an arbitrary commutative ring with identity, gl(n, R) the general linear Lie algebra over R, d(n, R) the diagonal subalgebra of gl(n, R). In case 2 is a unit of R, all subalgebras of gl(n, R) containing d(n, R) are determined and their derivations are given. In case 2 is not a unit partial results are given.

1. INTRODUCTION

Let R be a commutative ring with identity, R^* the subset of R consisting of all invertible elements in R, I(R) the set consisting of all ideals of R. Let gl(n, R) be the general linear Lie algebra consisting of all $n \times n$ matrices over R and with the bracket operation: [x, y] = xy - yx. We denote by d(n, R) (resp., t(n, R)) the subset of gl(n, R) consisting of all $n \times n$ diagonal (resp., upper triangular) matrices over R. Let E be the identity matrix in gl(n, R), RE the set $\{rE \mid r \in R\}$ consisting of all scalar matrices, and $E_{i,j}$ the matrix in gl(n, R) whose sole nonzero entry 1 is in the (i, j) position. For $A \in gl(n, R)$, we denote by A' the transpose of A.

For *R*-modules *M* and *K*, we denote by $\operatorname{Hom}_R(M, K)$ the set of all homomorphisms of *R*-modules from *M* to *K*. $\operatorname{Hom}_R(M, M)$ is abbreviated to $\operatorname{Hom}_R(M)$. For $1 \leq i \leq n, \chi_i \colon d(n, R) \to R$, defined by $\chi_i(\operatorname{diag}(d_1, d_2, \ldots, d_n)) = d_i$, is a standard homomorphism from d(n, R) to *R*.

Recently, significant work has been done in studying automorphisms and derivations of matrix Lie algebras (or sometimes matrix algebras) and their subalgebras (see [1]–[7]). Derivations of the parabolic subalgebras of gl(n, R) were described in [7]. Derivations of the subalgebras of t(n, R) containing d(n, R) were determined in [6]. In this article, when 2 is a unit of R, all subalgebras of gl(n, R) containing d(n, R) are determined and their derivations are given. In case 2 is not a unit partial results are given.

²⁰⁰⁰ Mathematics Subject Classification: primary 13C10; secondary 17B40, 17B45.

 $K\!ey$ words and phrases: the general linear Lie algebra, derivations of Lie algebras, commutative rings.

Received August 15, 2007, revised March 2008. Editor J. Slovák.

2. The subalgebras of gl(n, R) containing d(n, R)

Definition 2.1. Let $\Phi = \{A_{i,j} \in I(R) \mid 1 \leq i, j \leq n\}$ be a subset of I(R) consisting of n^2 ideals of R. We call Φ a *flag* of ideals of R, if

(1) $A_{i,i} = R, i = 1, 2, \dots, n.$

(2) $A_{i,k}A_{k,j} \subseteq A_{i,j}$ for any $i, j, k \ (1 \le i, j, k \le n)$.

Example 2.2. If $i \neq j$, let $A_{i,j}$ be 0, and let $A_{i,i} = R$ for i = 1, 2, ..., n. Then $\Phi = \{A_{i,j} \mid 1 \leq i, j \leq n\}$ is a flag of ideals of R.

Example 2.3. If all $A_{i,j}$ are taken to be R, then $\Phi = \{A_{i,j} \mid 1 \le i, j \le n\}$ is a flag of ideals of R.

Theorem 2.4. If $\Phi = \{A_{i,j} \mid 1 \leq i, j \leq n\}$ is a flag of ideals of R, then $L_{\Phi} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} E_{i,j}$ is a subalgebra of gl(n, R) containing d(n, R).

Proof. Suppose that $\Phi = \{A_{i,j} \mid 1 \leq i, j \leq n\}$ is a flag of ideals of R and $L_{\Phi} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} E_{i,j}$. Let

$$x = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} E_{i,j} \in L_{\Phi}, \qquad y = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i,j} E_{i,j} \in L_{\Phi},$$

where $a_{i,j}, b_{i,j} \in A_{i,j}$. It is obvious that $rx + sy \in L_{\Phi}$ for any $r, s \in R$. Notice that

$$[x,y] = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i,j} E_{i,j}, \quad \text{where} \quad c_{i,j} = \sum_{k=1}^{n} (a_{i,k} b_{k,j} - b_{i,k} a_{k,j}).$$

By assumption (2) on Φ , we know that $(a_{i,k}b_{k,j} - b_{i,k}a_{k,j}) \in A_{i,j}$, forcing $c_{i,j} \in A_{i,j}$ and $[x, y] \in L_{\Phi}$. Hence L_{Φ} is a subalgebra of gl(n, R). Assumption (1) on Φ shows that L_{Φ} contains d(n, R).

The following result shows that these L_{Φ} nearly exhaust all subalgebras of gl(n, R) containing d(n, R).

Theorem 2.5. If L is a subalgebra of gl(n, R) containing d(n, R), then there exists a flag $\Phi = \{A_{i,j} \mid 1 \leq i, j \leq n\}$ of ideals of R such that

$$2L \subseteq L_{\Phi} \subseteq L$$
.

