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LATTICE-VALUED BOREL MEASURES III

SURJIT SINGH KHURANA

ABSTRACT. Let X be a completely regular 73 space, E a boundedly complete
vector lattice, C'(X) (Cy(X)) the space of all (all, bounded), real-valued
continuous functions on X. In order convergence, we consider FE-valued,
order-bounded, o-additive, T-additive, and tight measures on X and prove
some order-theoretic and topological properties of these measures. Also for an
order-bounded, E-valued (for some special E) linear map on C'(X), a measure
representation result is proved. In case E;; separates the points of F, an
Alexanderov’s type theorem is proved for a sequence of o-additive measures.

1. INTRODUCTION AND NOTATION

All vector spaces are taken over reals. E, in this paper, is always assumed to be
a Dedekind complete Riesz space (and so, necessarily Archimedean) ([1], [15], [14]).
For a completely regular Ty space X, vX is the real-compactification, X is the
Stone-Cech compactification of X, B(X) is the space of all real-valued bounded
functions on X, C(X) (resp. Cp(X)) is the space of all real-valued, (resp. real-valued
and bounded) continuous functions on X; sets of the form { f~1(0); f € Cy(X)} are
called zero-sets of X and their complements positive subsets of X, and the elements
of the o-algebra generated by zero-sets are called Baire sets ([20], [19]); B(X) and
B1(X) will denote the classes of Borel and Baire subsets of X and F(X) will be the
algebra generated by the zero-sets of X. (1 (X)(8(X)) are, respectively the spaces
of bounded Baire (Borel) measurable functions on X. It is easily verified that the
order o-closure of Cp(X) in 31(X), in the topology of pointwise convergence, is
B1(X) and the order o-closure, in 5(X), of the vector space generated by bounded
lower semi-continuous functions on X, is 5(X) ([3], []).

In ([21], [23]), the author discussed the positive measures taking values in
Dedekind complete Riesz spaces and proved some basic results about the integration
relative to these measures; he also proves some Riesz representation type theorems;
it was proved there that when X is a compact Hausdorff space and p: C(X) — E is
a positive linear mapping then p arises from a unique quasi-regular Borel measure
w: B(X) — E which is countably additive in order convergence (quasi-regular
means that the measure of any open set is inner regular by the compact subsets
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of X). In ([7], [8]) new proofs were given for these Riesz representation theorems
for positive measures and then the study was extended to completely regular T;
spaces and o-additive, 7-additive and tight positive measures were studied on
these spaces. In ([I7], [18]), some decomposition theorems for measures, which take
values in Dedekind complete Riesz spaces and are not necessarily positive, were
proved. In [I6], the authors proved some results about the countable additivity of
the order-theoretic modulus of a countable additive measures taking values in a
Banach lattice.

In the present paper, we consider measures, not necessarily positive, on com-
pletely regular T; spaces, taking values in Dedekind complete Riesz spaces. In
Section [2} some order-theoretic and topological properties of o-additive, T-additive
and tight measures are proved. In Section [3] a well-known result about the measure
representation of real-valued, order-bounded linear map on C'(X) is extended to the
case when the order-bounded linear map on C(X) takes values in C(S), S being a
Stone space. In Section EL assuming that the continuous order dual E}; separates
the points of F, an Alexanderov’s type theorem is proved about a sequence of
o-additive measures.

For locally convex spaces and vector lattices, we will be using notations and
results for ([I5], [1], [13]). For a locally convex space E with E’ its dual, with an
x € E and f € E', (f,z) will stand for f(x). For measures, results and notations
from ([21], [10], [2]) will be used, and for lattice-valued measures, results of ([I7],
[18]) will be used.

2. ORDER-BOUNDED MEASURES ON COMPLETELY REGULAR 71} SPACE IN ORDER
CONVERGENCE

We start with a compact Hausdorff space X and an order-bounded, counta-
bly additive (countable additivity in the order convergence of E) Borel measure
w: B(X) — E. Further assume that for any decreasing net {C,} of closed subsets
of X, un(NCy) = 0 — lim p(Cy) (if p has this property then we say p is 7-smooth).
We first prove the following theorem.

