LATTICE-VALUED BOREL MEASURES III

Surjit Singh Khurana

ABSTRACT. Let X be a completely regular T_1 space, E a boundedly complete vector lattice, C(X) ($C_b(X)$) the space of all (all, bounded), real-valued continuous functions on X. In order convergence, we consider E-valued, order-bounded, σ -additive, τ -additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, E-valued (for some special E) linear map on C(X), a measure representation result is proved. In case E_n^* separates the points of E, an Alexanderov's type theorem is proved for a sequence of σ -additive measures.

1. INTRODUCTION AND NOTATION

All vector spaces are taken over reals. E, in this paper, is always assumed to be a Dedekind complete Riesz space (and so, necessarily Archimedean) ([1], [15], [14]). For a completely regular T_1 space X, vX is the real-compactification, \tilde{X} is the Stone-Čech compactification of X, B(X) is the space of all real-valued bounded functions on X, C(X) (resp. $C_b(X)$) is the space of all real-valued, (resp. real-valued and bounded) continuous functions on X; sets of the form $\{f^{-1}(0); f \in C_b(X)\}$ are called zero-sets of X and their complements positive subsets of X, and the elements of the σ -algebra generated by zero-sets are called Baire sets ([20], [19]); $\mathcal{B}(X)$ and $\mathcal{B}_1(X)$ will denote the classes of Borel and Baire subsets of X and $\mathcal{F}(X)$ will be the algebra generated by the zero-sets of X. $\beta_1(X)(\beta(X))$ are, respectively the spaces of bounded Baire (Borel) measurable functions on X. It is easily verified that the order σ -closure of $C_b(X)$ in $\beta_1(X)$, in the topology of pointwise convergence, is $\beta_1(X)$ and the order σ -closure, in $\beta(X)$, of the vector space generated by bounded lower semi-continuous functions on X, is $\beta(X)$ ([3], [4]).

In ([21], [23]), the author discussed the positive measures taking values in Dedekind complete Riesz spaces and proved some basic results about the integration relative to these measures; he also proves some Riesz representation type theorems; it was proved there that when X is a compact Hausdorff space and $\mu: C(X) \to E$ is a positive linear mapping then μ arises from a unique quasi-regular Borel measure $\mu: \mathcal{B}(X) \to E$ which is countably additive in order convergence (quasi-regular means that the measure of any open set is inner regular by the compact subsets

²⁰⁰⁰ Mathematics Subject Classification: primary 28A33; secondary 28B15, 28C05, 28C15, 46G10, 46B42.

Key words and phrases: order convergence, tight and τ -smooth lattice-valued vector measures, measure representation of positive linear operators, Alexandrov's theorem.

Received January 3, 2008, revised September 2008. Editor A. Pultr.

of X). In ([7], [8]) new proofs were given for these Riesz representation theorems for positive measures and then the study was extended to completely regular T_1 spaces and σ -additive, τ -additive and tight positive measures were studied on these spaces. In ([17], [18]), some decomposition theorems for measures, which take values in Dedekind complete Riesz spaces and are not necessarily positive, were proved. In [16], the authors proved some results about the countable additivity of the order-theoretic modulus of a countable additive measures taking values in a Banach lattice.

In the present paper, we consider measures, not necessarily positive, on completely regular T_1 spaces, taking values in Dedekind complete Riesz spaces. In Section 2, some order-theoretic and topological properties of σ -additive, τ -additive and tight measures are proved. In Section 3, a well-known result about the measure representation of real-valued, order-bounded linear map on C(X) is extended to the case when the order-bounded linear map on C(X) takes values in C(S), S being a Stone space. In Section 4, assuming that the continuous order dual E_n^* separates the points of E, an Alexanderov's type theorem is proved about a sequence of σ -additive measures.

For locally convex spaces and vector lattices, we will be using notations and results for ([15], [1], [13]). For a locally convex space E with E' its dual, with an $x \in E$ and $f \in E'$, $\langle f, x \rangle$ will stand for f(x). For measures, results and notations from ([21], [10], [2]) will be used, and for lattice-valued measures, results of ([17], [18]) will be used.

2. Order-bounded measures on completely regular T_1 space in order convergence

We start with a compact Hausdorff space X and an order-bounded, countably additive (countable additivity in the order convergence of E) Borel measure $\mu: \mathcal{B}(X) \to E$. Further assume that for any decreasing net $\{C_{\alpha}\}$ of closed subsets of $X, \mu(\cap C_{\alpha}) = o - \lim \mu(C_{\alpha})$ (if μ has this property then we say μ is τ -smooth). We first prove the following theorem.

