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LEFT APP-PROPERTY OF FORMAL POWER SERIES RINGS

Liu Zhongkui and Yang Xiaoyan

Abstract. A ring R is called a left APP-ring if the left annihilator lR(Ra)
is right s-unital as an ideal of R for any element a ∈ R. We consider left
APP-property of the skew formal power series ring R[[x;α]] where α is a ring
automorphism of R. It is shown that if R is a ring satisfying descending chain
condition on right annihilators then R[[x;α]] is left APP if and only if for any
sequence (b0, b1, . . . ) of elements of R the ideal lR

(∑∞
j=0

∑∞
k=0 Rα

k(bj)
)

is right s-unital. As an application we give a sufficient condition under which
the ring R[[x]] over a left APP-ring R is left APP.

Throughout this paper, R denotes a ring with unity. Recall that R is left
principally quasi-Baer if the left annihilator of every principal left ideal of R is
generated by an idempotent. Similarly, right principally quasi-Baer rings can be
defined. A ring is called principally quasi-Baer if it is both right and left principally
quasi-Baer. Observe that biregular rings and quasi-Baer rings (i.e. the rings over
which the left annihilator of every left ideal of R is generated by an idempotent
of R) are principally quasi-Baer. For more details and examples of left principally
quasi-Baer rings, see [3], [1], [2], [4], and [7]. A ring R is called a right (resp. left)
PP-ring if the right (resp. left) annihilator of every element of R is generated by an
idempotent. R is called a PP-ring if it is both right and left PP. As a generalization
of left principally quasi-Baer rings and right PP-rings, the concept of left APP-rings
was introduced in [9]. A ring R is called a left APP-ring if the left annihilator
lR(Ra) is right s-unital as an ideal of R for any element a ∈ R. For more details
and examples of left APP-rings, see [9] and [6].

There are a lot of results concerning left principal quasi-Baerness and right
PP-property of polynomial extensions of a ring. It was proved in ([2], Theorem
2.1) that a ring R is left principally quasi-Baer if and only if R[x] is left principally
quasi-Baer. If all right semicentral idempotents of R are central, then it was
shown in [7] that the ring R[[x]] is left principally quasi-Baer if and only if R is
left principally quasi-Baer and every countable family of idempotents in R has
a generalized join in I(R), the set of all idempotents of R. It was shown in [5]
that R is a reduced PP-ring if and only if R[[x]] is a reduced PP-ring. In [8]
the PP-property of the rings of generalized power series over a ring R has been
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considered. For left APP-rings, It was noted in [9] that there exists a commutative
von Neumann regular ring R (hence left APP), but the ring R[[x]] is not APP.
It was also shown in [9] that if R is a left APP-ring satisfying descending chain
condition on left and right annihilators then R[[x]] is left APP. In this note we
consider left APP-property of skew formal power series rings. We will show that if
R is a ring satisfying descending chain condition on right annihilators then R[[x;α]]
is left APP if and only if for any sequence (b0, b1, . . . ) of elements of R the ideal
lR
(∑∞

j=0
∑∞
k=0 Rα

k(bj)
)

is right s-unital. As an application we give a sufficient
condition under which the ring R[[x]] over a left APP-ring R is left APP.

For a nonempty subset Y of R, lR(Y ) and rR(Y ) denote the left and right
annihilator of Y in R, respectively.

An ideal I of R is said to be right s-unital if, for each a ∈ I there exists an
element x ∈ I such that ax = a. It follows from ([11, Theorem 1]) that I is right
s-unital if and only if for any finitely many elements a1, a2, . . . , an ∈ I there exists
an element x ∈ I such that ai = aix, i = 1, 2, . . . , n. A submodule N of a left
R-module M is called a pure submodule if L⊗R N → L⊗RM is a monomorphism
for every right R-module L. By ([10], Proposition 11.3.13), an ideal I is right
s-unital if and only if R/I is flat as a left R-module if and only if I is pure as a
left ideal of R.