Theorem 1. Suppose X is a compact Hausdorff space and u: B(X) — E be an
order-bounded, countably additive (countable additivity in the order convergence
of E) Borel measure on X, having the propety that for any decreasing net {Cy}
of closed subsets of X, n(NCys) = 0 — lim u(Cy). Let {fo} be a net of [0, 1]-valued,
usc (upper semi-continuous) functions on X, decreasing pointwise to a function f
on X. Then o — lim p(fo) = u(f).

Proof. Since p is order-bounded, we can take E = C(S), S being a compact
Stone space and ’u(B(X))| <1 e C(9); this implies, that for any Borel function
h: X — [-1,1], \,u(h)| < 1. Fixak € N and let Z., = f;'[+,1] and Z% =
f7HE, 1], fori=1,2,. (k 1). By hypothesis o —lim, u(Z%) = u(Z%), Vi. We
have L' 78 < f, < 141 2’“ Y Ziand 1YV i< f< L Ll
This implies |fa— = Zk 1Zl| < k and |f = Zk 1Z’| < 1. This gives |,u (fa) —
kzz 1M(Zl)’§%and ‘M _E 511M(Zl)| - So _7"" ZZ 1:“(ZL)
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w(fo) < 1+ + Zi:ll w(Z%). Putting p = + Zi:ll Z* and taking order limits, we get
lo—limsup,, p(fa) —p| < % and |o — liminf, u(fs) —p| < % Combining these two,
we get o — limsup,, pu(fa) — 0 — liminf, pu(fa) < 2. Letting k — oo, 0 — lim pu(fa)
exists. Using the fact that |u(f) —p| < £, we get [o—lim pu(fo) — u(f)| < %. Letting

k — oo, we get the result. O

We denote by M,y (X, E) the set of all order-bounded linear mappings p: C(X) —
E. Now we come to the next theorem.

Theorem 2. Suppose X is a compact Hausdorff space and p: C(X) — E be an
order-bounded, linear mapping.

(i) Then there is a unique countably additive Baire measure, which again we
denote by p, on X, such that the corresponding linear mapping p: $1(X) —
E extends the given mapping. Further u can also be uniquely extended to a
countably additive T-smooth Borel measure.

(ii) The modulus of the Baire measure p, determined from p: C(X) — E
and p: $1(X) — E are equal and also modulus of the Borel measure p,
determined from p: C(X) — E and p: B(X) — E are equal. Thus p can
be written as p = put — p~. For every T-smooth Borel measure pn on X,
there is the largest open set V. C X such that |p|(V) =0; C = X \V is
called the support of u and has the property that any open U C X such
that U N C # 0, we have |p|(U) > 0.

(iii) Mo\ (X, E) is a Dedekind-complete vector lattice.

Proof. (i) Since p is order-bounded and E is a boundedly order-complete, we
can write p = p* — p~ ([13, Theorem 1.3.2, p. 24]). Now pu* and p~ can be
uniquely extended to Et-valued, countably additive Baire measures and also to
E*-valued, countably additive 7-smooth Borel measures ([7], [21], [24]). Thus we
get a countably additive Baire measure u: £1(X) — E and a countably additive
T-smooth Borel measure p: G(X) — E. Since the order o-closure, in 51 (X), of
C(X) is f1(X), for Baire measure, the uniqueness follows. Now we consider the
case of Borel measure. Suppose two 7-smooth Borel measures u, ps are equal on
C(X). By Theorem [1} they are equal on bounded lower semi-continuous functions
and so they are equal on the vector space generated by lower semi-continuous
functions. Since the order o-closure, in 3(X), of the vector space generated by
lower semi-continuous functions is (X)), by countable additivity they are equal on
B(X).

(ii) Let p1, po be the pu™’s coming from pu: C(X) — F and p: 1(X) — F
respectively. Evidently pe > up. Fix a g € C(X),g > 0 and take an h € 5;(X),
0 < h <g. Since pu(h) < pi(g), taking supy<p<g. We get p2(g) < pa(g). By ([18],
Theorem 2.3, p.25 ), us is countably additive. Since 1 = ps on C(X), we get
w1 = po on B1(X). The result follows now. The other result about the support of
u is easily verified.

