ON A NONCONVEX BOUNDARY VALUE PROBLEM FOR A FIRST ORDER MULTIVALUED DIFFERENTIAL SYSTEM

Aurelian Cernea

Abstract

We consider a boundary value problem for first order nonconvex differential inclusion and we obtain some existence results by using the set-valued contraction principle.

1. Introduction

This paper is concerned with the following boundary value problem for first order differential inclusions

$$
\begin{equation*}
x^{\prime} \in A(t) x+F(t, x), \quad \text { a.e. }(I), \quad M x(0)+N x(1)=\eta \tag{1.1}
\end{equation*}
$$

where $I=[0,1], F(\cdot, \cdot): I \times \mathbb{R}^{n} \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ is a set-valued map, $A(\cdot)$ is a continuous $(n \times n)$ matrix function, M and N are $(n \times n)$ constant real matrices and $\eta \in \mathbb{R}^{n}$.

The present note is motivated by a recent paper of Boucherif and Chiboub (1), where it is considered problem (1.1) with $\eta=0$ and several existence results are obtained under growth conditions on $F(\cdot, \cdot)$ by using topological transversality arguments, fixed point theorems and differential inequalities.

The aim of our paper is to present two additional results obtained by the application of the set-valued contraction principle due to Covitz and Nadler ([6]). The approach we propose allows to avoid the assumption that the values of $F(\cdot, \cdot)$ are convex which is an essential hypothesis in [1].

The first result follows a classical idea by applying the set-valued contraction principle in the space of solutions of the problem. The second result is a Filippov type theorem concerning the existence of solutions to problem (1.1). Recall that for a differential inclusion defined by a lipschitzian set-valued map with nonconvex values, Filippov's theorem consists in proving the existence of a solution starting from a given "quasi" solution. This time we apply the contraction principle in the space of derivatives of solutions instead of the space of solutions. In addition, as usual at a Filippov existence type theorem, our result provides an estimate between the starting "quasi" solution and the solution of the differential inclusion. The idea of applying the set-valued contraction principle in the space of derivatives of

[^0]the solutions belongs to Tallos ([7, 9]) and it was already used for other results concerning differential inclusions ($3,4,4,5]$ etc.).

For the motivation of study of problem (1.1) we refer to [1] and references therein.

The paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

In this short section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space and consider a set valued map T on X with nonempty values in $X . T$ is said to be a λ-contraction if there exists $0<\lambda<1$ such that:

$$
d_{H}(T(x), T(y)) \leq \lambda d(x, y) \quad \forall x, y \in X
$$

where $d_{H}(\cdot, \cdot)$ denotes the Pompeiu-Hausdorff distance. Recall that the Pompeiu--Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$
d_{H}(A, B)=\max \left\{d^{*}(A, B), d^{*}(B, A)\right\}, \quad d^{*}(A, B)=\sup \{d(a, B) ; a \in A\}
$$

where $d(x, B)=\inf _{y \in B} d(x, y)$.
The set-valued contraction principle ([6]) states that if X is complete, and $T: X \rightarrow \mathcal{P}(X)$ is a set valued contraction with nonempty closed values, then $T(\cdot)$ has a fixed point, i.e. a point $z \in X$ such that $z \in T(z)$.

We denote by $\operatorname{Fix}(T)$ the set of all fixed points of the set-valued map T. Obviously, $\operatorname{Fix}(T)$ is closed.

Proposition 2.1 (8). Let X be a complete metric space and suppose that T_{1}, T_{2} are λ-contractions with closed values in X. Then

$$
d_{H}\left(\operatorname{Fix}\left(T_{1}\right), \operatorname{Fix}\left(T_{2}\right)\right) \leq \frac{1}{1-\lambda} \sup _{z \in X} d\left(T_{1}(z), T_{2}(z)\right)
$$

Let $I=[0,1]$, let $|x|$ be the norm of $x \in \mathbb{R}^{n}$ and $\|A\|$ be the norm of any matrix A. As usual, we denote by $C\left(I, \mathbb{R}^{n}\right)$ the Banach space of all continuous functions from I to \mathbb{R}^{n} with the norm $\|x(\cdot)\|_{C}=\sup _{t \in I}|x(t)|, A C\left(I, \mathbb{R}^{n}\right)$ is the space of absolutely continuous from I to \mathbb{R}^{n} and $L^{1}\left(I, \mathbb{R}^{n}\right)$ is the Banach space of integrable functions $u(\cdot): I \rightarrow \mathbb{R}^{n}$ endowed with the norm $\|u(\cdot)\|_{1}=\int_{0}^{1}|u(t)| d t$.