Theorem 1. Suppose X is a compact Hausdorff space and $\mu: \mathcal{B}(X) \to E$ be an order-bounded, countably additive (countable additivity in the order convergence of E) Borel measure on X, having the propety that for any decreasing net $\{C_{\alpha}\}$ of closed subsets of X, $\mu(\cap C_{\alpha}) = o - \lim \mu(C_{\alpha})$. Let $\{f_{\alpha}\}$ be a net of [0, 1]-valued, use (upper semi-continuous) functions on X, decreasing pointwise to a function f on X. Then $o - \lim \mu(f_{\alpha}) = \mu(f)$.

Proof. Since μ is order-bounded, we can take E = C(S), S being a compact Stone space and $|\mu(\mathcal{B}(X))| \leq 1 \in C(S)$; this implies, that for any Borel function $h: X \to [-1, 1], |\mu(h)| \leq 1$. Fix a $k \in N$ and let $Z_{\alpha}^{i} = f_{\alpha}^{-1} [\frac{i}{k}, 1]$ and $Z^{i} = f^{-1} [\frac{i}{k}, 1]$, for $i = 1, 2, \ldots, (k-1)$. By hypothesis, $o - \lim_{\alpha} \mu(Z_{\alpha}^{i}) = \mu(Z^{i}), \forall i$. We have $\frac{1}{k} \sum_{i=1}^{k-1} Z_{\alpha}^{i} \leq f_{\alpha} \leq \frac{1}{k} + \frac{1}{k} \sum_{i=1}^{k-1} Z_{\alpha}^{i}$ and $\frac{1}{k} \sum_{i=1}^{k-1} Z^{i} \leq f \leq \frac{1}{k} + \frac{1}{k} \sum_{i=1}^{k-1} Z^{i}$. This implies $|f_{\alpha} - \frac{1}{k} \sum_{i=1}^{k-1} Z_{\alpha}^{i}| \leq \frac{1}{k}$ and $|f - \frac{1}{k} \sum_{i=1}^{k-1} Z^{i}| \leq \frac{1}{k}$. This gives $|\mu(f_{\alpha}) - \frac{1}{k} \sum_{i=1}^{k-1} \mu(Z_{\alpha}^{i})| \leq \frac{1}{k}$ and $|\mu(f) - \frac{1}{k} \sum_{i=1}^{k-1} \mu(Z^{i})| \leq \frac{1}{k}$. So $-\frac{1}{k} + \frac{1}{k} \sum_{i=1}^{k-1} \mu(Z_{\alpha}^{i}) \leq \frac{1}{k}$.

$$\begin{split} & \mu(f_{\alpha}) \leq \frac{1}{k} + \frac{1}{k} \sum_{i=1}^{k-1} \mu(Z_{\alpha}^{i}). \text{ Putting } p = \frac{1}{k} \sum_{i=1}^{k-1} Z^{i} \text{ and taking order limits, we get } \\ & |o - \limsup_{\alpha} \mu(f_{\alpha}) - p| \leq \frac{1}{k} \text{ and } |o - \liminf_{\alpha} \mu(f_{\alpha}) - p| \leq \frac{1}{k}. \text{ Combining these two,} \\ & \text{we get } o - \limsup_{\alpha} \mu(f_{\alpha}) - o - \liminf_{\alpha} \mu(f_{\alpha}) \leq \frac{2}{k}. \text{ Letting } k \to \infty, o - \lim_{\alpha} \mu(f_{\alpha}) \\ & \text{exists. Using the fact that } |\mu(f) - p| \leq \frac{1}{k}, \text{ we get } |o - \lim_{\alpha} \mu(f_{\alpha}) - \mu(f)| \leq \frac{2}{k}. \text{ Letting } k \to \infty, \text{ we get the result.} \end{split}$$

We denote by $M_{(o)}(X, E)$ the set of all order-bounded linear mappings $\mu: C(X) \to E$. Now we come to the next theorem.

Theorem 2. Suppose X is a compact Hausdorff space and $\mu: C(X) \to E$ be an order-bounded, linear mapping.

- (i) Then there is a unique countably additive Baire measure, which again we denote by μ, on X, such that the corresponding linear mapping μ: β₁(X) → E extends the given mapping. Further μ can also be uniquely extended to a countably additive τ-smooth Borel measure.
- (ii) The modulus of the Baire measure μ, determined from μ: C(X) → E and μ: β₁(X) → E are equal and also modulus of the Borel measure μ, determined from μ: C(X) → E and μ: β(X) → E are equal. Thus μ can be written as μ = μ⁺ μ⁻. For every τ-smooth Borel measure μ on X, there is the largest open set V ⊂ X such that |μ|(V) = 0; C = X \ V is called the support of μ and has the property that any open U ⊂ X such that U ∩ C ≠ Ø, we have |μ|(U) > 0.
- (iii) $M_{(o)}(X, E)$ is a Dedekind-complete vector lattice.