(iii) Tt is a simple verification. O
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Now we consider the case when X is a completely regular T; space and
p: F(X) — E a finitely additive, order-bounded measure. Because of order-boun-
dedness, order modulus |u| exists. g will be called regular if for any A € F(X),
there exists an increasing net {Z,} of zero-sets in X, Z, C A, Va, and a deceasing
net {n,} in F such that n, | 0 and |u|(A\ Za) < Na, Yo

Theorem 3. Suppose X be a completely reqular Ty space and p: Cp(X) — E be an
order-bounded, linear mapping. Then there is unique, finitely additive, order-bounded
measure, regular measure v: F(X) — E such that p(f) = [ fdv, Vf € Cy(X).
M) (X, E) is a Dedekind-complete vector lattice.

Proof. When y is positive, then result is proved in ([12], p. 353). Since pp = p*—pu~,
using the result ([I2], p. 353), we get a v with the required properties. We denote
v by p also

Uniqueness: Let p: F(X) — E be an order-bounded, finitely additive, order-boun-
ded measure, regular measure such that g = 0 on Cy(X). Denoting by S(X) the
norm closure of F(X)-simple real valued functions on X, we have S(X) D Cp(X).
Thus p extends to p: S(X) — E, is linear and order-bounded. Split p = p™ — p~.
By the definition of regularity, || is regular and so ™, = are regular and p+ = p~
on Cy(X). Since both are regular, there is unique extension to F(X). This means
pT = p~ on F(X) and consequently ut = = on S(X). This proves uniqueness.
It is easy to verify that M) (X, E) is a Dedekind-complete vector lattice. [

We come to countably additive (in order convergence), of order-bounded Baire
measures on a completely regular T space X. A countably additive, order-bounded
w: B1(X) — E is called an order-bounded Baire measure on X. The collection of
all such measures will be denoted by M, ,)(X, E).

Theorem 4. For a be a completely regular Ty space X, M, 5 (X, E) is a band in
My (X, E).

Proof. Take a ji € M, (X, E). By ([18], Theorem 2.3, p.25 ), |u|, u*, u~ are
also in M, o) (X, E). so M, - (X, E) is a vector sublattice of M, (X, E). Let
{ua} be positive, bounded, increasing net in M, (X, E) and p = sup po in
M) (X,E). Then p, defined for every A € Bi(X), u(A) = sup pq(A), is finitely
additive. Take an increasing sequence {4,} C Bi(X) and let A = UA,. Now
w(A) = o — lim, 1o (A) = o — lim, (0 — lim,, Ma(An)> < o —lim, p(A,) < u(A).
This proves p is countably additive. This proves the result. O

We denote by M, (X, E) those u € M, ,)(X, E) which can be extended to
p: B(X) — E and are 7-smooth, in the sense, that for any increasing net {V,} of
open subsets of X, u(UV,) = o — lim u(V,) (extension will obviously be unique if
it exists).

Theorem 5. For a completely reqular Ty space X, M, (X, E) is a band in
M0 (X, E).
Proof. Take a p € M, (X, E). This gives a i € M(o)(X,E), a(B) = u(BNX)

with the property that i(B) =0 if BNX = (. It is a routine verification that ()%,
(1), || all are = 0 on those Borel sets B for which B N X = (). For this it easily
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follows that, for any Borel set B C X, u*(B) = (ji)*(By), where By is any Borel
subset of X with ByN X = B; similar result for 4~ and |u|. To prove 7-smoothness
of ||, take a collection {V,;~ € I} of open subsets of X and select open subsets
{U,;~y € I} in X such that U, N X = V. Let J be the collection of all finite subsets
of I and order them by inclusion; also denote by « a general element of J. By the
7-smooth property of |fi| (Theorem [2), we have, |i|(UU,) = o — limq |i2](UyeaUy).
This means |p|(UV;) = o — limg |p|(UyeaVy). This proves |p] in 7-smooth. In a
similar way p and g~ are also 7-smooth.