A function $x(\cdot) \in A C\left(I, \mathbb{R}^{n}\right)$ is called a solution of problem (1.1) if there exists a function $f(\cdot) \in L^{1}\left(I, \mathbb{R}^{n}\right)$ with $f(t) \in F(t, x(t))$, a.e. (I) such that

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+f(t), \quad \text { a.e. } \quad(0,1), \quad M x(0)+N x(1)=\eta . \tag{2.1}
\end{equation*}
$$

For each $x(\cdot) \in A C\left(I, \mathbb{R}^{n}\right)$ define

$$
S_{F, x}:=\left\{f(\cdot) \in L^{1}\left(I, \mathbb{R}^{n}\right) ; f(t) \in F(t, x(t)) \text { a.e. }(I)\right\}
$$

Let $\Phi(\cdot)$ be a fundamental matrix solution of the differential equations $x^{\prime}=A(t) x$ that satisfy $\Phi(0)=I$, where I is the $(n \times n)$ identity matrix.

The next result is well known (e.g. [1]).

Lemma 2.2 ([1]). If $f(\cdot):[0,1] \rightarrow \mathbb{R}^{n}$ is an integrable function then the problem

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+f(t), \quad \text { a.e. }(0,1), \quad M x(0)+N x(1)=0 \tag{2.2}
\end{equation*}
$$

has a unique solution provided $\operatorname{det}(M+N \Phi(1)) \neq 0$. This solution is given by

$$
x(t)=\int_{0}^{1} G(t, s) f(s) d s
$$

with $G(\cdot, \cdot)$ the Green function associated to the problem 2.2). Namely,

$$
G(t, s)= \begin{cases}\Phi(t) J(s) & \text { if } 0 \leq t \leq s \tag{2.3}\\ \Phi(t) \Phi(s)^{-1}+\Phi(t) J(s) & \text { if } s \leq t \leq 1\end{cases}
$$

where $J(t)=-(M+N \Phi(1))^{-1} N \Phi(1) \Phi(t)^{-1}$.
If we consider the problem with nonhomogeneous boundary conditions, i.e. problem 2.1, then it is easy to verify that its solution is given by

$$
\begin{equation*}
x(t)=\Phi(t)(M+N \Phi(1))^{-1} \eta+\int_{0}^{1} G(t, s) f(s) d s \tag{2.4}
\end{equation*}
$$

In the sequel we assume that $A(\cdot)$ is a continuous $(n \times n)$ matrix function, M and N are $(n \times n)$ constant real matrices such that $\operatorname{det}(M+N \Phi(1)) \neq 0$.

In order to study problem (1.1) we introduce the following hypothesis on F.
Hypothesis 2.3. (i) $F(\cdot, \cdot): I \times \mathbb{R}^{n} \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ has nonempty closed values and for every $x \in \mathbb{R}^{n} F(\cdot, x)$ is measurable.
(ii) There exists $L(\cdot) \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that for almost all $t \in I, F(t, \cdot)$ is $L(t)$-Lipschitz in the sense that

$$
d_{H}(F(t, x), F(t, y)) \leq L(t)|x-y| \quad \forall x, y \in \mathbb{R}^{n}
$$

and $d(0, F(t, 0)) \leq L(t)$ a.e. (I).
Denote $L_{0}:=\int_{0}^{1} L(s) d s$ and $G_{0}:=\sup _{t, s \in I}\|G(t, s)\|$.

3. The main results

We are able now to present a first existence result for problem 1.1.
Theorem 3.1. Assume that Hypothesis 2.3 is satisfied, $F(\cdot, \cdot)$ has compact values and $G_{0} L_{0}<1$. Then the problem (1.1) has a solution.

