# OD-CHARACTERIZATION OF ALMOST SIMPLE GROUPS RELATED TO $L_{2}(49)$ 

Liangcai Zhang and Wujie Shi


#### Abstract

In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group $L_{2}(49)$. As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to $L_{2}(49)$ except $L_{2}(49) \cdot 2^{2}$. Also, we prove that if $M$ is an almost simple group related to $L_{2}(49)$ except $L_{2}(49) \cdot 2^{2}$ and $G$ is a finite group such that $|G|=|M|$ and $\Gamma(G)=\Gamma(M)$, then $G \cong M$.


## 1. Introduction

Throughout this paper, groups under consideration are finite. For any group $G$, we denote by $\pi_{e}(G)$ the set of orders of its elements and by $\pi(G)$ the set of prime divisors of $|G|$. We associate to $\pi(G)$ a simple graph called prime graph of $G$, denoted by $\Gamma(G)$. The vertex set of this graph is $\pi(G)$, and two distinct vertices $p, q$ are joined by an edge if and only if $p q \in \pi_{e}(G)$. In this case, we write $p \sim q$. Denote by $t(G)$ the number of connected components of $\Gamma(G)$ and by $\pi_{i}=\pi_{i}(G)(i=1,2, \ldots, t(G))$ the connected components of $\Gamma(G)$. When $|G|$ is even, then by our convention $2 \in \pi_{1}(G)$. We also denote by $\pi(n)$ the set of all primes dividing $n$, where $n$ is a natural number. Then $|G|$ can be expressed as a product of $m_{1}, m_{2}, \ldots, m_{t(G)}$, where $m_{i}$ 's are positive integers with $\pi\left(m_{i}\right)=\pi_{i}$. These $m_{i}$ 's are called the order components of $G$. In particular, if $m_{i}$ is an odd number, then we call it an odd component of $G$. Let $O C(G)=\left\{m_{1}, m_{2}, \ldots, m_{t(G)}\right\}$ be the set of order components of $G$, and $T(G)=\left\{\pi_{i}(G) \mid i=1,2, \ldots, t(G)\right\}$.

Let $G$ be a group and $p \in \pi(G)$. We denote by $G_{p}$ and $\operatorname{Syl}_{p}(G)$ a Sylow $p$-subgroup of $G$ and the set of all of its Sylow $p$-subgroups, respectively. We also denote by $\operatorname{Soc}(G)$ the socle of $G$ which is the subgroup generated by the set of all minimal normal subgroups of $G$. We denote by $A: B$ (or $A \cdot B$ ) a split (or non-split) extension of $A$ by $B$. Also, $\mathbb{N}$ and $\mathbb{P}$ denote the set of natural numbers and the set of primes, respectively.

[^0]In particular, this paper itself is accessible only with the basic knowledge of group theory. All further unexplained notations are standard and can be found in 4].

Definition 1.1. Let $G$ be a finite group and $|G|=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, where $p_{i} \in \mathbb{P}$ and $\alpha_{i} \in \mathbb{N}$ for $i=1,2, \ldots, k$. For $p \in \pi(G)$, let $\operatorname{deg}(p):=|\{q \in \pi(G) \mid p \sim q\}|$, called the degree of $p$. We also define $D(G):=\left(\operatorname{deg}\left(p_{1}\right), \operatorname{deg}\left(p_{2}\right), \ldots, \operatorname{deg}\left(p_{k}\right)\right)$, where $p_{1}<p_{2}<\cdots<p_{k}$. We call it the degree pattern of $G$.

Definition 1.2. A group $M$ is called $k$-fold $O D$-characterizable if there exist exactly $k$ non-isomorphic groups $G$ such that $|G|=|M|$ and $D(G)=D(M)$. Moreover, a 1-fold OD-characterizable group is simply called an OD-characterizable group.

Definition 1.3. A group $G$ is said to be an almost simple related to $S$ if and only if $S \unlhd G \leq$ Aut $(S)$ for some non-abelian simple group $S$.

Definition 1.4. Let $p$ be a prime. A group $G$ is called a $C_{p, p}$-group if and only if $p \in \pi(G)$ and the centralizers of its elements of order $p$ in $G$ are $p$-groups.

The significance of the prime graphs of finite groups can be found in many articles, for example [6], [18]-[21]. Therefore, the characterizations of finite groups by their orders and degree patterns may help us to know certain properties of the almost simple groups more clearly. In a series of articles (see [10, 11, 22, 23]), it was shown that many finite almost simple groups are OD-characterizable. We point out some of these results.

Result 1 (10, 11]). All sporadic simple groups and their automorphism groups except Aut ( $J_{2}$ ) and Aut ( $M^{c} L$ ) are OD-characterizable.