Now the proof that it is a band in M, ) (X, E) is very similar to what is done
in Theorem [ (I

We denote by M, (X, E) those u € M, ,)(X, E) which have the property
that, for the measure |u|, open sets are inner regular by the compact subsets of X.
From this definition it follows that if ;1 € M, (X, E) then p*, p~, |p| are also in
M(o,t)(Xv E)

Theorem 6. For a completely regqular T1 space X, M, (X, E) is a band in
M(O,T)(X7 E)

Proof. M, (X, E) is already seen to be a vector sub-lattice of M, (X, E).
Let {ua} be positive, bounded, increasing net in M, (X, ') and p = sup i, in
Mo,-)(X, E). Let V be an open subset of X. Let {C} be the family of all compact
subsets of V; this is filtering upwards. (V) = o — limg pto (V) = 0 — lim, (0 —
limg p1a(Cp)) < 0 —limg pu(Cp) < (V). This proves u € M, 1) (X, E). This proves
the result. O

If u € Mo, (X, E), then it is easily seen that there is a smallest closed subset
Y C X such that |p|(Y) = |u|(X). This Y is called the support of p.

The following two theorems are well-knowm for scalar-valued measures ([20],
[19]). We prove some extensions.

Theorem 7. Let (X,d) be a metric space and E super Dekekind complete ([14]
p.78]) and p € M, (X, ET). Then the support of i is a separable subset of X .

Proof. Let the support of y be Y. Fixann € N and let A= {ACY :d(z,y) >
%, Ve e A, Vy € A, x # y} By Zorn’s Lemma, A has a maximal element, say
Ay Tt is easily verified that that for any x € (Y \ A,), there is a y € A, such
that d(z,y) < % We claim that A,, is countable. Suppose not. Thus there is an
uncountable collection {B(sc7 %) rx € An} of mutually disjoint open subsets of
Y and p(B(z,5)) > 0, Vo € A,. Using 7-additivity of x4 and the hypothesis
that F is super Dekekind complete, we get, that except for countable x € A,
M(B(x, ﬁ)) = 0. Since Y is the support of y, this is a contradiction. Thus A, is
countable and so UA,, is dense in Y. This proves the result. O
Theorem 8. Let (X, d) be a complete metric space and E super Dekekind complete

and also weakly o-distributive ([25]). Then M, (X, E) = M, (X, E).

Proof. Takea u € M, (X, ET). By Theorem 7, we can assume X to be separable.
Let Z be a compact metric space which is a compactification of X. It is well-known
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that X is a Gs set in Z. Define u: B(Z) — E*, p(B) = u(B N X). It is obvious
that i € M, (Z, ET). It is Baire measure. Since F is weakly o-distributive, /i is
inner regular by compact subset of Z. This means, since X is a Baire subset of Z,
w(X) = sup{p(C) : C compact and C' C X. From this, it is a routine verification
that u € M, (X, E) (cf. [5]). O

3. REPRESENTATION THEOREM FOR C(X), X COMPLETELY REGULAR

It is well-known that a linear map p: C(X) — R, which maps order-bounded
sets into bounded sets, gives a unique v € M,(X) such that C(X) C L'(v),
p(f) = [ fdv,Vf € C(X) and supp(#) C vX (the real-compactification of X) ([19,
Theorem 23]). We will extend it to the vector case.

In this section E = (C(5),] - ||), S being a Stone space and X completely
regular T space. We will prove a representation theorem for a positive linear map
pu: C(X) — E. B(X) denotes the space of all bounded real-valued functions. We
will use the following results.

(A). Suppose F is a locally convex space whose topology is generated by the
family {|| - ||, : p € P} of semi-norms, M, (X, F) the space of all F-valued Baire
measures on X, and p: C(X) — F be a linear map such that order-bounded
subsets are mapped into relatively weakly compact subsets of F'. Then:

(i) There is a unique v € M, (X, F) such that C(X) C L'(v) and u(f) =
[ fdv. ¥f € C(X);

(ii) for every p € P, there is compact C CcuX (the real-compactification of
X)), depending on p, such that 7,(X \ C') = 0 ([9, Theorem 7]), 7, being
the semi-variation of 7.