Proof. Let *L* be a subalgebra of gl(n, R) containing d(n, R). For $\forall i, j \ (1 \le i, j \le n)$, define

$$A_{i,j} = \{a_{i,j} \in R \mid a_{i,j} E_{i,j} \in L\},\$$

,

and set

$$\Phi = \{A_{i,j} \mid 1 \le i, j \le n\}$$
$$L_{\Phi} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} E_{i,j}.$$

In the following, we will prove that Φ is a flag of ideals of R, and $2L \subseteq L_{\Phi} \subseteq L$. It's obvious that all $A_{i,j}$ are ideals of R and $A_{i,i} = R$ for $i = 1, 2, \dots, n$. If $i \neq j$ and $a_{i,k} \in A_{i,k}$, $a_{k,j} \in A_{k,j}$, then by $[a_{i,k}E_{i,k}, a_{k,j}E_{k,j}] = a_{i,k}a_{k,j}E_{i,j} \in L$, we see that $a_{i,k}a_{k,j} \in A_{i,j}$, forcing $A_{i,k}A_{k,j} \subseteq A_{i,j}$. If i = j, since $A_{i,i} = R$, we also have that $A_{i,k}A_{k,j} \subseteq A_{i,j}$. Thus Φ is a flag of ideals of R. It is easy to see that $L_{\Phi} \subseteq L$. On the other hand, for $x = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}E_{i,j} \in L$, if $k \neq l$, then by

$$\begin{bmatrix} E_{k,k}, [E_{l,l}, -x] \end{bmatrix} = a_{k,l} E_{k,l} + a_{l,k} E_{l,k} \in L,$$

$$[E_{k,k}, a_{k,l} E_{k,l} + a_{l,k} E_{l,k}] = a_{k,l} E_{k,l} - a_{l,k} E_{l,k} \in L,$$

we see that $2a_{k,l}E_{k,l} \in L$, $2a_{l,k}E_{l,k} \in L$. This shows that $2a_{k,l} \in A_{k,l}$, $2a_{l,k} \in A_{l,k}$, forcing $2x \in L_{\Phi}$. \Box

Corollary 2.6. Assume that $2 \in R^*$, then L is a subalgebra of gl(n, R) containing d(n, R) if and only if there exists a flag $\Phi = \{A_{i,j} \mid 1 \leq i, j \leq n\}$ of ideals of R such that $L = L_{\Phi}$.

Remark 2.7. Without the assumption $2 \in R^*$, Corollary 2.6 does not hold. The following is an example. Let R be Z/2Z (Z is the ring of all integer numbers), then R has only two ideals: 0 and R. Set $L = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \mid a, b, c \in Z/2Z \right\}$. Then L is a subalgebra of gl(2, Z/2Z) containing d(2, Z/2Z), but $L \neq L_{\Phi}$ for any flag $\Phi = \{A_{i,j} \mid 1 \leq i, j \leq 2\}$ of ideals of R.

3. Construction of certain derivations of L_{Φ}

Let $L_{\Phi} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} E_{i,j}$ be a fixed subalgebra of gl(n, R) containing d(n, R), with $\Phi = \{A_{i,j} \in I(R) \mid 1 \leq i, j \leq n\}$ a flag of ideals of R. We denote by Der L_{Φ} the set consisting of all derivations of L_{Φ} . We now construct certain derivations of L_{Φ} for building the derivation algebra $Der L_{\Phi}$ of L_{Φ} . For $A_{i,j} \in \Phi$, let $B_{i,j}$ denote the annihilator of $A_{i,j}$ in R, i.e., $B_{i,j} = \{r \in R \mid rA_{ij} = 0\}$.

(A) Inner derivations

Let $x \in L_{\Phi}$, then ad $x: L_{\Phi} \to L_{\Phi}, y \mapsto [x, y]$, is a derivation of L_{Φ} , called the *inner derivation* of L_{Φ} induced by x. Let ad L_{Φ} denote the set consisting of all ad $x, x \in L_{\Phi}$, which forms an ideal of Der L_{Φ} .

(B) **Transpose derivations**

Definition 3.3. Let $\Pi = \{\pi_{i,j} \in \operatorname{Hom}_R(A_{i,j}, A_{j,i}) \mid 1 \leq i, j \leq n\}$ be a set consisting of n^2 homomorphisms of *R*-modules. We call Π suitable for transpose derivations, if the following conditions are satisfied for all i, j $(1 \leq i, j \leq n)$: $(1) \ \pi_{i,i} = 0;$ $(2) \ \pi_{i,j}(A_{i,k}A_{k,j}) = 0$ for all k which satisfies $k \neq i$ and $k \neq j$; $(3) \ \pi_{i,j}(A_{i,j}) \subseteq B_{k,j}$ and $\pi_{i,j}(A_{i,j}) \subseteq B_{i,k}$ for all k which satisfies $k \neq i$ and $k \neq j$; $(4) \ 2\pi_{i,j}(A_{i,j}) = 0.$

Remark. In case 2 is a unit, (4) means that $\pi_{i,j}$ are necessarily zero maps.