Proof. We transform the problem (1.1) in a fixed point problem. Consider the set-valued map $T: C\left(I, \mathbb{R}^{n}\right) \rightarrow \mathcal{P}\left(C\left(I, \mathbb{R}^{n}\right)\right)$ defined by

$$
\begin{aligned}
T(x):=\{v(\cdot) & \in C\left(I, \mathbb{R}^{n}\right) ; v(t):=\Phi(t)(M+N \Phi(1))^{-1} \eta \\
& \left.+\int_{0}^{1} G(t, s) f(s) d s, f \in S_{F, x}\right\}
\end{aligned}
$$

Note that since the set-valued map $F(\cdot, x(\cdot))$ is measurable with the measurable selection theorem (e.g., [2, Theorem III.6]) it admits a measurable selection $f(\cdot): I \rightarrow \mathbb{R}^{n}$. Moreover, from Hypothesis 2.3

$$
|f(t)| \leq L(t)+L(t)|x(t)|
$$

i.e., $f(\cdot) \in L^{1}\left(I, \mathbb{R}^{n}\right)$. Therefore, $S_{F, x} \neq \emptyset$.

It is clear that the fixed points of $T(\cdot)$ are solutions of problem (1.1). We shall prove that $T(\cdot)$ fulfills the assumptions of Covitz-Nadler contraction principle.

First, we note that since $S_{F, x} \neq \emptyset, T(x) \neq \emptyset$ for any $x(\cdot) \in C\left(I, \mathbb{R}^{n}\right)$.
Secondly, we prove that $T(x)$ is closed for any $x(\cdot) \in C\left(I, \mathbb{R}^{n}\right)$.
Let $\left\{x_{n}\right\}_{n \geq 0} \in T(x)$ such that $x_{n}(\cdot) \rightarrow x^{*}(\cdot)$ in $C\left(I, \mathbb{R}^{n}\right)$. Then $x^{*}(\cdot) \in C\left(I, \mathbb{R}^{n}\right)$ and there exists $f_{n} \in S_{F, x}$ such that

$$
x_{n}(t)=\Phi(t)(M+N \Phi(1))^{-1} \eta+\int_{0}^{1} G(t, s) f_{n}(s) d s
$$

Since $F(\cdot, \cdot)$ has compact values and Hypothesis 2.3 is satisfied we may pass to a subsequence (if necessary) to get that $f_{n}($.$) converges to f(\cdot) \in L^{1}\left(I, \mathbb{R}^{n}\right)$ in $L^{1}\left(I, \mathbb{R}^{n}\right)$.

In particular, $f \in S_{F, x}$ and for any $t \in I$ we have

$$
x_{n}(t) \rightarrow x^{*}(t)=\Phi(t)(M+N \Phi(1))^{-1} \eta+\int_{0}^{1} G(t, s) f(s) d s
$$

i.e., $x^{*} \in T(x)$ and $T(x)$ is closed.

Finally, we show that $T(\cdot)$ is a contraction on $C\left(I, \mathbb{R}^{n}\right)$.
Let $x_{1}(\cdot), x_{2}(\cdot) \in C\left(I, \mathbb{R}^{n}\right)$ and $v_{1} \in T\left(x_{1}\right)$. Then there exist $f_{1} \in S_{F, x_{1}}$ such that

$$
v_{1}(t)=\Phi(t)(M+N \Phi(1))^{-1} \eta+\int_{0}^{1} G(t, s) f_{1}(s) d s, \quad t \in I .
$$

Consider the set-valued map

$$
G(t):=F(t, x(t)) \cap\left\{x \in \mathbb{R}^{n} ;\left|f_{1}(t)-x\right| \leq L(t)\left|x_{1}(t)-x_{2}(t)\right|\right\}, \quad t \in I
$$

From Hypothesis 2.3 one has

$$
d_{H}\left(F\left(t, x_{1}(t)\right), F\left(t, x_{2}(t)\right)\right) \leq L(t)\left|x_{1}(t)-x_{2}(t)\right|,
$$

hence $G(\cdot)$ has nonempty closed values. Moreover, since $G(\cdot)$ is measurable, there exists $f_{2}(\cdot)$ a measurable selection of $G(\cdot)$. It follows that $f_{2} \in S_{F, x_{2}}$ and for any $t \in I$

$$
\left|f_{1}(t)-f_{2}(t)\right| \leq L(t)\left|x_{1}(t)-x_{2}(t)\right|
$$

Define

$$
v_{2}(t)=\Phi(t)(M+N \Phi(1))^{-1} \eta+\int_{0}^{1} G(t, s) f_{2}(s) d s, \quad t \in I
$$