Proof. (i) Since μ is order-bounded and E is a boundedly order-complete, we can write $\mu = \mu^+ - \mu^-$ ([13, Theorem 1.3.2, p. 24]). Now μ^+ and μ^- can be uniquely extended to E^+ -valued, countably additive Baire measures and also to E^+ -valued, countably additive τ -smooth Borel measures ([7], [21], [24]). Thus we get a countably additive Baire measure $\mu: \beta_1(X) \to E$ and a countably additive τ -smooth Borel measure $\mu: \beta_1(X) \to E$ and a countably additive τ -smooth Borel measure $\mu: \beta_1(X) \to E$. Since the order σ -closure, in $\beta_1(X)$, of C(X) is $\beta_1(X)$, for Baire measure, the uniqueness follows. Now we consider the case of Borel measure. Suppose two τ -smooth Borel measures μ_1, μ_2 are equal on C(X). By Theorem 1, they are equal on bounded lower semi-continuous functions and so they are equal on the vector space generated by lower semi-continuous functions is $\beta(X)$, by countable additivity they are equal on $\beta(X)$.

(ii) Let μ_1 , μ_2 be the μ^+ 's coming from $\mu: C(X) \to E$ and $\mu: \beta_1(X) \to E$ respectively. Evidently $\mu_2 \ge \mu_1$. Fix a $g \in C(X), g \ge 0$ and take an $h \in \beta_1(X), 0 \le h \le g$. Since $\mu(h) \le \mu_1(g)$, taking $\sup_{0 \le h \le g}$, we get $\mu_2(g) \le \mu_1(g)$. By ([18], Theorem 2.3, p.25), μ_2 is countably additive. Since $\mu_1 = \mu_2$ on C(X), we get $\mu_1 = \mu_2$ on $\beta_1(X)$. The result follows now. The other result about the support of μ is easily verified.

(iii) It is a simple verification.

Now we consider the case when X is a completely regular T_1 space and $\mu: \mathcal{F}(X) \to E$ a finitely additive, order-bounded measure. Because of order-boundedness, order modulus $|\mu|$ exists. μ will be called regular if for any $A \in \mathcal{F}(X)$, there exists an increasing net $\{Z_{\alpha}\}$ of zero-sets in $X, Z_{\alpha} \subset A, \forall \alpha$, and a deceasing net $\{\eta_{\alpha}\}$ in E such that $\eta_{\alpha} \downarrow 0$ and $|\mu|(A \setminus Z_{\alpha}) < \eta_{\alpha}, \forall \alpha$.

Theorem 3. Suppose X be a completely regular T_1 space and $\mu: C_b(X) \to E$ be an order-bounded, linear mapping. Then there is unique, finitely additive, order-bounded measure, regular measure $\nu: \mathcal{F}(X) \to E$ such that $\mu(f) = \int f d\nu, \forall f \in C_b(X)$. $M_{(o)}(X, E)$ is a Dedekind-complete vector lattice.

Proof. When μ is positive, then result is proved in ([12], p. 353). Since $\mu = \mu^+ - \mu^-$, using the result ([12], p. 353), we get a ν with the required properties. We denote ν by μ also

Uniqueness: Let $\mu: \mathcal{F}(X) \to E$ be an order-bounded, finitely additive, order-bounded measure, regular measure such that $\mu = 0$ on $C_b(X)$. Denoting by S(X) the norm closure of $\mathcal{F}(X)$ -simple real valued functions on X, we have $S(X) \supset C_b(X)$. Thus μ extends to $\mu: S(X) \to E$, is linear and order-bounded. Split $\mu = \mu^+ - \mu^-$. By the definition of regularity, $|\mu|$ is regular and so μ^+ , μ^- are regular and $\mu^+ = \mu^-$ on $C_b(X)$. Since both are regular, there is unique extension to $\mathcal{F}(X)$. This means $\mu^+ = \mu^-$ on $\mathcal{F}(X)$ and consequently $\mu^+ = \mu^-$ on S(X). This proves uniqueness. It is easy to verify that $M_{(o)}(X, E)$ is a Dedekind-complete vector lattice.

We come to countably additive (in order convergence), of order-bounded Baire measures on a completely regular T_1 space X. A countably additive, order-bounded $\mu: \mathcal{B}_1(X) \to E$ is called an order-bounded Baire measure on X. The collection of all such measures will be denoted by $M_{(o,\sigma)}(X, E)$.

Theorem 4. For a be a completely regular T_1 space X, $M_{(o,\sigma)}(X, E)$ is a band in $M_{(o)}(X, E)$.