Using the homomorphism $\Pi = \{\pi_{i,j} \in \operatorname{Hom}_R(A_{i,j}, A_{j,i}) \mid 1 \leq i, j \leq n\}$ which is suitable for transpose derivations, we define $\phi_{\Pi} \colon L_{\Phi} \to L_{\Phi}$ by sending any $\sum_{i=1}^n \sum_{j=1}^n a_{i,j} E_{i,j} \in L_{\Phi}$ to $\sum_{i=1}^n \sum_{j=1}^n \pi_{i,j}(a_{i,j}) E_{j,i}$. **Lemma 3.4.** The map ϕ_{Π} as defined above, is a derivation of L_{Φ} . **Proof.** Let

$$x = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} E_{i,j} \in L_{\Phi}, \qquad a_{i,j} \in A_{i,j},$$
$$y = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i,j} E_{i,j} \in L_{\Phi}, \qquad b_{i,j} \in A_{i,j}.$$

Obviously, $\phi_{\Pi}(rx + sy) = r\phi_{\Pi}(x) + s\phi_{\Pi}(y)$ for $\forall r, s \in \mathbb{R}$. Write

$$[x,y] = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i,j} E_{i,j}, \quad \text{where} \quad c_{i,j} = \sum_{k=1}^{n} (a_{i,k} b_{k,j} - b_{i,k} a_{k,j}).$$

Because Π is suitable for transpose derivations, we have that

$$\phi_{\Pi}([x,y]) = \sum_{i=1}^{n} \sum_{j=1}^{n} \pi_{i,j}(c_{i,j}) E_{j,i} = \sum_{i=1}^{n} \sum_{j=1}^{n} \pi_{i,j} \Big(\sum_{k=1}^{n} (a_{i,k}b_{k,j} - b_{i,k}a_{k,j}) \Big) E_{j,i}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \Big[(a_{i,i} - a_{j,j}) \pi_{i,j}(b_{i,j}) + (b_{j,j} - b_{i,i}) \pi_{i,j}(a_{i,j}) \Big] E_{j,i}$$
(by assumption (2)).

On the other hand,

By assumption (4) on Π , we see that $\phi_{\Pi}([x,y]) = [\phi_{\Pi}(x),y] + [x,\phi_{\Pi}(y)]$. Hence ϕ_{Π} is a derivation of L_{Φ} .

 ϕ_{Π} is called a *transpose derivation* of L_{Φ} .

(C) **Ring derivations**

Definition 3.5. Let $\Sigma = \{\sigma_{i,j} \in \operatorname{Hom}_R(A_{i,j}), \sigma \in \operatorname{Hom}_R(d(n, R)) \mid 1 \le i, j \le n\}$ be a set consisting of $n^2 + 1$ endomorphisms of *R*-modules. We call Σ suitable for ring derivations if the following conditions are satisfied for $\forall i, j \ (1 \le i, j \le n)$:

- (1) $\chi_i(\sigma(D)) \chi_j(\sigma(D)) \subseteq (B_{i,j} \cap B_{j,i})$ for $\forall D \in d(n, R)$;
- (2) $\sigma(a_{i,j}a_{j,i}(E_{i,i}-E_{j,j})) = (\sigma_{i,j}(a_{i,j})a_{j,i}+a_{i,j}\sigma_{j,i}(a_{j,i}))(E_{i,i}-E_{j,j}), \forall a_{i,j} \in A_{i,j}, \forall a_{j,i} \in A_{j,i};$
- (3) $\sigma_{i,i} = 0, i = 1, 2, \dots n$

(4) When $i \neq j$, $\sigma_{i,j}(a_{i,k}a_{k,j}) = \sigma_{i,k}(a_{i,k})a_{k,j} + a_{i,k}\sigma_{k,j}(a_{k,j})$ for $\forall k \ (1 \leq k \leq n), \forall a_{i,k} \in A_{i,k} \text{ and } \forall a_{k,j} \in A_{k,j}.$

Using $\Sigma = \{\sigma_{i,j} \in \operatorname{Hom}_R(A_{i,j}), \sigma \in \operatorname{Hom}_R(d(n,R)) \mid 1 \leq i, j \leq n\}$ which is suitable for ring derivations, we define $\phi_{\Sigma} \colon L_{\Phi} \to L_{\Phi}$ by sending any $\sum_{i=1}^n \sum_{j=1}^n a_{i,j}$ $E_{i,j} \in L_{\Phi}$ to $\sum_{1 \leq i \neq j \leq n} \sigma_{i,j}(a_{i,j}) E_{i,j} + \sigma \left(\sum_{k=1}^n a_{k,k} E_{k,k}\right).$

Lemma 3.6. The map ϕ_{Σ} , as defined above, is a derivation of L_{Φ} .

Proof. Let $x = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} E_{i,j} \in L_{\Phi}$, $y = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i,j} E_{i,j} \in L_{\Phi}$, where $a_{i,j}, b_{i,j}$ lie in $A_{i,j}$. It is obvious that $\phi_{\Sigma}(rx + sy) = r\phi_{\Sigma}(x) + s\phi_{\Sigma}(y)$ for any $r, s \in R$. We know $[x, y] = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i,j} E_{i,j}$, where $c_{i,j} = \sum_{k=1}^{n} (a_{i,k} b_{k,j} - b_{i,k} a_{k,j})$. Because Σ is suitable for ring derivations, we have that