(B). There is an order o-continous positive linear map 1 : §1(S) — C(S) such
that for every f € 31(S), we get f —1(f) = 0 except on a meager set ([7, Lemma
2, p. 379)).

In the following theorem countable additivity is taken in the context of order
convergence and integration and integrability in the sense of [21].

Theorem 9. Suppose p: C(X) — E be a positive linear map. Then there is a
unique E-valued positive Baire measure v on X such that every f € C(X) is
v-integrable and p(f) = [ fdv, Vf € C(X). Also the supp(P) C vX.

Proof. By taking the pointwise topology pt on B(S) and noting that C(S) C B(S),
we have a positive linear map u: C(X) — (B(S),pt) with the property that
order-bounded subsets of C'(X) are mapped into relatively weakly compact subsets
of (B(S),pt). By (A) there is a Baire measure \: B1(X) — (B(S),pt) such that
C(X) C Li(\) (I0]) and u(f) = [ fdA, Vf € C(X). This measure is easily seen
to be positive. Fix an f € C(X), f > 0and let f,, = f An (n € N). Put h = p(f),
B = p(fa)- Since f € Li(N), A{fn) — A(f) (I0]). From A~1(6(S)) > Cy(X),
we get A7H(B1(S) D Bi(X). Thus X: Bi(X) — B1(S). Using (B) and defining
v =110\, we see that v: By (X) — C(S) is countably additive in order convergence
and hy, = p(fn) = M fn) = v(fn), VYn. This means h, T h pointwise in C(S5)
and so o — limh,, = h in C(S). By ([2I, Prop. 3.3, p.113]) f is v-integrable
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and [ fdv = o —lim [ f,dv = o — limh,, = h = limh,, pointwise. This proves
p(f) = [ fdv. This proves the result.

Uniqueness: If there is another E-valued positive Baire measure vy on X having
the above properties then u(f) = [ fdvy, Vf € C(X). Thus vo(f) = v(f), Vf €
Cy(X). Because of order countable additivity of vy and v, we get vy = v on Baire
subsets of X. This proves uniqueness.

Now we prove that supp(#) C vX. Suppose z € X \ vX and z €
Take an f > 0, f € C(X) with f(z) = co. Thus, for every n, ji(A n)
Ay =z () > n)). ~

Suppose first that A2, (i(Ay,)) = h > 0 and put f, = f An. Then f, =
fAn. Now u(f) > pu(fn) = f(f An) = [(f An)dii > nji(A,) > nh. Since F is
Archimedean, we get h = 0 which is a contradiction. Thus A = 0.

Since fi(A,) > 0 for every n and h = 0, select a strictly increasing sequence
{ar} of positive integers such that axy; —ar > 4 Vk and hy = ﬂ({x Dagr <
f(@) < api2}) >0, Vk. Let py = |[hy| > 0. Putting By = f~*([ak11, ar2]),
Cr = ffl((akH —1l,apy2 + 1)), we see that By and Cj, are two disjoint zero
subsets of X. Define a g € Cy(X), gr >0, gr =0 on C), and g = kﬁ on By. It
is a routine verification that g = > po, gk € C( ).

For A C X A will denote its closure in X. Now By DV NX, where V = {:v
arp1 < f(z) < ak+2} is an open non-void subset of X. Since X is dense in X,
VNX>Vandso B, DV. Also g, = kp—k on By implies g = kﬁ on Bj. So we
get

(supp) (f2)-
> (0 where

. . 1 . 1
fi(gk) = /79kdﬂ > k—p(V) = khy,—.
B, Pk Pk
We have, for every n € N, u(g) = >o4_; ulgn) = Sy ilgh) = Yojy Kl
Now ||,I<;hkpik|| = k and so ||u(g)|| = oo (note E is an AM space) which is a
contradiction. This proves that supp(7) C vX. O

Corollary 10. Suppose u: C(X) — E be an order-bounded linear map (13| p.24]).
Then there is a unique E-valued Baire measure v on X such that every f € C(X)
is v-integrabe and p(f) = [ fdv, Vf € C(X) and supp(ir) C vX.