Proof. Take a $\mu \in M_{(o,\sigma)}(X, E)$. By ([18], Theorem 2.3, p.25), $|\mu|, \mu^+, \mu^-$ are also in $M_{(o,\sigma)}(X, E)$. so $M_{(o,\sigma)}(X, E)$ is a vector sublattice of $M_{(o)}(X, E)$. Let $\{\mu_{\alpha}\}$ be positive, bounded, increasing net in $M_{(o,\sigma)}(X, E)$ and $\mu = \sup \mu_{\alpha}$ in $M_{(o)}(X, E)$. Then μ , defined for every $A \in \mathcal{B}_1(X)$, $\mu(A) = \sup \mu_{\alpha}(A)$, is finitely additive. Take an increasing sequence $\{A_n\} \subset \mathcal{B}_1(X)$ and let $A = \cup A_n$. Now $\mu(A) = o - \lim_{\alpha} \mu_{\alpha}(A) = o - \lim_{\alpha} (o - \lim_{\alpha} \mu_{\alpha}(A_n)) \leq o - \lim_{\alpha} \mu(A_n) \leq \mu(A)$. This proves μ is countably additive. This proves the result. \Box

We denote by $M_{(o,\tau)}(X, E)$ those $\mu \in M_{(o,\sigma)}(X, E)$ which can be extended to $\mu: \mathcal{B}(X) \to E$ and are τ -smooth, in the sense, that for any increasing net $\{V_{\alpha}\}$ of open subsets of $X, \mu(\cup V_{\alpha}) = o - \lim \mu(V_{\alpha})$ (extension will obviously be unique if it exists).

Theorem 5. For a completely regular T_1 space X, $M_{(o,\tau)}(X, E)$ is a band in $M_{(o,\sigma)}(X, E)$.

Proof. Take a $\mu \in M_{(o,\tau)}(X, E)$. This gives a $\tilde{\mu} \in M_{(o)}(\tilde{X}, E)$, $\tilde{\mu}(B) = \mu(B \cap X)$ with the property that $\tilde{\mu}(B) = 0$ if $B \cap X = \emptyset$. It is a routine verification that $(\tilde{\mu})^+$, $(\tilde{\mu})^-$, $|\tilde{\mu}|$ all are = 0 on those Borel sets B for which $B \cap X = \emptyset$. For this it easily

follows that, for any Borel set $B \subset X$, $\mu^+(B) = (\tilde{\mu})^+(B_0)$, where B_0 is any Borel subset of \tilde{X} with $B_0 \cap X = B$; similar result for μ^- and $|\mu|$. To prove τ -smoothness of $|\mu|$, take a collection $\{V_{\gamma}; \gamma \in I\}$ of open subsets of X and select open subsets $\{U_{\gamma}; \gamma \in I\}$ in \tilde{X} such that $U_{\gamma} \cap X = V_{\gamma}$. Let J be the collection of all finite subsets of I and order them by inclusion; also denote by α a general element of J. By the τ -smooth property of $|\tilde{\mu}|$ (Theorem 2), we have, $|\tilde{\mu}|(\cup U_{\gamma}) = o - \lim_{\alpha} |\tilde{\mu}|(\cup_{\gamma \in \alpha} U_{\gamma})$. This means $|\mu|(\cup_{\gamma}) = o - \lim_{\alpha} |\mu|(\cup_{\gamma \in \alpha} V_{\gamma})$. This proves $|\mu|$ in τ -smooth. In a similar way μ^+ and μ^- are also τ -smooth.

Now the proof that it is a band in $M_{(o,\sigma)}(X, E)$ is very similar to what is done in Theorem 4.

We denote by $M_{(o,t)}(X, E)$ those $\mu \in M_{(o,\tau)}(X, E)$ which have the property that, for the measure $|\mu|$, open sets are inner regular by the compact subsets of X. From this definition it follows that if $\mu \in M_{(o,t)}(X, E)$ then $\mu^+, \mu^-, |\mu|$ are also in $M_{(o,t)}(X, E)$.

Theorem 6. For a completely regular T_1 space X, $M_{(o,t)}(X, E)$ is a band in $M_{(o,\tau)}(X, E)$.

Proof. $M_{(o,t)}(X, E)$ is already seen to be a vector sub-lattice of $M_{(o,\tau)}(X, E)$. Let $\{\mu_{\alpha}\}$ be positive, bounded, increasing net in $M_{(o,t)}(X, E)$ and $\mu = \sup \mu_{\alpha}$ in $M_{(o,\tau)}(X, E)$. Let V be an open subset of X. Let $\{C_{\beta}\}$ be the family of all compact subsets of V; this is filtering upwards. $\mu(V) = o - \lim_{\alpha} \mu_{\alpha}(V) = o - \lim_{\alpha} (o - \lim_{\beta} \mu_{\alpha}(C_{\beta})) \le o - \lim_{\beta} \mu(C_{\beta}) \le \mu(V)$. This proves $\mu \in M_{(o,t)}(X, E)$. This proves the result. \Box

If $\mu \in M_{(o,\tau)}(X, E)$, then it is easily seen that there is a smallest closed subset $Y \subset X$ such that $|\mu|(Y) = |\mu|(X)$. This Y is called the support of μ .