$$\begin{split} \phi_{\Sigma}\big([x,y]\big) &= \sum_{1 \leq i \neq j \leq n} \left[\sum_{k=1}^{n} \left(\sigma_{i,j}(a_{i,k}b_{k,j} - b_{i,k}a_{k,j})\right)\right] E_{i,j} \\ &+ \sigma \left[\sum_{i=1}^{n} \sum_{k=1}^{n} (a_{i,k}b_{k,i} - b_{i,k}a_{k,i}) E_{i,i}\right] \\ &= \sum_{1 \leq i \neq j \leq n} \left[\sum_{k=1}^{n} \left(\sigma_{i,j}(a_{i,k}b_{k,j} - b_{i,k}a_{k,j})\right)\right] E_{i,j} \\ &+ \sigma \left(\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i,k}b_{k,i}(E_{i,i} - E_{k,k})\right) \\ (\text{note that} \quad \sum_{i=1}^{n} \sum_{k=1}^{n} (a_{i,k}b_{k,i} - b_{i,k}a_{k,i}) E_{i,i} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{i,k}b_{k,i}(E_{i,i} - E_{k,k})) \\ &= \sum_{1 \leq i \neq j \leq n} \left[\sum_{k=1}^{n} \left(\sigma_{i,k}(a_{i,k})b_{k,j} + a_{i,k}\sigma_{k,j}(b_{k,j}) - \sigma_{i,k}(b_{i,k})a_{k,j} - b_{i,k}\sigma_{k,j}(a_{k,j})\right)\right] E_{i,j} \\ &+ \sum_{i=1}^{n} \sum_{k=1}^{n} \left[\sigma_{i,k}(a_{i,k})b_{k,i} + a_{i,k}\sigma_{k,i}(b_{k,i})\right] (E_{i,i} - E_{k,k}), \\ (\text{by assumption (2) and (4)). \end{split}$$

On the other hand,

$$\begin{split} \left[\phi_{\Sigma}(x), y\right] + \left[x, \phi_{\Sigma}(y)\right] &= \left[\sum_{1 \le i \ne j \le n} \sigma_{i,j}(a_{i,j}) E_{i,j} + \sigma\left(\sum_{i=1}^{n} a_{i,i} E_{i,i}\right), y\right] \\ &+ \left[x, \sum_{1 \le i \ne j \le n} \sigma_{i,j}(b_{i,j}) E_{i,j} + \sigma\left(\sum_{i=1}^{n} b_{i,i} E_{i,i}\right)\right] \end{split}$$

$$= \left[\sum_{1 \le i \ne j \le n} \sigma_{i,j}(a_{i,j}) E_{i,j}, y\right] + \left[x, \sum_{1 \le i \ne j \le n} \sigma_{i,j}(b_{i,j}) E_{i,j}\right]$$

(by assumption (1))
$$= \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{i,j}(a_{i,j}) E_{i,j}, y\right] + \left[x, \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{i,j}(b_{i,j}) E_{i,j}\right]$$

(by assumption (3))
$$= \sum_{1 \le i \ne j \le n} \left[\sum_{k=1}^{n} \sigma_{i,k}(a_{i,k}) b_{k,j} - b_{i,k} \sigma_{k,j}(a_{k,j}) - \sigma_{i,k}(b_{i,k}) a_{k,j} + a_{i,k} \sigma_{k,j}(b_{k,j})\right] E_{i,j}$$

$$+ \sum_{i=1}^{n} \left[\sum_{k=1}^{n} \sigma_{i,k}(a_{i,k}) b_{k,i} + b_{k,i} \sigma_{i,k}(a_{i,k}) - \sigma_{i,k}(b_{i,k}) a_{k,i} - a_{k,i} \sigma_{i,k}(b_{i,k})\right] E_{i,i}$$

$$= \sum_{1 \le i \ne j \le n} \left[\sum_{k=1}^{n} \sigma_{i,k}(a_{i,k}) b_{k,j} - b_{i,k} \sigma_{k,j}(a_{k,j}) - \sigma_{i,k}(b_{i,k}) a_{k,j} + a_{i,k} \sigma_{k,j}(b_{k,j})\right] E_{i,j}$$

$$+ \sum_{i=1}^{n} \sum_{k=1}^{n} \left[\sigma_{i,k}(a_{i,k}) b_{k,i} + b_{k,i} \sigma_{i,k}(a_{i,k})\right] (E_{i,i} - E_{k,k}).$$

We see that

$$\left[\phi_{\Sigma}(x), y\right] + \left[x, \phi_{\Sigma}(y)\right] = \phi_{\Sigma}\left(\left[x, y\right]\right)$$

Hence ϕ_{Σ} is a derivation of L_{Φ} .

 ϕ_{Σ} is called a *ring derivation* of L_{Φ} .

4. The derivation algebra of L_{Φ}

If n > 1, for each fixed k $(1 \le k \le n - 1)$, we assume that n = kq + p with qand p two non-negative integers and $p \le k - 1$. Let $D_k = \text{diag}(E_k, 2E_k, \ldots, qE_k, (q+1)E_p) \in d(n, R), k = 1, 2, \ldots, n - 1$ (where E_k denotes the $k \times k$ identity matrix). Let $\Phi = \{A_{i,j} \in I(R) \mid 1 \le i < j \le n\}$ be a flag of ideals of R, we denote $\sum_{1 \le i \ne j \le n} A_{i,j} E_{i,j}$ by w.