Result $2\left([10)\right.$. The alternating groups $A_{p}, A_{p+1}, A_{p+2}$ and the symmetric groups $S_{p}$ and $S_{p+1}$, where $p$ is a prime, are $O D$-characterizable.
Result 3 (10, 11]). The simple groups of Lie type $L_{2}(q), L_{3}(q), U_{3}(q),{ }^{2} B_{2}(q)$ and ${ }^{2} G_{2}(q)$ are OD-characterizable for certain $q \in \mathbb{N}$.

Result 4 ([10]). All finite simple $C_{2,2}$-groups are OD-characterizable.
Result 5 ([23]). All finite simple groups with exactly four prime divisors except $A_{10}$ are OD-characterizable.

## 2. Lemmas

Lemma 2.1 ([9, Table 1]). Let $G$ be an almost simple group related to $L:=L_{2}(49)$. Then $G$ is isomorphic to one of the following groups: $L, L: 2_{1}(\cong P G L(2,49))$, $L: 2_{2}, L \cdot 2_{3}, L \cdot 2^{2}\left(\cong \operatorname{Aut}\left(L_{2}(49)\right)\right)$. Moreover, $\pi_{e}(L)=\{25,24,7\}, \pi_{e}\left(L: 2_{1}\right)=$ $\{50,48,7\}, \pi_{e}\left(L: 2_{2}\right)=\{25,24,14\}, \pi_{e}\left(L \cdot 2_{3}\right)=\{25,24,16,7\}$, and $\pi_{e}\left(L \cdot 2^{2}\right)=$ $\{50,48,14\}$. More information about the algorithm can be obtained in [8].

Lemma 2.2 ([5] Theorem 1]). Let $G$ be a finite solvable group all of whose elements are of prime power order. Then $|\pi(G)| \leq 2$.

Lemma 2.3 ([9, Table 1]). If $S$ is a finite non-abelian simple groups such that $\pi(S) \subseteq\{2,3,5,7\}$, then $S$ is isomorphic to one of the following simple groups in Table 1. In particular, $\{2,3\} \subset \pi(S)$ and $\pi(\operatorname{Out}(S)) \subseteq\{2,3\}$ if $S \neq S_{6}(2)$.

Table 1. Finite non-abelian simple groups $S$ such that $\pi(S) \subseteq\{2,3,5,7\}$

| S | Order of S | Out(S) | S | Order of S | Out(S) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $A_{5}$ | $2^{2} \cdot 3 \cdot 5$ | 2 | $L_{2}(49)$ | $2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$ | $2^{2}$ |
| $L_{2}(7)$ | $2^{3} \cdot 3 \cdot 7$ | 2 | $U_{3}(5)$ | $2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$ | $S_{3}$ |
| $A_{6}$ | $2^{3} \cdot 3^{2} \cdot 5$ | $2^{2}$ | $A_{9}$ | $2^{6} \cdot 3^{4} \cdot 5 \cdot 7$ | 2 |
| $L_{2}(8)$ | $2^{3} \cdot 3^{2} \cdot 7$ | 3 | $J_{2}$ | $2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$ | 2 |
| $A_{7}$ | $2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ | 2 | $S_{6}(2)$ | $2^{9} \cdot 3^{4} \cdot 5 \cdot 7$ | 1 |
| $U_{3}(3)$ | $2^{5} \cdot 3^{3} \cdot 7$ | 2 | $A_{10}$ | $2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$ | 2 |
| $A_{8}$ | $2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ | 2 | $U_{4}(3)$ | $2^{7} \cdot 3^{6} \cdot 5 \cdot 7$ | $D_{8}$ |
| $L_{3}(4)$ | $2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ | $D_{12}$ | $S_{4}(7)$ | $2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$ | 2 |
| $U_{4}(2)$ | $2^{6} \cdot 3^{4} \cdot 5$ | 2 | $O_{8}^{+}(2)$ | $2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$ | $S_{3}$ |

Now we quote two lemmas on Frobenius groups.
Lemma 2.4 ([1] Theorem 1]). Let $G$ be a Frobenius group of even order with $H$ and $K$ its Frobenius kernel and Frobenius complement, respectively. Then $t(G)=2$ and $T(G)=\{\pi(K), \pi(H)\}$.
Lemma 2.5 (4, 12]). Let $G$ be a Frobenius group with kernel $F$ and complement $C$. Then the following assertions are true.
(a) $F$ is a nilpotent group.
(b) $|F| \equiv 1(\bmod |C|)$.
(c) Every subgroup of $C$ of order $p \cdot q$, with $p, q$ (not necessarily distinct) primes, is cyclic. In particular, every Sylow subgroup of $C$ of odd order is cyclic and Sylow 2-subgroup of $C$ is either cyclic or generalized quaternion group. If $C$ is a non-solvable group, then $C$ has a subgroup of index at most 2 isomorphic to $\mathrm{SL}(2,5) \times M$, where $M$ has cyclic Sylow $p$-subgroups and $(|M|, 30)=1$; in particular, $15,20 \notin \pi_{e}(C)$. If $C$ is solvable and $O(C)=1$, then either $C$ is a 2-group or $C$ has a subgroup of index at most 2 isomorphic to $\mathrm{SL}(2,3)$.