and we have

$$
\begin{aligned}
\left|v_{1}(t)-v_{2}(t)\right| & \leq \int_{0}^{1}\|G(t, s)\| \cdot\left|f_{1}(s)-f_{2}(s)\right| d s \leq G_{0} \int_{0}^{1}\left|f_{1}(s)-f_{2}(s)\right| d s \\
& \leq G_{0} \int_{0}^{1} L(s)\left|x_{1}(s)-x_{2}(s)\right| d s \leq G_{0} L_{0}\left\|x_{1}-x_{2}\right\|_{C}
\end{aligned}
$$

So, $\left\|v_{1}-v_{2}\right\|_{C} \leq G_{0} L_{0}\left\|x_{1}-x_{2}\right\|_{C}$.
From an analogous reasoning by interchanging the roles of x_{1} and x_{2} it follows

$$
d_{H}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right) \leq G_{0} L_{0}\left\|x_{1}-x_{2}\right\|_{C}
$$

Therefore, $T(\cdot)$ admits a fixed point which is a solution to problem 1.1).
The next theorem is the main result of this paper. As one can see it is, in fact, no necessary to assume that $F(\cdot, \cdot)$ has compact values as in Theorem 3.1

Theorem 3.2. Assume that Hypothesis 2.3 is satisfied and $G_{0} L_{0}<1$. Let $y(\cdot) \in A C\left(I, \mathbb{R}^{n}\right)$ be such that there exists $q(\cdot) \in L^{1}\left(I, \mathbb{R}_{+}\right)$with $d\left(y^{\prime}(t)-A(t) y(t)\right.$, $F(t, y(t))) \leq q(t)$, a.e. (I). Denote $\mu=M y(0)+N y(1)$.

Then for every $\varepsilon>0$ there exists $x(\cdot)$ a solution of problem (1.1) satisfying for all $t \in I$

$$
|x(t)-y(t)| \leq \frac{1}{1-G_{0} L_{0}} \sup _{t \in I}\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right|+\frac{G_{0}}{1-G_{0} L_{0}} \int_{0}^{1} q(t) d t+\varepsilon .
$$

Proof. For $u(\cdot) \in L^{1}\left(I, \mathbb{R}^{n}\right)$ define the following set valued maps

$$
\begin{aligned}
M_{u}(t) & =F\left(t, \Phi(t)(M+N \Phi(1))^{-1} \eta+\int_{0}^{1} G(t, s) u(s) d s\right), \quad t \in I \\
T(u) & =\left\{\phi(\cdot) \in L^{1}\left(I, \mathbb{R}^{n}\right) ; \phi(t) \in M_{u}(t) \text { a.e. }(I)\right\}
\end{aligned}
$$

It follows from the definition and 2.4 that $x(\cdot)$ is a solution of problem (1.1) - 2.2 if and only if $x^{\prime}(\cdot)-A(\cdot) x(\cdot)$ is a fixed point of $T(\cdot)$.

We shall prove first that $T(u)$ is nonempty and closed for every $u \in L^{1}\left(I, \mathbb{R}^{n}\right)$. The fact that the set valued map $M_{u}(\cdot)$ is measurable is well known. For example the map $t \rightarrow \Phi(t)(M+N \Phi(1))^{-1} \eta+\int_{0}^{1} G(t, s) u(s) d s$ can be approximated by step functions and we can apply in [2, Theorem III.40]. Since the values of F are closed with the measurable selection theorem ([2] Theorem III.6]) we infer that $M_{u}(\cdot)$ admits a measurable selection ϕ. One has

$$
\begin{aligned}
|\phi(t)| & \leq d(0, F(t, 0))+d_{H}\left(F(t, 0), F\left(t, \Phi(t)(M+N \Phi(1))^{-1} \eta+\int_{0}^{1} G(t, s) u(s) d s\right)\right) \\
& \leq L(t)\left(1+\left|\Phi(t)(M+N \Phi(1))^{-1} \eta\right|+G_{0} \int_{0}^{1}|u(s)| d s\right)
\end{aligned}
$$

which shows that $\phi \in L^{1}\left(I, \mathbb{R}^{n}\right)$ and $T(u)$ is nonempty.
On the other hand, the set $T(u)$ is also closed. Indeed, if $\phi_{n} \in T(u)$ and $\left\|\phi_{n}-\phi\right\|_{1} \rightarrow 0$ then we can pass to a subsequence $\phi_{n_{k}}$ such that $\phi_{n_{k}}(t) \rightarrow \phi(t)$ for a.e. $t \in I$, and we find that $\phi \in T(u)$.