Theorem 4.1. Let R be an arbitrary commutative ring with identity, $n \ge 1$,

$$L_{\Phi} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} E_{i,j}$$

a subalgebra of gl(n, R) containing d(n, R) with $\Phi = \{A_{i,j} \in I(R) \mid 1 \le i < j \le n\}$ a flag of ideals of R. Then every derivation of L_{Φ} may be uniquely written as the sum of an inner derivation induced by an element in w, a transpose derivation and a ring derivation.

Proof. If n = 1, then it's easy to determine $\text{Der } L_{\Phi}$. From now on, we assume that n > 1. Let ϕ be a derivation of L_{Φ} . In the following we give the proof by steps.

Step 1: There exists $W_0 \in w$ such that d(n, R) is stable under ϕ + ad W_0 .

For k = 1, 2, ..., n, we set $v_k = \sum_{i=k}^n \sum_{j=1}^{i-k+1} A_{i,j} E_{i,j}$. Denote $L_{\Phi} \cap t(n, R)$ by t. For any $H \in d(n, R)$, suppose that

$$\phi(H) \equiv (\sum_{1 \le i < j \le n} a_{j,i}(H)E_{j,i})(\mod t),$$

where $a_{j,i}(H) \in A_{j,i}$ are relative to H. By $[D_1, H] = 0$, we have that

$$\left[H,\phi(D_1)\right] = \left[D_1,\phi(H)\right],\,$$

which follows that

$$\sum_{1 \le i < j \le n} \left(\chi_j(H) - \chi_i(H) \right) a_{j,i}(D_1) E_{j,i} = \sum_{1 \le i < j \le n} \left(\chi_j(D_1) - \chi_i(D_1) \right) a_{j,i}(H) E_{j,i} \, .$$

This yields that

 $\left(\chi_j(H) - \chi_i(H)\right)a_{j,i}(D_1) = \left(\chi_j(D_1) - \chi_i(D_1)\right)a_{j,i}(H), \quad \forall \ i, j(1 \le i < j \le n-1).$ In particular, we have that

$$a_{i+1,i}(H) = (\chi_{i+1}(H) - \chi_i(H))a_{i+1,i}(D_1), \quad i = 1, 2, \dots, n.$$

Let $X_1 = \sum_{i=1}^{n-1} a_{i+1,i}(D_1) E_{i+1,i} \in L_{\Phi}$, then $(\phi + \operatorname{ad} X_1)(d(n, R)) \subseteq t + v_3$. If n = 2, this step is completed. If n > 2, for any $H \in d(n, R)$, we now suppose that

$$(\phi + \operatorname{ad} X_1)(H) \equiv \Big(\sum_{1 \le i < j \le n-1} b_{j+1,i}(H) E_{j+1,i}\Big) (\mod t),$$

where $b_{j+1,i}(H) \in A_{j+1,i}$ are relative to H. By $[D_2, H] = 0$, we have that

$$[H, (\phi + \mathrm{ad} \ X_1)(D_2)] = [D_2, (\phi + \mathrm{ad} \ X_1)(H)],$$

which follows that

$$\sum_{1 \le i < j \le n-1} (\chi_{j+1}(H) - \chi_i(H)) b_{j+1,i}(D_2) E_{j+1,i}$$
$$= \sum_{1 \le i < j \le n-1} (\chi_{j+1}(D_2) - \chi_i(D_2)) b_{j+1,i}(H) E_{j+1,i}.$$

This yields that

$$(\chi_{j+1}(H) - \chi_i(H))b_{j+1,i}(D_2) = (\chi_{j+1}(D_2) - \chi_i(D_2))b_{j+1,i}(H),$$

for all $i, j (1 \le i < j \le n - 1)$. In particular, we have that

$$b_{i+2,i}(H) = (\chi_{i+2}(H) - \chi_i(H))b_{i+2,i}(D_2), \quad i = 1, 2, \dots, n-2.$$

Let $X_2 = \sum_{i=1}^{n-2} b_{i+2,i}(D_2) E_{i+2,i}$, then $(\phi + \operatorname{ad} X_1 + \operatorname{ad} X_2)(d(n, R)) \subseteq t + v_4$. If n = 3, this step is completed. If n > 3, we repeat above process. After n - 2 steps,

we may assume that $(\phi + \sum_{i=1}^{n-2} \operatorname{ad} X_i)(d(n, R)) \subseteq t + v_n$. For any $H \in d$, suppose that $(\phi + \sum_{i=1}^{n-2} \operatorname{ad} X_i)(H) \equiv c_{n,1}(H)E_{n,1}(\mod t)$, where $c_{n,1}(H) \in A_{n,1}$ is relative to H. By $[D_{n-1}, H] = 0$, we have that

$$\left[H, \left(\phi + \sum_{i=1}^{n-2} \operatorname{ad} X_i\right)(D_{n-1})\right] = \left[D_{n-1}, \left(\phi + \sum_{i=1}^{n-2} \operatorname{ad} X_i\right)(H)\right],$$

which follows that

$$\left(\chi_n(H) - \chi_1(H)\right)c_{n,1}(D_{n-1}) = \left(\chi_n(D_{n-1}) - \chi_1(D_{n-1})\right)c_{n,1}(H)$$

So we have that

$$c_{n,1}(H) = (\chi_n(H) - \chi_1(H))c_{n,1}(D_{n-1}).$$

Let $X_{n-1} = c_{n,1}(D_{n-1})E_{n,1}$, then $(\phi + \sum_{i=1}^{n-1} \operatorname{ad} X_i)(d(n,R)) \subseteq t$. If we choose $X_0 = \sum_{i=1}^{n-1} X_i$, then $(\phi + \operatorname{ad} X_0)(d(n,R)) \subseteq t$.