A group $G$ is a 2-Frobenius group if there exists a normal series $1 \triangleleft H \triangleleft K \triangleleft G$ such that $K$ and $G / H$ are Frobenius groups with kernels $H$ and $K / H$, respectively. Now we quote a lemma on 2-Frobenius groups.
Lemma 2.6 ([1, Theorem 2]). Let $G$ be a 2-Frobenius group of even order, which has a normal series $1 \triangleleft H \triangleleft K \triangleleft G$ such that $K$ and $G / H$ are Frobenius groups with kernels $H$ and $K / H$, respectively. Then
(a) $t(G)=2$ and $T(G)=\left\{\pi_{1}(G)=\pi(H) \cup \pi(G / K), \pi_{2}(G)=\pi(K / H)\right\}$.
(b) $G / K$ and $K / H$ are cyclic, $|G / K|||\operatorname{Aut}(K / H)|$, and $(|G / K|,|K / H|)=1$.
(c) $H$ is a nilpotent group and $G$ is a solvable group.

The structure of a finite group with disconnected prime graph is described in the following lemma. Though this lemma is a useful tool for the groups with disconnected prime graphs, we should not use it if a finite group has only one connected component.

Lemma 2.7 ( 7 , 17, Theorem A]). Let $G$ be a finite group with $t(G) \geq 2$, then $G$ is one of the following groups:
(a) $G$ is a Frobenius or 2-Frobenius group;
(b) G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $H$ and $G / K$ are $\pi_{1}$-groups and $K / H$ is a finite non-abelian simple group, where $\pi_{1}$ is the prime graph component containing $2, H$ is a nilpotent group, and $|G / H||\mid$ Aut $(K / H)|$. Moreover, any odd order component of $G$ is also an odd order component of $K / H$.

Lemma 2.8 ([2] Theorem]). Let $G$ be a finite non-abelian simple $C_{p, p}$-group, where $p \in \mathbb{P}$.
(a) If $p=5$, then $G$ is isomorphic to one of the following simple groups: $A_{5}, A_{6}, A_{7}, M_{11}, M_{22}, L_{3}(4), S_{4}(3), S_{4}(7), U_{4}(3), S z(8), S z(32), L_{2}(49)$, $L_{2}\left(5^{m}\right), L_{2}\left(2 \cdot 5^{m} \pm 1\right)$, where $m \in \mathbb{N}$ and $2 \cdot 5^{m} \pm 1 \in \mathbb{P}$.
(b) If $p=7$, then $G$ is isomorphic to one of the following simple groups: $A_{7}$, $A_{8}, A_{9}, J_{1}, M_{22}, J_{2}, H S, L_{3}(4), S_{6}(2), O_{8}^{+}(2), G_{2}(3), G_{2}(13), U_{3}(3)$, $U_{3}(5), U_{3}(19), U_{4}(3), U_{6}(2), S z(8), L_{2}(8), L_{2}\left(7^{m}\right), L_{2}\left(2 \cdot 7^{m}-1\right)$, where $m \in \mathbb{N}$ and $2 \cdot 7^{m}-1 \in \mathbb{P}$.

Lemma 2.9 ([22, Theorem]). If $G$ is a finite group such that $D(G)=D(M)$ and $|G|=|M|$, where $M=U_{4}(3): 2_{2}$ or $U_{4}(3) \cdot 2_{3}$, then $G \cong U_{4}(3): 2_{2}$ or $U_{4}(3) \cdot 2_{3}$.

## 3. OD-Characterization of almost simple groups related to $L_{2}(49)$

Theorem 3.1. If $G$ is a finite group such that $D(G)=D(M)$ and $|G|=|M|$, where $M$ is an almost simple group related to $L:=L_{2}(49)$, then the following assertions are true:
(a) If $M=L, L: 2_{1}, L: 2_{2}$ or $L \cdot 2_{3}$, then $G \cong M$.
(b) If $M=L \cdot 2^{2}$, then $G \cong L \cdot 2^{2}, \mathbb{Z}_{2} \times\left(L: 2_{1}\right), \mathbb{Z}_{2} \times\left(L: 2_{2}\right)$, $\mathbb{Z}_{2} \times\left(L \cdot 2_{3}\right)$, $\mathbb{Z}_{2} \cdot\left(L: 2_{1}\right), \mathbb{Z}_{2} \cdot\left(L: 2_{2}\right), \mathbb{Z}_{2} \cdot\left(L \cdot 2_{3}\right), \mathbb{Z}_{4} \times L$ or $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L$.
In particular, $L, L: 2_{1}, L: 2_{2}$ and $L \cdot 2_{3}$ are OD-characterizable; $L \cdot 2^{2}$ is 9 -fold OD-characterizable.