The following two theorems are well-knowm for scalar-valued measures ([20], [19]). We prove some extensions.

Theorem 7. Let (X, d) be a metric space and E super Dekekind complete ([14, p.78]) and $\mu \in M_{(o,\tau)}(X, E^+)$. Then the support of μ is a separable subset of X.

Proof. Let the support of μ be Y. Fix an $n \in N$ and let $\mathcal{A} = \{A \subset Y : d(x, y) \geq \frac{1}{n}, \forall x \in A, \forall y \in A, x \neq y\}$. By Zorn's Lemma, \mathcal{A} has a maximal element, say A_n . It is easily verified that that for any $x \in (Y \setminus A_n)$, there is a $y \in A_n$ such that $d(x, y) < \frac{1}{n}$. We claim that A_n is countable. Suppose not. Thus there is an uncountable collection $\{B(x, \frac{1}{2n}) : x \in A_n\}$ of mutually disjoint open subsets of Y and $\mu(B(x, \frac{1}{2n})) > 0, \forall x \in A_n$. Using τ -additivity of μ and the hypothesis that E is super Dekekind complete, we get, that except for countable $x \in A_n$, $\mu(B(x, \frac{1}{2n})) = 0$. Since Y is the support of μ , this is a contradiction. Thus A_n is countable and so $\cup A_n$ is dense in Y. This proves the result.

Theorem 8. Let (X, d) be a complete metric space and E super Dekekind complete and also weakly σ -distributive ([25]). Then $M_{(o,\tau)}(X, E) = M_{(o,t)}(X, E)$.

Proof. Take a $\mu \in M_{(o,\tau)}(X, E^+)$. By Theorem 7, we can assume X to be separable. Let Z be a compact metric space which is a compactification of X. It is well-known that X is a G_{δ} set in Z. Define $\bar{\mu} \colon \mathcal{B}(Z) \to E^+$, $\bar{\mu}(B) = \mu(B \cap X)$. It is obvious that $\bar{\mu} \in M_{(o)}(Z, E^+)$. It is Baire measure. Since E is weakly σ -distributive, $\bar{\mu}$ is inner regular by compact subset of Z. This means, since X is a Baire subset of Z, $\mu(X) = \sup\{\mu(C) : C \text{ compact and } C \subset X.$ From this, it is a routine verification that $\mu \in M_{(o,t)}(X, E)$ (cf. [5]).

3. Representation theorem for C(X), X completely regular

It is well-known that a linear map $\mu: C(X) \to R$, which maps order-bounded sets into bounded sets, gives a unique $\nu \in M_{\sigma}(X)$ such that $C(X) \subset L^{1}(\nu)$, $\mu(f) = \int f d\nu, \forall f \in C(X)$ and $\operatorname{supp}(\tilde{\nu}) \subset \nu X$ (the real-compactification of X) ([19, Theorem 23]). We will extend it to the vector case.

In this section $E = (C(S), \|\cdot\|)$, S being a Stone space and X completely regular T_1 space. We will prove a representation theorem for a positive linear map $\mu: C(X) \to E. B(X)$ denotes the space of all bounded real-valued functions. We will use the following results.

(A). Suppose F is a locally convex space whose topology is generated by the family $\{ \| \cdot \|_p : p \in P \}$ of semi-norms, $M_{\sigma}(X, F)$ the space of all F-valued Baire measures on X, and $\mu \colon C(X) \to F$ be a linear map such that order-bounded subsets are mapped into relatively weakly compact subsets of F. Then:

- (i) There is a unique $\nu \in M_{\sigma}(X, F)$ such that $C(X) \subset L^{1}(\nu)$ and $\mu(f) = \int f d\nu, \forall f \in C(X);$
- (ii) for every $p \in P$, there is compact $C \subset vX$ (the real-compactification of X), depending on p, such that $\overline{\tilde{\nu}}_p(\tilde{X} \setminus C) = 0$ ([9, Theorem 7]), $\overline{\tilde{\nu}}_p$ being the semi-variation of $\tilde{\nu}_p$.

(B). There is an order σ -continuous positive linear map $\psi_1: \beta_1(S) \to C(S)$ such that for every $f \in \beta_1(S)$, we get $f - \psi_1(f) = 0$ except on a meager set ([7, Lemma 2, p. 379]).

In the following theorem countable additivity is taken in the context of order convergence and integration and integrability in the sense of [21].