Similarly, we may further choose $Y_0 \in \sum_{j=1}^n \sum_{i=1}^{j-1} A_{i,j} E_{i,j}$ (the process is omitted) such that $(\phi + \operatorname{ad} X_0 + \operatorname{ad} Y_0)(d(n, R)) \subseteq d(n, R)$.

Thus we may choose $W_0 = X_0 + Y_0 \in w$ such that $(\phi + \operatorname{ad} W_0)(d(n, R)) \subseteq d(n, R)$. Denote $\phi + \operatorname{ad} W_0$ by ϕ_1 , then $\phi_1(d(n, R)) \subseteq d(n, R)$.

Step 2: If $k \neq l$, then $A_{k,l}E_{k,l} + A_{l,k}E_{l,k}$ is stable under ϕ_1 .

For any fixed $b_{k,l} \in A_{k,l}$, we suppose that $\phi_1(b_{k,l}E_{k,l}) = \sum_{i=1}^n \sum_{j=1}^n a_{i,j}E_{i,j}$, where $a_{i,j} \in A_{i,j}$. By applying ϕ_1 to $[E_{k,k}, b_{k,l}E_{k,l}] = b_{k,l}E_{k,l}$, we have that

$$\phi_1(E_{k,k}), b_{k,l}E_{k,l}] + [E_{k,k}, \phi_1(b_{k,l}E_{k,l})] = \phi_1(b_{k,l}E_{k,l})$$

This follows that

(*)
$$\left[\phi_1(E_{k,k}), b_{k,l}E_{k,l}\right] + \left[E_{k,k}, \sum_{i=1}^n \sum_{j=1}^n a_{i,j}E_{i,j}\right] = \sum_{i=1}^n \sum_{j=1}^n a_{i,j}E_{i,j}\dots$$

Note that $\phi_1(E_{k,k}) \in d(n, R)$ (by Step 1), thus $\left[\phi_1(E_{k,k}), b_{k,l}E_{k,l}\right] \in A_{k,l}E_{k,l}$. It is easy to see that $\left[E_{k,k}, \sum_{i=1}^n \sum_{j=1}^n a_{i,j}E_{i,j}\right] = \sum_{j=1}^n a_{k,j}E_{k,j} - \sum_{i=1}^n a_{i,k}E_{i,k}$. By comparing the two sides of (*), we see that $a_{i,j} = 0$ when $i \neq k$ and $j \neq k$. For the same reason, we know that $a_{i,j} = 0$ when $i \neq l$ and $j \neq l$. Hence $\phi_1(b_{k,l}E_{k,l}) \in A_{k,l}E_{k,l} + A_{l,k}E_{l,k}$, which leads to $\phi_1(A_{k,l}E_{k,l}) \subseteq A_{k,l}E_{k,l} + A_{l,k}E_{l,k}$. Similarly, $\phi_1(A_{l,k}E_{l,k}) \subseteq A_{k,l}E_{k,l} + A_{l,k}E_{l,k}$. So $A_{k,l}E_{k,l} + A_{l,k}E_{l,k}$ is stable under ϕ_1 .

Step 3: There exists a ring derivation ϕ_{Σ} such that each $A_{k,l}E_{k,l}$ $(k \neq l)$ is send by $\phi_1 - \phi_{\Sigma}$ to $A_{l,k}E_{l,k}$ and d(n, R) is send by it to 0.

We denote the the restriction of ϕ_1 to d(n, R) by σ , and let $\sigma_{i,i}: A_{i,i} \to A_{i,i}$ be zero. By Step 2, we know that $A_{k,l}E_{k,l} + A_{l,k}E_{l,k}$ is stable under ϕ_1 if $k \neq l$. Now for any $k, l \ (1 \leq k, l \leq n)$ we define the map $\sigma_{k,l}$ from $A_{k,l}$ to itself according to the following rule:

- (a) $\sigma_{k,l} = 0$ when k = l;
- (b) If $k \neq l$, define $\sigma_{k,l} \colon A_{k,l} \to A_{k,l}$ such that for any $a_{k,l} \in A_{k,l}$, $\sigma_{k,l}(a_{k,l})$ satisfies the condition: $\phi_1(a_{k,l}E_{k,l}) \equiv \sigma_{k,l}(a_{k,l})E_{k,l} \pmod{A_{l,k}E_{l,k}}$.

Then σ , $\sigma_{k,l}$ $(k \neq l)$ are all endomorphism of the *R*-modules. Set $\Sigma = \{\sigma_{i,j} \in \text{Hom}_R(A_{i,j}), \sigma \mid 1 \leq i, j \leq n\}$. We intend to prove that Σ is suitable for ring derivations.