Lemma 1. Let R[[x;α]] be a left APP-ring and b0, b1, . . . in R. If a0, a1, . . . , an ∈ R
are such that for any r ∈ R and any s = 0, 1, . . . ,

a0rα
s(b0) = 0

a0rα
s(b1) + a1α(r)α1+s(b0) = 0

...
a0rα

s(bn−1) + a1α(r)α1+s(bn−2) + · · ·+ an−1α
n−1(r)αn−1+s(b0) = 0

a0rα
s(bn) + a1α(r)α1+s(bn−1) + · · ·+ anα

n(r)αn+s(b0) = 0 ,
then for any s,

a0Rα
s(bj) = 0 , j = 0, 1, . . . n .

Proof. We prove this result by induction on n.
Suppose that n = 1. For any φ(x) = c0 + c1x+ c2x

2 + · · · ∈ R[[x;α]], a0φ(x)b0 =
a0c0b0 + a0c1α(b0)x + a0c2α

2(b0)x2 + · · · = 0 since a0Rα
s(b0) = 0 for any s.

Thus a0R[[x;α]]b0 = 0. Since R[[x;α]] is a left APP-ring, there exists h(x) =
h0+h1x+h2x

2+· · · ∈ lR[[x;α]](R[[x;α]]b0) such that a0 = a0h(x). Clearly a0 = a0h0
and for any r ∈ R and any s, h(x)(rxs)b0 = 0. Thus h0rα

s(b0) = 0 for any s. Take
r = h0r

′ in a0rα
s(b1) + a1α(r)α1+s(b0) = 0. Then a0r

′αs(b1) = a0h0r
′αs(b1) =

a0h0r
′αs(b1) + a1α

(
h0r
′αs(b0)

)
= a0h0r

′αs(b1) + a1α(h0r
′)α1+s(b0) = 0. Thus

a0Rα
s(b1) = 0.

Now suppose that n ≥ 2. From the first n equations and the induction hy-
pothesis, it follows that a0Rα

s(bj) = 0, j = 0, 1, . . . n − 1. Thus for any r ∈ R
and any s, a0(rxs)(b0 + b1x + · · · + bn−1x

n−1) = a0rα
s(b0)xs + a0rα

s(b1)xs+1 +
· · · + a0rα

s(bn−1)xs+n−1 = 0. Hence a0R[[x;α]](b0 + b1x + · · · + bn−1x
n−1) = 0.
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Since R[[x;α]] is a left APP-ring, there exists h(x) = h0 + h1x + h2x
2 + · · · ∈

lR[[x;α]]
(
R[[x;α]](b0 +b1x+ · · ·+bn−1x

n−1)
)

such that a0 = a0h(x). Thus a0 = a0h0
and h(x)(rxs)(b0 + b1x+ · · ·+ bn−1x

n−1) = 0 for any r ∈ R and any s. Now we
have

h0rα
s(b0) = 0

h0rα
s(b1) + h1α(r)α1+s(b0) = 0

...
h0rα

s(bn−1) + h1α(r)α1+s(bn−2) + · · ·+ hn−1α
n−1(r)αn−1+s(b0) = 0 .

By the induction hypothesis, it follows that h0Rα
s(bj) = 0, j = 0, 1, . . . n−1. Thus,

for any r′ ∈ R, taking r = h0r
′ in the last equation yields

0 = a0h0r
′αs(bn) + a1α(h0r

′)α1+s(bn−1) + · · ·+ anα
n(h0r

′)αn+s(b0)
= a0r

′αs(bn) + a1α(h0r
′αs(bn−1)) + · · ·+ anα

n(h0r
′αs(b0))

= a0r
′αs(bn) .

Hence a0Rα
s(bn) = 0. Now the result follows. �

Theorem 2. Let R be a ring satisfying descending chain condition on right
annihilators and α a ring automorphism of R. Then the following conditions are
equivalent:

(1) R[[x;α]] is a left APP-ring.
(2) For any sequence (b0, b1, . . . ) of elements of R, lR(

∑∞
j=0

∑∞
k=0 Rα

k(bj)) is
right s-unital.