We show next that $T(\cdot)$ is a contraction on $L^{1}\left(I, \mathbb{R}^{n}\right)$.

Let $u, v \in L^{1}\left(I, \mathbb{R}^{n}\right)$ be given and $\phi \in T(u)$. Consider the following set-valued map:

$$
H(t)=M_{v}(t) \cap\left\{x \in \mathbb{R}^{n} ;|\phi(t)-x| \leq L(t)\left|\int_{0}^{1} G(t, s)(u(s)-v(s)) d s\right|\right\}
$$

From Proposition III. 4 in [2], $H(\cdot)$ is measurable and from Hypothesis 2.3 ii) $H(\cdot)$ has nonempty closed values. Therefore, there exists $\psi(\cdot)$ a measurable selection of $H(\cdot)$. It follows that $\psi \in T(v)$ and according with the definition of the norm we have

$$
\begin{aligned}
\|\phi-\psi\|_{1} & =\int_{0}^{1}|\phi(t)-\psi(t)| d t \leq \int_{0}^{1} L(t)\left(\int_{0}^{1}\|G(t, s)\| \cdot|u(s)-v(s)| d s\right) d t \\
& =\int_{0}^{1}\left(\int_{0}^{1} L(t)\|G(t, s)\| d t\right)|u(s)-v(s)=b i g| d s \leq G_{0} L_{0}\|u-v\|_{1}
\end{aligned}
$$

We deduce that

$$
d(\phi, T(v)) \leq G_{0} L_{0}\|u-v\|_{1}
$$

Replacing u by v we obtain

$$
d_{H}(T(u), T(v)) \leq G_{0} L_{0}\|u-v\|_{1}
$$

thus $T(\cdot)$ is a contraction on $L^{1}\left(I, \mathbb{R}^{n}\right)$.
We consider next the following set-valued maps

$$
\begin{aligned}
F_{1}(t, x) & =F(t, x)+q(t) B, \quad(t, x) \in I \times \mathbb{R}^{n} \\
M_{u}^{1}(t) & =F_{1}=\left(t, \Phi(t)(M+N \Phi(1))^{-1} \mu+\int_{0}^{1} G(t, s) u(s) d s\right) \\
T_{1}(u) & =\left\{\psi(\cdot) \in L^{1}\left(I, \mathbb{R}^{n}\right) ; \psi(t) \in M_{u}^{1}(t) \text { a.e. }(I)\right\}, \quad u(\cdot) \in L^{1}\left(I, \mathbb{R}^{n}\right),
\end{aligned}
$$

where B denotes the closed unit ball in \mathbb{R}^{n}. Obviously, $F_{1}(\cdot, \cdot)$ satisfies Hypothesis 2.3

Repeating the previous step of the proof we obtain that T_{1} is also a $G_{0} L_{0}$-contraction on $L^{1}\left(I, \mathbb{R}^{n}\right)$ with closed nonempty values.

We prove next the following estimate

$$
\begin{align*}
& d_{H}\left(T(u), T_{1}(u)\right) \tag{3.1}\\
& \quad \leq \sup _{t \in I}\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right| L_{0}+\int_{0}^{1} q(t) d t
\end{align*}
$$

Let $\phi \in T(u)$ and define

$$
H_{1}(t)=M_{u}^{1}(t) \cap\left\{z \in \mathbb{R}^{n} ;|\phi(t)-z| \leq L(t)\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right|+q(t)\right\} .
$$

With the same arguments used for the set valued map $H(\cdot)$, we deduce that $H_{1}(\cdot)$ is measurable with nonempty closed values. Hence let $\psi(\cdot)$ be a measurable
selection of $H_{1}(\cdot)$. It follows that $\psi \in T_{1}(u)$ and one has

$$
\begin{aligned}
\|\phi-\psi\|_{1}= & \int_{0}^{1}|\phi(t)-\psi(t)| d t \leq \int_{0}^{1}\left[L(t)\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right|\right. \\
& +q(t)] d t \leq \int_{0}^{1} L(t)\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right| d t+\int_{0}^{1} q(t) \\
\leq & L_{0} \sup _{t \in I}\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right|+\int_{0}^{1} q(t) d t
\end{aligned}
$$