Theorem 9. Suppose $\mu: C(X) \to E$ be a positive linear map. Then there is a unique *E*-valued positive Baire measure ν on *X* such that every $f \in C(X)$ is ν -integrable and $\mu(f) = \int f d\nu, \forall f \in C(X)$. Also the $\operatorname{supp}(\tilde{\nu}) \subset \nu X$.

Proof. By taking the pointwise topology pt on B(S) and noting that $C(S) \subset B(S)$, we have a positive linear map $\mu: C(X) \to (B(S), pt)$ with the property that order-bounded subsets of C(X) are mapped into relatively weakly compact subsets of (B(S), pt). By (**A**) there is a Baire measure $\lambda: \mathcal{B}_1(X) \to (B(S), pt)$ such that $C(X) \subset L_1(\lambda)$ ([10]) and $\mu(f) = \int f d\lambda$, $\forall f \in C(X)$. This measure is easily seen to be positive. Fix an $f \in C(X)$, $f \ge 0$ and let $f_n = f \wedge n$ $(n \in N)$. Put $h = \mu(f)$, $h_n = \mu(f_n)$. Since $f \in L_1(\lambda), \lambda(f_n) \to \lambda(f)$ ([10]). From $\lambda^{-1}(\beta_1(S)) \supset C_b(X)$, we get $\lambda^{-1}(\beta_1(S) \supset \beta_1(X))$. Thus $\lambda: \mathcal{B}_1(X) \to \beta_1(S)$. Using (**B**) and defining $\nu = \psi_1 \circ \lambda$, we see that $\nu: \mathcal{B}_1(X) \to C(S)$ is countably additive in order convergence and $h_n = \mu(f_n) = \lambda(f_n) = \nu(f_n), \forall n$. This means $h_n \uparrow h$ pointwise in C(S)and so $o - \lim h_n = h$ in C(S). By ([21, Prop. 3.3, p.113]) f is ν -integrable and $\int f d\nu = o - \lim \int f_n d\nu = o - \lim h_n = h = \lim h_n$ pointwise. This proves $\mu(f) = \int f d\nu$. This proves the result.

Uniqueness: If there is another *E*-valued positive Baire measure ν_0 on *X* having the above properties then $\mu(f) = \int f d\nu_0$, $\forall f \in C(X)$. Thus $\nu_0(f) = \nu(f)$, $\forall f \in C_b(X)$. Because of order countable additivity of ν_0 and ν , we get $\nu_0 = \nu$ on Baire subsets of *X*. This proves uniqueness.

Now we prove that $\operatorname{supp}(\tilde{\nu}) \subset \upsilon X$. Suppose $z \in \tilde{X} \setminus \upsilon X$ and $z \in (\operatorname{supp})(\tilde{\mu})$. Take an $f \geq 0, f \in C(X)$ with $\tilde{f}(z) = \infty$. Thus, for every $n, \tilde{\mu}(A_n) > 0$ where $A_n = \{x : \tilde{f}(x) > n\}$.

Suppose first that $\wedge_{n=1}^{\infty}(\tilde{\mu}(A_n)) = h > 0$ and put $f_n = f \wedge n$. Then $\tilde{f}_n = \tilde{f} \wedge n$. Now $\mu(f) \ge \mu(f_n) = \tilde{\mu}(\tilde{f} \wedge n) = \int (\tilde{f} \wedge n) d\tilde{\mu} \ge n\tilde{\mu}(A_n) \ge nh$. Since E is Archimedean, we get h = 0 which is a contradiction. Thus h = 0.

Since $\tilde{\mu}(A_n) > 0$ for every n and h = 0, select a strictly increasing sequence $\{a_k\}$ of positive integers such that $a_{k+1} - a_k > 4$ $\forall k$ and $h_k = \tilde{\mu}(\{x : a_{k+1} < \tilde{f}(x) < a_{k+2}\}) > 0$, $\forall k$. Let $p_k = ||h_k|| > 0$. Putting $B_k = f^{-1}([a_{k+1}, a_{k+2}])$, $C_k = f^{-1}((a_{k+1} - 1, a_{k+2} + 1))$, we see that B_k and C'_k are two disjoint zero subsets of X. Define a $g_k \in C_b(X)$, $g_k \ge 0$, $g_k \equiv 0$ on C'_k and $g_k \equiv k \frac{1}{p_k}$ on B_k . It is a routine verification that $g = \sum_{k=1}^{\infty} g_k \in C(X)$.