Proof. By Lemma 2.1. first we list the prime graphs of the almost simple groups related to $L$ as follows:


Moreover, we break the proof into a number of separate cases.
Case 1. If $M=L$, then $G \cong L$ by Result 5 .
Case 2. If $M=L: 2_{1}$, then $G \cong L: 2_{1}$.
If $M=L: 2_{1}$, then $\Gamma(G)=\Gamma(M)$ by our assumptions.
First let $G$ be a solvable group. Then $G$ has a solvable Hall $\{3,5,7\}$-subgroup $H$. Since there exists no edge between 3,5 and 7 in $\Gamma(G)$, it implies that all elements in $H$ are of prime power order. Hence $t(H) \leq 2$ by Lemma 2.2, a contradiction. Thus $G$ is not solvable, which implies that $G$ is not a 2-Frobenius group by Lemma 2.6(c). If $G$ is a non-solvable Frobenius group with $H$ and $K$ being its Frobenius complement and Frobenius kernel, respectively, then, by Lemma 2.5.c), it follows that $H$ has a normal subgroup $H_{0}$ with $\left|H: H_{0}\right| \leq 2$ such that $H_{0}=\mathrm{SL}(2,5) \times Z$, where the Sylow subgroups of $Z$ are cyclic and $(|Z|, 30)=1$. Thus $7 \in \pi(K)$ since $5 \nsim 7$ in $\Gamma(G)$. Since $|G|=|M|=2^{5} \cdot 3 \cdot 5^{2} \cdot 7^{2}$ and $|\mathrm{SL}(2,5)|=2^{3} \cdot 3 \cdot 5$, it follows that $5 \in \pi(K)$ too. Because $K$ is nilpotent by Lemma 2.5(a), it follows that $5 \sim 7$ in $\Gamma(K)$, an obvious contradiction. Hence $G$ is neither a Frobenius group nor a 2-Frobenius group.

By Lemma 2.7, $G$ has a normal series $1 \unlhd N \unlhd G_{1} \unlhd G$ such that $N$ is a nilpotent $\pi_{1}$-group, $G_{1} / N$ is a finite simple $C_{7,7}$-group and $G / G_{1}$ is a solvable $\pi_{1}$-group. By Lemmas 2.3 and 2.8 (b), we obtain that $G_{1} / N$ must be isomorphic to $L$.

Since $G / N \lesssim \operatorname{Aut}\left(G_{1} / N\right)$, it follows that $L \lesssim G / N \lesssim \operatorname{Aut}(L)$. If $G / N \cong L$, then $|N|=2$. Since $G / C_{G}(N) \lesssim \operatorname{Aut}(N)=1$, it follows that $N \leq Z(G)$. Suppose $G_{7} \in \operatorname{Syl}_{7}(G)$. Then $N G_{7}$ is a subgroup of $G$, which implies that $2 \sim 7$ in $\Gamma\left(N G_{7}\right)$, an obvious contradiction. Therefore $G / N \cong L: 2_{1}, L: 2_{2}$ or $L \cdot 2_{3}$ since $|G|=2|L|$. It follows that $G \cong L: 2_{1}, L: 2_{2}$ or $L \cdot 2_{3}$ by Lemma 2.1. Obviously, $G \cong L: 2_{1}$ since $2 \nsim 5$ in $\Gamma\left(L: 2_{2}\right)$ and $\Gamma\left(L \cdot 2_{3}\right)$.
Case 3. If $M=L: 2_{2}$, then $G \cong L: 2_{2}$.
If $M=L: 2_{2}$, then $\Gamma(G)=\Gamma(M)$.
First let $G$ be a solvable group. Then $G$ has a solvable Hall $\{3,5,7\}$-subgroup $H$. Since there exists no edge between 3,5 and 7 in $\Gamma(G)$, it implies that all elements in $H$ are of prime power order. Hence $t(H) \leq 2$ by Lemma 2.2, a contradiction. Thus $G$ is not solvable, which implies that $G$ is not a 2-Frobenius group by Lemma
2.6(c). If $G$ is a non-solvable Frobenius group with $H$ and $K$ being its Frobenius complement and Frobenius kernel, respectively, then, by Lemma 2.5 (c), it follows that $H$ has a normal subgroup $H_{0}$ with $\left|H: H_{0}\right| \leq 2$ such that $H_{0}=\mathrm{SL}(2,5) \times Z$, where the Sylow subgroups of $Z$ are cyclic and $(|Z|, 30)=1$. Thus $7 \in \pi(K)$ since $5 \nsim 7$ in $\Gamma(G)$. Since $|G|=|M|=2^{5} \cdot 3 \cdot 5^{2} \cdot 7^{2}$ and $|\mathrm{SL}(2,5)|=2^{3} \cdot 3 \cdot 5$, it follows that $5 \in \pi(K)$ too. Because $K$ is nilpotent by Lemma 2.5 (a), it follows that $5 \sim 7$ in $\Gamma(K)$, an obvious contradiction. Hence $G$ is neither a Frobenius group nor a 2-Frobenius group.