For all $D \in d(n, R)$, $a_{i,j} \in A_{i,j}$, by applying ϕ_1 to $[D, a_{i,j}E_{i,j}] = (\chi_i(D) - \chi_j(D))a_{i,j}E_{i,j}$, we have that $a_{i,j}(\chi_i(\sigma(D)) - \chi_j(\sigma(D))) = 0$, leads to $\chi_i(\sigma(D)) - \chi_j(\sigma(D)) \in B_{i,j}$. Similarly, we may prove that $\chi_i(\sigma(D)) - \chi_j(\sigma(D)) \in B_{j,i}$.

For all i, j $(1 \le i, j \le n), \forall a_{i,j} \in A_{i,j}, a_{j,i} \in A_{j,i}$, by applying ϕ_1 to $[a_{i,j}E_{i,j}, a_{j,i}E_{j,i}] = a_{i,j}a_{j,i}(E_{i,i} - E_{j,j})$, we have that $\sigma(a_{i,j}a_{j,i}(E_{i,i} - E_{j,j})) = (\sigma_{i,j}(a_{i,j})a_{j,i} + a_{i,j}\sigma_{j,i}(a_{j,i}))(E_{i,i} - E_{j,j})$.

When $i \neq j$, for all $a_{i,k} \in A_{i,k}$, $a_{k,j} \in A_{k,j}$, by applying ϕ_1 to $[a_{i,k}E_{i,k}, a_{k,j}E_{k,j}] = a_{i,k}a_{k,j}E_{i,j}$, we have that

$$\left[\sigma_{i,k}(a_{i,k})E_{i,k}, a_{k,j}E_{k,j}\right] + \left[a_{i,k}E_{i,k}, \sigma_{k,j}(a_{k,j})E_{k,j}\right] = \sigma_{i,j}(a_{i,k}a_{k,j})E_{i,j}.$$

This shows that

$$\sigma_{i,j}(a_{i,k}a_{k,j}) = \sigma_{i,k}(a_{i,k})a_{k,j} + a_{i,k}\sigma_{k,j}(a_{k,j}).$$

Now we see that Σ is suitable for ring derivations. Using Σ we construct the ring derivation ϕ_{Σ} as in Section 3, and denote $\phi_1 - \phi_{\Sigma}$ by ϕ_2 . Then we see that $\phi_2(A_{k,l}E_{k,l}) \subseteq A_{l,k}E_{l,k}$ for all k, l satisfy $k \neq l$ and ϕ_2 sends d(n, R) to 0.

Step 4: ϕ_2 exactly is a transpose derivation.

By Step 3, we know that $A_{k,l}E_{k,l}$ is send by ϕ_2 to $A_{l,k}E_{l,k}$ when $k \neq l$ and d(n, R) is send by it to 0. Now for any $k, l \ (1 \leq k, l \leq n)$ we define the map $\pi_{k,l}$ from $A_{k,l}$ to $A_{l,k}$ according to the following rule:

- (a) $\pi_{k,l} = 0$ when k = l;
- (b) If $k \neq l$, define $\pi_{k,l} \colon A_{k,l} \to A_{l,k}$ such that for any $a_{k,l} \in A_{k,l}$, $\sigma_{k,l}(a_{k,l})$ satisfies the condition: $\phi_2(a_{k,l}E_{k,l}) = \pi_{k,l}(a_{k,l})E_{l,k}$.

Then $\sigma_{k,l}$ is an homomorphism from the *R*-module $A_{k,l}$ to $A_{l,k}$. Set $\Pi = \{\pi_{i,j} \in \operatorname{Hom}_R(A_{i,j}, A_{j,i}) \mid 1 \leq i, j \leq n\}$. We intend to prove that Π is suitable for transpose derivations. If $i \neq j$, for $\forall a_{i,k} \in A_{i,k}, \forall a_{k,j} \in A_{k,j}$, by applying ϕ_2 to $[a_{i,k}E_{i,k}, a_{k,j}E_{k,j}] = a_{i,k}a_{k,j}E_{i,j}$, we have that

$$\left[\pi_{i,k}(a_{i,k})E_{k,i}, a_{k,j}E_{k,j}\right] + \left[a_{i,k}E_{i,k}, \pi_{k,j}(a_{k,j})E_{j,k}\right] = \pi_{i,j}(a_{i,k}a_{k,j})E_{j,i}.$$

If $k \neq i$, $k \neq j$, we see that the left side of above is 0, then $\pi_{i,j}(a_{i,k}a_{k,j}) = 0$, leads to $\pi_{i,j}(A_{i,k}A_{k,j}) = 0$.

If $i \neq k, i \neq j$, $\forall a_{i,k} \in A_{i,k}, \forall a_{i,j} \in A_{i,j}$, by applying ϕ_2 to $[a_{i,k}E_{i,k}, a_{i,j}E_{i,j}] = 0$, we see that

$$\left[\pi_{i,k}(a_{i,k})E_{k,i}, a_{i,j}E_{i,j}\right] + \left[a_{i,k}E_{i,k}, \pi_{i,j}(a_{i,j})E_{j,i}\right] = 0.$$

This shows that

 $\pi_{i,k}(a_{i,k})a_{i,j}E_{k,j} - a_{i,k}\pi_{i,j}(a_{i,j})E_{j,k} = 0.$

Thus $a_{i,k}\pi_{i,j}(a_{i,j}) = 0$, leads to $A_{i,k}\pi_{i,j}(A_{i,j}) = 0$ for $i \neq k$. Similarly, $A_{k,j}\pi_{i,j}(A_{i,j}) = 0$ for $k \neq j$.