Proof. By [I3, Theorem 1.3.2, p.24], p = p* — u~. Now p+ and p~ are positive
linear maps. Applying Theorem |§| to u™ and p~ we get an E-valued Baire measure
v on X such that every f € C(X) is v-integrabe and u(f) = [ fdv, Vf € C(X).
As in Theorem 9, the uniqueness of v and supp(ji) C vX can be proved.

4. THE CASE OF E WITH POINTS SEPARATED BY E;

For the order complete vector lattice E, let E* be its order dual and E} its
continuous order dual. In this section we assume that E; separates the points of E.
It is known that E is a band in E* and order intervals in E* are o(E}, E')-compact
and convex ([14], [13]). o(E, E,) will denote the locally convex topology on F,
of uniform convergence on the order intervals of E; in this topology the lattice

n’
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operations are continuous and so the positive cone is closed and convex. Since this
topology is compatible with the duality < E, E¥ >, E, is also closed in o(E, E}).
O

The following theorem is well-known. We include a new proof.

Theorem 11 ([16, Theorem 3]). Suppose A be a o-algebra of subsets of a set X
and 2 A — FE a finitely additive measure. Then p is countably additive in order
convergence iff p is countably in the locally convex topology o(E, EY).

Proof. Obviously countably additivity in order convergence implies countably
additivity in o(E, E). Assume that u is countably in o(F, E); this means p is
countably additive in o(E, E,,). We first prove that u countably additive in order
convergence.

Fix a sequence By, | #in A. Take a C C X,C € A. From u(C—CNB,,) = pu(B,U
C —By,), we get u(C) —u(CNBy,) < pt(X)—pt(By,). Let 0 < z = inf, (uT(By)).
Thus z < p(C N B,) + pT(X) — u(C). Since u(C N B,) — 0 in o(E, E}), we
get, for every f € (E5)s, (f.2) < (f,u(C N B,)) + (f, p* (X) — u(C)): using the
fact u(C'N B,) — 0in o(E, E}), this gives (f,z) < (f,ut(X) — u(C)) for every
f€(E:) . Thus z < ut(X) — pu(C) for every C' € A. Taking inf of the right hand
side as C varies in A, we get 2 = 0. This proves u™ is countably additive in order
convergence. Similarly p~ is countably additive in order convergence and so p is
countably additive in order convergence. This proves the theorem. O

The next theorem extends the well-known Alexanderov’s theorem ([19], p. 195)
about the convergent sequence of real-valued measures to our setting.

Theorem 12. Suppose X is a completely regular Ty space, E is a boundedly
order-complete vector-lattice, E* its order dual and E}, its continuos order dual.
Assume that E}, separates the points of E. Let {jin} C Mo, (X, E) be a uniformly
order-bounded sequence such that, in order convergence, u(g) = lim p,(g) exists for
every g € Cp(X). Then the order-bounded p : Cyp(X) — E is generated by E-valued
order-bounded Baire measure on X.

Proof. Since the {u,} is uniformly order-bounded, we can assume that E has
an order unit. By taking the order unit norm ([I3, p.8]), we assume E = C(S5)
for some hyperstonian space S. Thus F = E? is a band in E' and E = F’. Note
the locally convex space (E,T(E,EZ)) = (F, T(F',F)) is complete (Grothendieck
completeness theorem ([I5] Theorem 6.2, p.148])).

For every g € Ef, g o u, — g o p, pointwise on Cy(X) and g o p, € M,(X),
Vn. Fix a g € E} and take a sequence {fn} C Cp(X), fm | 0. By ([I9, p.195]),
g o tn(fm) — go u(fm) as n — oo, uniformly in m. Thus g o pu(fm) — 0. By
([20, Corollary 11.16]), g o u: (Cy(X), 8,) — R is continuous, 3, being the strict
topology (]20]). Thus the weakly compact map p: (Cp(X),8,) — (E,7(E, E})) is
continuous in the weak topology o(E, E) on E (7(E, E}) is the Mackey topology
in the duality (E, E)); since the topology 3, is Mackey ([20]), it is continuous.
Since (E,7(E, E})) is complete, by ([9, Theorem 2]), 1 can be extended to an
E-valued Baire measure which is countably additive in 7(E, E). This implies that
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u is countably additive in o(E, E}). By Theorem i is countably additive in
order convergence. O

Acknowledgement. We are very thankful to the referee for making some very
useful suggestions and also pointing out typographical errors; this has improved

the paper.
REFERENCES

(1] Aliprantis, C. D., Burkinshaw, O., Positive Operators, Academic Press, 1985.