By Lemma 2.7, $G$ has a normal series $1 \unlhd N \unlhd G_{1} \unlhd G$ such that $N$ is a nilpotent $\pi_{1}$-group, $G_{1} / N$ is a finite simple $C_{5,5}$-group and $G / G_{1}$ is a solvable $\pi_{1}$-group. By Lemmas 2.3 and 2.8 a), we obtain that $G_{1} / N$ must be isomorphic to $L$.

Since $G / N \lesssim \operatorname{Aut}\left(G_{1} / N\right)$, it follows that $L \lesssim G / N \lesssim \operatorname{Aut}(L)$. If $G / N \cong L$, then $|N|=2$. Since $G / C_{G}(N) \lesssim$ Aut $(N)=1$, it follows that $N \leq Z(G)$. Suppose $G_{5} \in \operatorname{Syl}_{5}(G)$. Then $N G_{5}$ is a subgroup of $G$, which implies that $2 \sim 5$ in $\Gamma\left(N G_{5}\right)$, an obvious contradiction. Therefore $G / N \cong L: 2_{1}, L: 2_{2}$ or $L \cdot 2_{3}$ since $|G|=2|L|$. It follows that $G \cong L: 2_{1}, L: 2_{2}$ or $L \cdot 2_{3}$ by Lemma 2.1. Obviously, $G \cong L: 2_{2}$ since $2 \nsim 7$ in $\Gamma\left(L: 2_{1}\right)$ and $\Gamma\left(L \cdot 2_{3}\right)$.
Case 4. If $M=L \cdot 2_{3}$, then $G \cong L \cdot 2_{3}$.
If $M=L \cdot 2_{3}$, then $\Gamma(G)=\Gamma(M)$. Thus $t(G)=t(M)=3$. By Lemmas 2.4 and 2.6(a), $G$ is neither a Frobenius group nor a 2-Frobenius group.

By Lemma 2.7 $G$ has a normal series $1 \unlhd N \unlhd G_{1} \unlhd G$ such that $N$ is a nilpotent $\pi_{1}$-group, $G_{1} / N$ is a finite simple $C_{5,5^{-}}$and $C_{7,7^{-}}$group, and $G / G_{1}$ is a solvable $\pi_{1}$-group. By Lemmas 2.3 and 2.8 we obtain that $G_{1} / N$ must be isomorphic to $L$.

Since $G / N \lesssim \operatorname{Aut}\left(G_{1} / N\right)$, it follows that $L \lesssim G / N \lesssim \operatorname{Aut}(L)$. If $G / N \cong L$, then $|N|=2$. Since $G / C_{G}(N) \lesssim \operatorname{Aut}(N)=1$, it follows that $N \leq Z(G)$. Suppose $G_{5} \in \operatorname{Syl}_{5}(G)$. Then $N G_{5}$ is a subgroup of $G$, which implies that $2 \sim 5$ in $\Gamma\left(N G_{5}\right)$, an obvious contradiction. Therefore $G / N \cong L: 2_{1}, L: 2_{2}$ or $L \cdot 2_{3}$ since $|G|=2|L|$. It follows that $G \cong L: 2_{1}, L: 2_{2}$ or $L \cdot 2_{3}$ by Lemma 2.1 Obviously, $G \cong L \cdot 2_{3}$ since $2 \sim 5$ in $\Gamma\left(L: 2_{1}\right)$ and $2 \sim 7$ in $\Gamma\left(L: 2_{2}\right)$, respectively.

Case 5. If $M=L \cdot 2^{2}$, then $G \cong L \cdot 2^{2}, \mathbb{Z}_{2} \times\left(L: 2_{1}\right), \mathbb{Z}_{2} \times\left(L: 2_{2}\right), \mathbb{Z}_{2} \times\left(L \cdot 2_{3}\right)$, $\mathbb{Z}_{2} \cdot\left(L: 2_{1}\right), \mathbb{Z}_{2} \cdot\left(L: 2_{2}\right), \mathbb{Z}_{2} \cdot\left(L \cdot 2_{3}\right), \mathbb{Z}_{4} \times L$ or $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L$.

Step 1. Let $K$ be the maximal normal solvable subgroup of $G$. Then $K$ is a $\{2,3\}$-subgroup. In particular, $G$ is non-solvable.