As above we obtain (3.1).
We apply Proposition 2.1 and we infer that

$$
\begin{aligned}
& d_{H}\left(\operatorname{Fix}(T), \operatorname{Fix}\left(T_{1}\right)\right) \\
& \quad \leq \frac{L_{0}}{1-G_{0} L_{0}} \sup _{t \in I}\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right| \frac{1}{1-G_{0} L_{0}} \int_{0}^{1} q(t) d t
\end{aligned}
$$

Since $v(\cdot)=y^{\prime}(\cdot)-A(\cdot) y(\cdot) \in \operatorname{Fix}\left(T_{1}\right)$ it follows that there exists $u(\cdot) \in$ $\operatorname{Fix}(T)$ such that for any $\varepsilon>0$

$$
\begin{aligned}
\|v-u\|_{1} \leq & \frac{L_{0}}{1-G_{0} L_{0}} \sup _{t \in I}\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right| \\
& +\frac{1}{1-G_{0} L_{0}} \int_{0}^{1} q(t) d t+\frac{\varepsilon}{G_{0}}
\end{aligned}
$$

We define $x(t)=\Phi(t)(M+N \Phi(1))^{-1} \eta+\int_{0}^{1} G(t, s) u(s) d s, t \in I$ and we have

$$
\begin{aligned}
\mid x(t) & -y(t)\left|\leq\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right|\right. \\
& +\int_{0}^{1}\|G(t, s)\| \cdot|u(s)-v(s)| d s \leq \sup _{t \in I}\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right| \\
& +\frac{G_{0} L_{0}}{1-G_{0} L_{0}} \sup _{t \in I}\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right|+\frac{G_{0}}{1-G_{0} L_{0}} \int_{0}^{1} q(t) d t+\varepsilon \\
\leq & \frac{1}{1-G_{0} L_{0}} \sup _{t \in I}\left|\Phi(t)(M+N \Phi(1))^{-1}(\eta-\mu)\right|+\frac{G_{0}}{1-G_{0} L_{0}} \int_{0}^{1} q(t) d t+\varepsilon,
\end{aligned}
$$

which completes the proof.
Remark 3.3. Taking into account Hypothesis 2.3 ii) the assumptions in Theorem 3.2 is satisfied by $y(\cdot)=0$ and $q(\cdot)=L(\cdot)$.

References

[1] Boucherif, A., Merabet, N. Chiboub-Fellah, Boundary value problems for first order multivalued differential systems, Arch. Math. (Brno) 41 (2005), 187-195.
[2] Castaing, C., Valadier, M., Convex Analysis and Measurable Multifunctions, Springer-Verlag, Berlin, 1977.
[3] Cernea, A., Existence for nonconvex integral inclusions via fixed points, Arch. Math. (Brno) 39 (2003), 293-298.
[4] Cernea, A., An existence result for nonlinear integrodifferential inclusions, Comm. Appl. Nonlinear Anal. 14 (2007), 17-24.
[5] Cernea, A., On the existence of solutions for a higher order differential inclusion without convexity, Electron. J. Qual. Theory Differ. Equ. 8 (2007), 1-8.
[6] Covitz, H., Nadler jr., S. B., Multivalued contraction mapping in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.
[7] Kannai, Z., Tallos, P., Stability of solution sets of differential inclusions, Acta Sci. Math. (Szeged) 61 (1995), 197-207.
[8] Lim, T. C., On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436-441.
[9] Tallos, P., A Filippov-Gronwall type inequality in infinite dimensional space, Pure Math. Appl. 5 (1994), 355-362.

Faculty of Mathematics and Informatics,
University of Bucharest
Academiei 14, 010014 Bucharest, Romania
E-mail: acernea@fmi.math.unibuc.ro

[^0]: 2000 Mathematics Subject Classification: primary 34A60.
 Key words and phrases: boundary value problem, differential inclusion, contractive set-valued map, fixed point.

 Received March 31, revised May 2008. Editor O. Došlý.