Proof. (1)⇒(2). Suppose that (b0, b1, . . . ) is a sequence of elements of R. Set
g(x) = b0 + b1x + b2x

2 + · · · ∈ R[[x;α]]. Let a ∈ lR
(∑∞

j=0
∑∞
k=0 Rα

k(bj)
)
. Then

aR[[x;α]]g(x) = 0. Since R[[x;α]] is a left APP-ring, there exists h(x) = h0 +h1x+
h2x

2 + · · · ∈ lR[[x;α]](R[[x;α]]g(x)) such that a = ah(x). Thus we have a = ah0 and
h(x)(rxs)g(x) = 0. Hence∑

i+j=n
hiα

i(r)αi+s(bj) = 0 , ∀ n .

By Lemma 1, h0Rα
s(bj) = 0 for any j. Thus h0 ∈ lR

(∑∞
j=0

∑∞
k=0 Rα

k(bj)
)
.

(2)⇒(1). Suppose that f(x) = a0+a1x+a2x
2+. . . , g(x) = b0+b1x+b2x

2+· · · ∈
R[[x;α]] are such that f(x)R[[x;α]]g(x) = 0. Then for any r ∈ R, f(x)(rxs)g(x) = 0.
It follows that
(1)

∑
i+j=k

aiα
i(r)αi+s(bj) = 0 , k = 0, 1, 2, . . . ,

where r is an arbitrary element of R. Thus, since a0rα
s(b0) = 0 for any s, one

has a0 ∈ lR
(∑∞

s=0 Rα
s(b0)

)
. By the hypothesis for the sequence (b0, 0, 0, . . . ) of

elements of R, there exists p0 ∈ lR
(∑∞

k=0 Rα
k(b0)

)
such that a0 = a0p0.

Suppose that c0, c1, · · · ∈ R are such that ai = αi(ci). Let r′ ∈ R and take r =
p0r
′ in a1α(r)α1+s(b0)+a0rα

s(b1) = 0. Then a1α(p0r
′)α1+s(b0)+a0p0r

′αs(b1) = 0.
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Since p0 ∈ lR
(∑∞

k=0 Rα
k(b0)

)
, we have a1α(p0r

′)α1+s(b0) = a1α(p0r
′αs(b0)) = 0.

Thus a0r
′αs(b1) = a0p0r

′αs(b1) = 0 for any s = 0, 1, . . . , which implies that a0 ∈
lR
(∑∞

k=0 Rα
k(b1)

)
. Also a1α(r)α1+s(b0) = 0 for any r ∈ R. Thus α(c1rα

s(b0)) = 0.
Since α is an automorphism, it follows that c1rα

s(b0) = 0 for any s = 0, 1, . . . .
This means that c1 ∈ lR

(∑∞
k=0 Rα

k(b0)
)
.

Inductively, assume that q ≥ 1 is such that

ci ∈ lR
( ∞∑
k=0

Rαk(bj)
)
, i+ j = 0, 1, 2, . . . , q − 1 .

Note that c0 = a0.
Since c0, c1, . . . , cq−1 ∈ lR

(∑∞
k=0 Rα

k(b0)
)

and lR
(∑∞

k=0 Rα
k(b0)

)
is right

s-unital, there exists r0 ∈ lR
(∑∞

k=0 Rα
k(b0)

)
such that ci = cir0, i = 0, 1, . . . , q−1.

Let r′ ∈ R and take r = r0r
′. Then by the equation of (1) for the case when k = q,

we have

a0r0r
′αs(bq) + · · ·+ aq−1α

q−1(r0r
′)αq−1+s(b1) + aqα

q(r0r
′)αq+s(b0) = 0 .

For any i with 0 ≤ i ≤ q − 1, we have aiαi(r0r
′)αi+s(bq−i) = αi

(
cir0r

′αs(bq−i)
)

=
αi
(
cir
′αs(bq−i)

)
= aiα

i(r′)αi+s(bq−i). Also aqαq(r0r
′)αq+s(b0) = aqα

q
(
r0r
′αs(b0)

)
= 0 since r0 ∈ lR

(∑∞
k=0 Rα

k(b0)
)
. Thus

(2) a0r
′αs(bq) + a1α(r′)α1+s(bq−1) + · · ·+ aq−1α

q−1(r′)αq−1+s(b1) = 0 .