If $M=L \cdot 2^{2}$, then $\Gamma(G)=\Gamma(M)$.
First assume that $\{5,7\} \subseteq \pi(K)$. Let $T$ be a Hall $\{5,7\}$-subgroup of $K$. It is easy to see that $T$ is an abelian subgroup of order $5^{i} \cdot 7^{j}$, where $i, j=1$ or 2 . Thus $5 \cdot 7 \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction. Next, we assume that $5 \in \pi(K)$ and $7 \notin \pi(K)$. Then $K$ is a $\{2,3,5\}$-group. Let $R \in \operatorname{Syl}_{5}(K)$. By Frattini argument $G=K N_{G}(R)$. Therefore, the normalizer $N_{G}(R)$ contains an element of order 7, say $x$. Now $<x>R$ is a subgroup of $G$ of order $5^{i} \cdot 7$, where $i=1$ or 2 . Hence $\langle x\rangle R$ is an abelian group. Thus $5 \cdot 7 \in \pi_{e}(\langle x\rangle R) \subseteq \pi_{e}(G)$, a contradiction. Finally,
we assume $7 \in \pi(K)$ and $5 \notin \pi(K)$. In this case, $K$ is a $\{2,3,7\}$-subgroup and we consider the Sylow 7 -subgroup $P$ of $K$. As before, we see that $G=K N_{G}(P)$ and by a similar argument we get $5 \cdot 7 \in \pi_{e}(G)$, which is a contradiction. Thus $K$ is a $\{2,3\}$-subgroup.

Let $G$ be a solvable group. Then $G$ has a solvable Hall $\{3,5,7\}$-subgroup $H$. Since there exists no edge between 3,5 and 7 in $\Gamma(G)$, it implies that all elements in $H$ are of prime power order. Hence $t(H) \leq 2$ by Lemma 2.2, a contradiction. Thus $G$ is not solvable.

Step 2. The quotient $G / K$ is an almost simple group. In fact, $S \lesssim G / K \lesssim$ Aut ( $S$ ) where $S$ is a finite non-abelian simple group isomorphic to $A_{5}, L_{2}(7)$ or $L$.

Let $\bar{G}:=G / K$. Then $S:=\operatorname{Soc}(\bar{G})=P_{1} \times P_{2} \times \cdots \times P_{m}$, where $P_{i}$ 's are finite non-abelian simple groups. It is obvious that $\{2,3\} \subseteq \pi\left(P_{i}\right) \subseteq\{2,3,5,7\}$ by Lemma 2.3. where $i=1,2, \ldots, m$. Now we assert that $C_{\bar{G}}(S)$ is solvable. In fact, if $C_{\bar{G}}(S)$ is non-solvable, then it can not be a $\{2,3\}$-group by Burnside's Theorem. It follows that $5 \in \pi\left(C_{\bar{G}}(S)\right)$ or $7 \in \pi\left(C_{\bar{G}}(S)\right)$, which shows that $3 \cdot 5 \in \pi_{e}(\bar{G})$ or $3 \cdot 7 \in \pi_{e}(\bar{G})$ since $\{2,3\} \subseteq \pi\left(P_{i}\right) \subseteq \pi(S)$. It follows that $3 \cdot 5 \in \pi_{e}(G)$ or $3 \cdot 7 \in \pi_{e}(G)$, which is a contradiction since $3 \nsim 5$ and $3 \nsim 7$ in $\Gamma(G)$. Suppose $1 \neq T / K=: C_{\bar{G}}(S)$, which is solvable. Then $T / K \neq G / K$ since $G / K$ is non-solvable. Thus $K \unlhd T \unlhd G$, where $T$ is solvable. This is a contradiction by the choice of $K$. Hence $C_{\bar{G}}(S)=1$. It follows that $S \lesssim G / K \cong G / K / C_{\bar{G}}(S) \lesssim$ Aut $(S)$.

By Lemma 2.3, it is clear that $m=1$ since $|G|_{3}=3$, where $|G|_{3}$ is the 3-part of $|G|$. Using Table $1, S$ is isomorphic to one of the following simple groups: $A_{5}$, $L_{2}(7)$ or $L$.

Step 3. $G \cong L \cdot 2^{2}, \mathbb{Z}_{2} \times\left(L: 2_{1}\right), \mathbb{Z}_{2} \times\left(L: 2_{2}\right), \mathbb{Z}_{2} \times\left(L \cdot 2_{3}\right), \mathbb{Z}_{2} \cdot\left(L: 2_{1}\right), \mathbb{Z}_{2} \cdot\left(L: 2_{2}\right)$, $\mathbb{Z}_{2} \cdot\left(L \cdot 2_{3}\right), \mathbb{Z}_{4} \times L$ or $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L$.

By Step $2, S \lesssim G / K \lesssim \operatorname{Aut}(S)$ where $S$ is a finite non-abelian simple group isomorphic to $A_{5}, L_{2}(7)$ or $L$.