For $A \subset \tilde{X}$, \overline{A} will denote its closure in \tilde{X} . Now $B_k \supset V \cap X$, where $V = \{x : a_{k+1} < \tilde{f}(x) < a_{k+2}\}$ is an open non-void subset of \tilde{X} . Since X is dense in \tilde{X} , $\overline{V \cap X} \supset V$ and so $\overline{B_k} \supset V$. Also $g_k \equiv k \frac{1}{p_k}$ on B_k implies $\tilde{g_k} \equiv k \frac{1}{p_k}$ on $\overline{B_k}$. So we get

$$\tilde{\mu}(\tilde{g_k}) \ge \int_{\overline{B_k}} \tilde{g_k} d\tilde{\mu} \ge k \frac{1}{p_k} \tilde{\mu}(V) = k h_k \frac{1}{p_k} \,.$$

We have, for every $n \in N$, $\mu(g) \ge \sum_{k=1}^{n} \mu(g_k) = \sum_{k=1}^{n} \tilde{\mu}(\tilde{g}_k) \ge \sum_{k=1}^{n} kh_k \frac{1}{p_k}$. Now $\|kh_k \frac{1}{p_k}\| = k$ and so $\|\mu(g)\| = \infty$ (note *E* is an *AM* space) which is a contradiction. This proves that $\operatorname{supp}(\tilde{\nu}) \subset vX$.

Corollary 10. Suppose $\mu: C(X) \to E$ be an order-bounded linear map ([13, p.24]). Then there is a unique E-valued Baire measure ν on X such that every $f \in C(X)$ is ν -integrabe and $\mu(f) = \int f d\nu$, $\forall f \in C(X)$ and $\operatorname{supp}(\tilde{\mu}) \subset \nu X$.

Proof. By [13, Theorem 1.3.2, p.24], $\mu = \mu^+ - \mu^-$. Now μ^+ and μ^- are positive linear maps. Applying Theorem 9 to μ^+ and μ^- we get an *E*-valued Baire measure ν on *X* such that every $f \in C(X)$ is ν -integrabe and $\mu(f) = \int f d\nu, \forall f \in C(X)$. As in Theorem 9, the uniqueness of ν and $\operatorname{supp}(\tilde{\mu}) \subset \nu X$ can be proved.

4. The case of E with points separated by E_n^*

For the order complete vector lattice E, let E^* be its order dual and E_n^* its continuous order dual. In this section we assume that E_n^* separates the points of E. It is known that E_n^* is a band in E^* and order intervals in E_n^* are $\sigma(E_n^*, E)$ -compact and convex ([14], [13]). $o(E, E_n)$ will denote the locally convex topology on E, of uniform convergence on the order intervals of E_n^* ; in this topology the lattice

operations are continuous and so the positive cone is closed and convex. Since this topology is compatible with the duality $\langle E, E_n^* \rangle$, E_+ is also closed in $\sigma(E, E_n^*)$.

The following theorem is well-known. We include a new proof.

Theorem 11 ([16, Theorem 3]). Suppose \mathcal{A} be a σ -algebra of subsets of a set Xand $\mu: \mathcal{A} \to E$ a finitely additive measure. Then μ is countably additive in order convergence iff μ is countably in the locally convex topology $\sigma(E, E_n^*)$.

Proof. Obviously countably additivity in order convergence implies countably additivity in $\sigma(E, E_n^*)$. Assume that μ is countably in $\sigma(E, E_n^*)$; this means μ is countably additive in $o(E, E_n)$. We first prove that μ^+ countably additive in order convergence.

Fix a sequence $B_n \downarrow \emptyset$ in \mathcal{A} . Take a $C \subset X, C \in \mathcal{A}$. From $\mu(C - C \cap B_n) = \mu(B_n \cup C - B_n)$, we get $\mu(C) - \mu(C \cap B_n) \leq \mu^+(X) - \mu^+(B_n)$. Let $0 \leq z = \inf_n(\mu^+(B_n))$. Thus $z \leq \mu(C \cap B_n) + \mu^+(X) - \mu(C)$. Since $\mu(C \cap B_n) \to 0$ in $\sigma(E, E_n^*)$, we get, for every $f \in (E_n^*)_+$, $\langle f, z \rangle \leq \langle f, \mu(C \cap B_n) \rangle + \langle f, \mu^+(X) - \mu(C) \rangle$; using the fact $\mu(C \cap B_n) \to 0$ in $\sigma(E, E_n^*)$, this gives $\langle f, z \rangle \leq \langle f, \mu^+(X) - \mu(C) \rangle$ for every $f \in (E_n^*)_+$. Thus $z \leq \mu^+(X) - \mu(C)$ for every $C \in \mathcal{A}$. Taking inf of the right hand side as C varies in \mathcal{A} , we get z = 0. This proves μ^+ is countably additive in order convergence and so μ is countably additive in order convergence. This proves the theorem. \Box

The next theorem extends the well-known Alexanderov's theorem ([19], p. 195) about the convergent sequence of real-valued measures to our setting.