By (1) it follows that aqαq(r)αq+s(b0) = 0. Thus αq
(
cqrα

s(b0)
)

= 0, which implies
that cqrαs(b0) = 0 for any s and any r ∈ R. Hence cq ∈ lR

(∑∞
k=0 Rα

k(b0)
)
.

Since c0, c1, . . . , cq−2 ∈ lR
(∑∞

k=0 Rα
k(b0) +

∑∞
k=0 Rα

k(b1)
)
, there exists r1 ∈

lR
(∑∞

k=0 Rα
k(b0) +

∑∞
k=0 Rα

k(b1)
)

such that ci = cir1 for any i with 0 ≤ i ≤
q − 2. Thus aiα

i(r1r
′′)αi+s(bq−i) = αi

(
cir1r

′′αs(bq−i)
)

= αi
(
cir
′′αs(bq−i)

)
=

aiα
i(r′′)αi+s(bq−i) for any i with 0 ≤ i ≤ q− 2. Now setting r′ = r1r

′′ in (2) yields

a0r
′′αs(bq) + a1α(r′′)α1+s(bq−1) + · · ·+ aq−2α

q−2(r′′)αq−2+s(b2) = 0

for any r′′ ∈ R since aq−1α
q−1(r1r

′′)αq−1+s(b1) = aq−1α
q−1(r1r

′′αs(b1)) = 0.
Thus, by (2), aq−1α

q−1(r′)αq−1+s(b1) = 0. This means that cq−1r
′αs(b1) = 0

since α is an automorphism. Hence cq−1 ∈ lR
(∑∞

k=0 Rα
k(b1)

)
. Continuing this

procedure yields cq−2 ∈ lR
(∑∞

k=0 Rα
k(b2)

)
. . . , c1 ∈ lR

(∑∞
k=0 Rα

k(bq−1)
)
, c0 ∈

lR
(∑∞

k=0 Rα
k(bq)

)
.

Hence we have shown that for any i and j, ci ∈ lR
(∑∞

k=0 Rα
k(bj)

)
. Thus

ci ∈ lR
(∑∞

j=0
∑∞
k=0 Rα

k(bj)
)
. Consider the descending chain as following:

rR(c0) ⊇ rR(c0, c1) ⊇ rR(c0, c1, c2) ⊇ . . . ,

there exists n such that rR(c0, c1, . . . , cn) = rR(c0, c1, . . . , cn, cn+1) = . . . . By
the hypothesis, lR

(∑∞
j=0

∑∞
k=0 Rα

k(bj)
)

is right s-unital by considering sequence
(b0, b1, . . . ). Thus there exists e ∈ lR

(∑∞
j=0

∑∞
k=0 Rα

k(bj)
)

such that ci = cie,
i = 0, 1, . . . , n. Clearly 1− e ∈ rR(c0, c1, . . . , cn). Thus ck = cke for all k = 0, 1, . . . .
Now f(x) = a0 + α(c1)x + α2(c2)x2 + · · · = a0e + α(c1e)x + α2(c2e)x2 + · · · =
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a0e+a1α(e)x+a2α
2(e)x2 + · · · = f(x)e and e ∈ lR[[x;α]]

(
R[[x;α]]g(x)

)
. This means

that R[[x;α]] is a left APP-ring. �

It was shown in [9] that if R is a left APP-ring satisfying descending chain
condition on left and right annihilators then R[[x]] is left APP. By Theorem 2 we
have the following result.

Corollary 3. Let R be a ring satisfying descending chain condition on right
annihilators. Then the following conditions are equivalent:

(1) R[[x]] is a left APP-ring.
(2) For any sequence (b0, b1, . . . ) of elements of R, lR(

∑∞
j=0 Rbj) is right

s-unital.
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