If $S \cong A_{5}$, then $A_{5} \lesssim \bar{G} \lesssim$ Aut $\left(A_{5}\right)$. It follows that $|K|=2^{4} \cdot 5 \cdot 7^{2}$ or $2^{3} \cdot 5 \cdot 7^{2}$ by Lemma 2.3 Obviously, this is a contradiction since $K$ is a $\{2,3\}$-group by Step 1 .

If $S \cong L_{2}(7)$, then $L_{2}(7) \lesssim \bar{G} \lesssim \operatorname{Aut}\left(L_{2}(7)\right)$. It follows that $|K|=2^{3} \cdot 5^{2} \cdot 7$ or $2^{2} \cdot 5^{2} \cdot 7$ by Lemma 2.3 Obviously, this is a contradiction since $K$ is a $\{2,3\}$-group by Step 1 .

Therefore, $S \cong L$. Thus $L \lesssim \bar{G} \lesssim$ Aut $(L)$. Hence $|K|=1,2$ or $2^{2}$.
If $|K|=1$, then $G \cong L \cdot 2^{2}$ by Lemma 2.1 .
If $|K|=2$, then $K \leq Z(G)$, i.e., $G$ is a central extension of $K$ by $L: 2_{1}, L: 2_{2}$ or $L \cdot 2_{3}$. If $G$ splits over $K$, we obtain $G \cong \mathbb{Z}_{2} \times\left(L: 2_{1}\right), \mathbb{Z}_{2} \times\left(L: 2_{2}\right)$ or $\mathbb{Z}_{2} \times\left(L \cdot 2_{3}\right)$. Otherwise we have $G \cong \mathbb{Z}_{2} \cdot\left(L: 2_{1}\right), \mathbb{Z}_{2} \cdot\left(L: 2_{1}\right)$ or $\mathbb{Z}_{2} \cdot\left(L \cdot 2_{3}\right)$.

If $|K|=2^{2}$, then $G / K \cong L$. In this case, we have $G / C_{G}(K) \lesssim \operatorname{Aut}(K) \cong \mathbb{Z}_{2}$ or $S_{3}$. Thus $\left|G / C_{G}(K)\right|=1,2,3$ or 6 . If $\left|G / C_{G}(K)\right|=1$, then $K \leq Z(G)$, i.e., $G$ is a central extension of $K$ by $L$. If $G$ is a non-split extension of $K$ by $L$, then $|K|$ must divide the Schur multiplier of $L$, which is 2 (see 3). But this is a contradiction. So we obtain that $G$ splits over $K$. Hence $G \cong K \times L$. Thus $G \cong \mathbb{Z}_{4} \times L$ or
$\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L$ since $K \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. If $\left|G / C_{G}(K)\right|=2,3$ or 6 , then $K<C_{G}(K)$ and $1 \neq C_{G}(K) / K \unlhd G / K \cong L$. Since $L$ is simple, we obtain that $G=C_{G}(K)$, a contradiction.

Remark 1. W. J. Shi and J. X. Bi in 16 put forward the following conjecture:
Conjecture. Let $G$ be a finite group and $M$ a finite simple group. Then $G \cong M$ if and only if $|G|=|M|$ and $\pi_{e}(G)=\pi_{e}(M)$.

This conjecture is valid for the sporadic simple groups (see [14), alternating groups and some simple groups of Lie type (see [13, 15, [16]). As a consequence of Theorem 3.1, we verify the validity of this conjecture for the groups under discussion.

Theorem 3.2. If $G$ is a finite group such that $|G|=|M|$ and $\pi_{e}(G)=\pi_{e}(M)$, where $M$ is an almost simple group related to $L_{2}(49)$ except $L_{2}(49) \cdot 2^{2}$, then $G \cong M$.

Proof. Since $|G|=|M|$ and $\pi_{e}(G)=\pi_{e}(M)$, we obtain $|G|=|M|$ and $\Gamma(G)=$ $\Gamma(M)$. It follows that $|G|=|M|$ and $D(G)=D(M)$. By Theorem 3.1, we have $G \cong M$.

Note that if $G$ is a finite group such that $|G|=|M|$ and $D(G)=D(M)$, where $M$ is a given finite group, then $\pi_{e}(G)$ is not equal to $\pi_{e}(M)$ necessarily. Now, we give a counterexample as follows. Let $L:=U_{4}(3)$, then $L: 2_{2}$ is 2 -fold $O D$-characterizable by Lemma 2.9. However, in this case, $\pi_{e}\left(L: 2_{2}\right)=\{18,12,10,8,7\}$ is not equal to $\pi_{e}\left(L \cdot 2_{3}\right)=\{24,10,9,7\}$ (see [9]).