For all $i \neq j$, $\forall a_{i,j} \in A_{i,j}$, by applying ϕ_2 to $[E_{i,i}, a_{i,j}E_{i,j}] = a_{i,j}E_{i,j}$, we have that

$$[E_{i,i}, \pi_{i,j}(a_{i,j})E_{j,i}] = \pi_{i,j}(a_{i,j})E_{j,i}.$$

Since $[E_{i,i}, \pi_{i,j}(a_{i,j})E_{j,i}] = -\pi_{i,j}(a_{i,j})E_{j,i}$, we see that $\pi_{i,j}(a_{i,j}) = -\pi_{i,j}(a_{i,j})E_{j,i}$. So $2\pi_{i,j}(A_{i,j}) = 0$ for $i \neq j$. Then $2\pi_{i,j}(A_{i,j}) = 0$ for $\forall i, j$.

Now we see that Π is suitable for transpose derivations. Using Π we construct the transpose derivation ϕ_{Π} as in Section 3, and denote $\phi_2 - \phi_{\Pi}$ by ϕ_3 . Then we see that $\phi_3(A_{k,l}E_{k,l}) = 0$ for all k, l satisfy $k \neq l$ and $\phi_3(d(n, R)) = 0$. So $\phi_3 = 0$. Thus $\phi = \phi_{\Pi} + \phi_{\Sigma}$ – ad W_0 , as desired.

For the uniqueness of the decomposition of ϕ , we first prove that if $\phi_{\Pi} + \phi_{\Sigma} +$ ad $W_0 = 0$, then $\phi_{\Pi} = \phi_{\Sigma} = ad W_0 = 0$. Suppose that $\phi_{\Pi} + \phi_{\Sigma} + ad W_0 = 0$, where $W_0 \in w$ and $\phi_{\Pi}, \phi_{\Sigma}$ are the transpose and the ring derivation of L_{Φ} , respectively. By $(\phi_{\Pi} + \phi_{\Sigma} + \text{ad } W_0)(d(n, R)) = 0$, we easily see that $W_0 = 0$. Then we have that $\phi_{\Pi} + \phi_{\Sigma} = 0$. By applying $\phi_{\Pi} + \phi_{\Sigma}$ to $a_{i,j}E_{i,j}$ for $1 \leq i \neq j \leq n, a_{i,j} \in A_{i,j}$, we have that $\sigma_{i,j}(a_{i,j})E_{i,j} + \pi_{i,j}(a_{i,j})E_{j,i} = 0$, leads to $\sigma_{i,j}(a_{i,j}) = \pi_{i,j}(a_{i,j}) = 0$. This forces that $\phi_{\Pi} = \phi_{\Sigma} = 0$. Now suppose that

$$\phi = \phi_{\Pi_1} + \phi_{\Sigma_1} - \text{ad } W_1 = \phi_{\Pi_2} + \phi_{\Sigma_2} - \text{ad } W_2$$

is two decompositions of ϕ . Then we have that

$$(\phi_{\Pi_1} - \phi_{\Pi_2}) + (\phi_{\Sigma_1} - \phi_{\Sigma_2}) + (\text{ad } W_2 - \text{ad } W_1) = 0.$$

Note that $\phi_{\Pi_1} - \phi_{\Pi_2}$ (resp., $\phi_{\Sigma_1} - \phi_{\Sigma_2}$) is also a transpose (resp., ring) derivation of L_{Φ} and ad W_2 – ad $W_1 = ad (W_2 - W_1)$. This implies that $\phi_{\Sigma_1} = \phi_{\Sigma_2}, \ \phi_{\Pi_1} = \phi_{\Pi_2}$ and ad $W_1 = \text{ad } W_2$. \square

Acknowledgement. The authors thank the referee for his helpful suggestion.

References

- [1] Benkart, G. M., Osbom, J. M., Derivations and automorphisms of non-associative matrix algebras, Trans. Amer. Math. Soc. 263 (1981), 411-430.
- [2] Cao, Y., Tang, Z., Automorphisms of the Lie algebras of strictly upper triangular matrices over a commutative ring, Linear Algebra Appl. 360 (2003), 105–122.
- [3] Jøndrup, S., Automorphisms of upper triangular matrix rings, Arch. Math. 49 (1987), 497–502.
- [4] Jøndrup, S., The group of automorphisms of certain subalgebras of matrix algebras, J. Algebra **141** (1991), 106–114.
- [5] Jøndrup, S., Automorphisms and derivations of upper triangular matrix rings, Linear Algebra Appl. 221 (1995), 205–218.
- [6] Wang, D., Ou, S., Yu, Q., Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring, Linear and Multilinear Algebra 54 (2006), 369 – 377.
- [7] Wang, D., Yu, Q., Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring, Linear Algebra Appl. 418 (2006), 763–774.

DEPARTMENT OF MATHEMATICS CHINA UNIVERSITY OF MINING AND TECHNOLOGY XUZHOU, 221008, PEOPLE'S REPUBLIC OF CHINA *E-mail*: wdengyin@126.com

Graduate School of Natural Science and Technology Okayama University Okayama 700-8530, Japan