[2] Diestel, J., Uhl, J. J., Vector measures, Math. Surveys 15 (1977), 322.

[3] Kaplan, S., The second dual of the space of continuous function, Trans. Amer. Math. Soc.
86 (1957), 70-90.

[4] Kaplan, S., The second dual of the space of continuous functions IV, Trans. Amer. Math.
Soc. 113 (1964), 517-546.

[5] Kawabe, J., The Portmanteau theorem for Dedekind complete Riesz space-valued measures,
Nonlinear Analysis and Convex Analysis, Yokohama Publ., 2004, pp. 149-158.

(6] Kawabe, J., Uniformity for weak order convergence of Riesz space-valued measures, Bull.
Austral. Math. Soc. 71 (2) (2005), 265-274.

[7] Khurana, Surjit Singh, Lattice-valued Borel Measures, Rocky Mountain J. Math. 6 (1976),
377-382.

[8] Khurana, Surjit Singh, Lattice-valued Borel Measures II, Trans. Amer. Math. Soc. 235
(1978), 205-211.

[9] Khurana, Surjit Singh, Vector measures on topological spaces, Georgian Math. J. 14 (2007),
687-698.

10] Kluvanek, I., Knowles, G., Vector measures and Control Systems, North-Holland Math. Stud.

Y

20 (58) (1975), ix+180 pp.

[11] Lewis, D. R., Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165.

[12] Lipecki, Z., Riesz representation representation theorems for positive operators, Math. Nachr.
131 (1987), 351-356.

[13] Meyer-Nieberg, P., Banach Lattices and positive operators, Springer-Verlag, 1991.

[14] Schaefer, H. H., Banach Lattices and Positive Operators, Springer-Verlag, 1974.

[15] Schaefer, H. H., Topological Vector Spaces, Springer-Verlag, 1986.

[16] Schaefer, H. H., Zhang, Xaio-Dong, A note on order-bounded vector measures, Arch. Math.
(Basel) 63 (2) (1994), 152-157.

[17] Schmidt, K. D., On the Jordan decomposition for vector measures. Probability in Banach
spaces, IV, (Oberwolfach 1982) Lecture Notes in Math. 990 (1983), 198-203, Springer,
Berlin-New York.

[18] Schmidt, K. D., Decompositions of vector measures in Riesz spaces and Banach lattices,
Proc. Edinburgh Math. Soc. (2) 29 (1) (1986), 23-39.

[19] Varadarajan, V. S., Measures on topological spaces, Amer. Math. Soc. Transl. Ser. 2 48
(1965), 161-220.

[20] Wheeler, R. F., Survey of Baire measures and strict topologies, Exposition. Math. 2 (1983),
97-190.

[21] Wright, J. D. M., Stone-algebra-valued measures and integrals, Proc. London Math. Soc. (3)
19 (1969), 107-122.

[22] Wright, J. D. M., The measure extension problem for vector lattices, Ann. Inst. Fourier

(Grenoble) 21 (1971), 65-85.



316 S. S. KHURANA

[23] Wright, J. D. M., Vector lattice measures on locally compact spaces, Math. Z. 120 (1971),
193-203.

[24] Wright, J. D. M., Measures with values in partially ordered vector spaces, Proc. London
Math. Soc. 25 (1972), 675-688.

right, J. D. M., An algebraic characterization of vector lattices writ orel reqularity
25] Wright, J. D. M., An algebraic ch izatt latti ith Borel lars
property, J. London Math. Soc. 7 (1973), 277-285.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF [OWA
Iowa CiTY, Iowa 52242, USA
E-mail: khurana@math.uiowa.edu


mailto:khurana@math.uiowa.edu

	1. Introduction and notation
	2. Order-bounded measures on completely regular T1 space in order convergence
	3. Representation theorem for  C(X), X completely regular
	4. The case of E with points separated by En*
	References