Theorem 3.3. If $G$ is a finite group such that $|G|=|M|$ and $\Gamma(G)=\Gamma(M)$, where $M$ is an almost simple group related to $L_{2}(49)$ except $L_{2}(49) \cdot 2^{2}$, then $G \cong M$.

Proof. Since $|G|=|M|$ and $\Gamma(G)=\Gamma(M)$, we obtain that $|G|=|M|$ and $D(G)=D(M)$. By Theorem 3.1. we have $G \cong M$.

Question. Let $G$ be a finite group such that $D(G)=D(M)$ and $|G|=|M|$, where $M$ is an almost simple group. Is $G$ non-solvable, too?

Acknowledgement. The authors would like to thank the referee for his/her help.

## References

[1] Chen, G. Y., On structure of Frobenius and 2-Frobenius group, J. Southwest China Normal Univ. 20 (5) (1995), 485-487, (in Chinese).
[2] Chen, Z. M., Shi, W. J., On $C_{p, p}$-simple groups, J. Southwest China Normal Univ. 18 (3) (1993), 249-256, (in Chinese).
[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups, Clarendon Press (Oxford), London - New York, 1985.
[4] Gorenstein, D., Finite Groups, Harper and Row, New York, 1980.
[5] Higman, G., Finite groups in which every element has prime power order, J. London Math. Soc. 32 (1957), 335-342.
[6] Iiyori, N., Sharp charaters and prime graphs of finite groups, J. Algebra 163 (1994), 1-8.
[7] Kondratev, A. S., On prime graph components of finite simple groups, Mat. Sb. 180 (6) (1989), 787-797.
[8] Mazurov, V. D., The set of orders of elements in a finite group, Algebra and Logic 33 (1) (1994), 49-55.
[9] Mazurov, V. D., Characterizations of finite groups by sets of orders of their elements, Algebra and Logic 36 (1) (1997), 23-32.
[10] Moghaddamfar, A. R., Zokayi, A. R., Recognizing finite groups through order and degree pattern, to appear in Algebra Colloquium.
[11] Moghaddamfar, A. R., Zokayi, A. R., Darafsheh, M. R., A characterization of finite simple groups by the degrees of vertices of their prime graphs, Algebra Colloq. 12 (3) (2005), 431-442.
[12] Passman, D., Permutation Groups, Benjamin Inc., New York, 1968.
[13] Shi, W. J., A new characterization of some simple groups of Lie type, Contemp. Math. 82 (1989), 171-180.
[14] Shi, W. J., A new characteriztion of the sporadic simple groups, Group Theory, Proceeding of the 1987 Singapore Group Theory Conference, Walter de Gruyter, Berlin - New York, 1989, pp. 531-540.
[15] Shi, W. J., Pure quantitive characterization of finite simple groups (I), Progr. Natur. Sci. (English Ed.) 4 (3) (1994), 316-326.
[16] Shi, W. J., Bi, J. X., A characteristic property for each finite projective special linear group, Lecture Notes in Math. 1456 (1990), 171-180Wi.
[17] Williams, J. S., Prime graph components of finite groups, J. Algebra 69 (2) (1981), 487-513.
[18] Yamaki, H., A conjecture of Frobenius and the sporadic simple groups I, Comm. Algebra 11 (1983), 2513-2518.
[19] Yamaki, H., A conjecture of Frobenius and the simple groups of Lie type I, Arch. Math. 42 (1984), 344-347.
[20] Yamaki, H., A conjecture of Frobenius and the simple groups of Lie type II, J. Algebra 96 (1985), 391-396.
[21] Yamaki, H., A conjecture of Frobenius and the sporadic simple groups II, Math. Comp. 46 (1986), 609-611, Supplement, Math. Comp., 46, 1986), S43-S46.
[22] Zhang, L. C., Shi, W. J., OD-characterization of almost simple groups related to $U_{4}(3)$, to appear.
[23] Zhang, L. C., Shi, W. J., OD-characterization of simple $K_{4}$-groups, to appear in Algebra Colloquium (in press).

Liangcai Zhang
College of Mathematics and Physics, Chongqing University, Shapingba, Chongqing 400044, People's Republic of China

School of Mathematical Sciences, Suzhou University, Suzhou, Jiangsu 215006, People's Republic of China
E-mail: zlc213@163.com

Wujie Shi
School of Mathematical Sciences, Suzhou University, Suzhou, Jiangsu 215006, People's Republic of China
E-mail: wjshi@suda.edu.cn


[^0]:    2000 Mathematics Subject Classification: primary 20D05; secondary 20D06, 20 D60.
    Key words and phrases: almost simple group, prime graph, degree of a vertex, degree pattern.
    Project supported by the NNSF of China (No.10571128), the SRFDP of China (No.20060285002), and Young Teachers' Fund of College of Mathematics and Physics (Chongqing Univ. (2005)).

    Received October 30, 2007, revised April 2008. Editor J. Trlifaj.