Theorem 12. Suppose X is a completely regular T_1 space, E is a boundedly order-complete vector-lattice, E^* its order dual and E_n^* its continuos order dual. Assume that E_n^* separates the points of E. Let $\{\mu_n\} \subset M_{(o,\sigma)}(X, E)$ be a uniformly order-bounded sequence such that, in order convergence, $\mu(g) = \lim \mu_n(g)$ exists for every $g \in C_b(X)$. Then the order-bounded $\mu : C_b(X) \to E$ is generated by E-valued order-bounded Baire measure on X.

Proof. Since the $\{\mu_n\}$ is uniformly order-bounded, we can assume that E has an order unit. By taking the order unit norm ([13, p.8]), we assume E = C(S)for some hyperstonian space S. Thus $F = E_n^*$ is a band in E' and E = F'. Note the locally convex space $(E, \tau(E, E_n^*)) = (F', \tau(F', F))$ is complete (Grothendieck completeness theorem ([15, Theorem 6.2, p.148])).

For every $g \in E_n^*$, $g \circ \mu_n \to g \circ \mu$, pointwise on $C_b(X)$ and $g \circ \mu_n \in M_\sigma(X)$, $\forall n$. Fix a $g \in E_n^*$ and take a sequence $\{f_m\} \subset C_b(X), f_m \downarrow 0$. By ([19, p.195]), $g \circ \mu_n(f_m) \to g \circ \mu(f_m)$ as $n \to \infty$, uniformly in m. Thus $g \circ \mu(f_m) \to 0$. By ([20, Corollary 11.16]), $g \circ \mu$: $(C_b(X), \beta_\sigma) \to R$ is continuous, β_σ being the strict topology ([20]). Thus the weakly compact map μ : $(C_b(X), \beta_\sigma) \to (E, \tau(E, E_n^*))$ is continuous in the weak topology $\sigma(E, E_n^*)$ on $E(\tau(E, E_n^*)$ is the Mackey topology in the duality $\langle E, E_n^* \rangle$); since the topology β_σ is Mackey ([20]), it is continuous. Since $(E, \tau(E, E_n^*))$ is complete, by ([9, Theorem 2]), μ can be extended to an E-valued Baire measure which is countably additive in $\tau(E, E_n^*)$. This implies that μ is countably additive in $\sigma(E, E_n^*)$. By Theorem 11, μ is countably additive in order convergence.

Acknowledgement. We are very thankful to the referee for making some very useful suggestions and also pointing out typographical errors; this has improved the paper.

References

- [1] Aliprantis, C. D., Burkinshaw, O., Positive Operators, Academic Press, 1985.
- [2] Diestel, J., Uhl, J. J., Vector measures, Math. Surveys 15 (1977), 322.
- [3] Kaplan, S., The second dual of the space of continuous function, Trans. Amer. Math. Soc. 86 (1957), 70–90.
- [4] Kaplan, S., The second dual of the space of continuous functions IV, Trans. Amer. Math. Soc. 113 (1964), 517–546.
- [5] Kawabe, J., The Portmanteau theorem for Dedekind complete Riesz space-valued measures, Nonlinear Analysis and Convex Analysis, Yokohama Publ., 2004, pp. 149–158.
- [6] Kawabe, J., Uniformity for weak order convergence of Riesz space-valued measures, Bull. Austral. Math. Soc. 71 (2) (2005), 265–274.
- [7] Khurana, Surjit Singh, Lattice-valued Borel Measures, Rocky Mountain J. Math. 6 (1976), 377–382.
- [8] Khurana, Surjit Singh, Lattice-valued Borel Measures II, Trans. Amer. Math. Soc. 235 (1978), 205–211.
- [9] Khurana, Surjit Singh, Vector measures on topological spaces, Georgian Math. J. 14 (2007), 687–698.
- [10] Kluvanek, I., Knowles, G., Vector measures and Control Systems, North-Holland Math. Stud. 20 (58) (1975), ix+180 pp.
- [11] Lewis, D. R., Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157–165.
- [12] Lipecki, Z., Riesz representation representation theorems for positive operators, Math. Nachr. 131 (1987), 351–356.
- [13] Meyer-Nieberg, P., Banach Lattices and positive operators, Springer-Verlag, 1991.
- [14] Schaefer, H. H., Banach Lattices and Positive Operators, Springer-Verlag, 1974.
- [15] Schaefer, H. H., Topological Vector Spaces, Springer-Verlag, 1986.
- [16] Schaefer, H. H., Zhang, Xaio-Dong, A note on order-bounded vector measures, Arch. Math. (Basel) 63 (2) (1994), 152–157.
- [17] Schmidt, K. D., On the Jordan decomposition for vector measures. Probability in Banach spaces, IV, (Oberwolfach 1982) Lecture Notes in Math. 990 (1983), 198–203, Springer, Berlin-New York.
- [18] Schmidt, K. D., Decompositions of vector measures in Riesz spaces and Banach lattices, Proc. Edinburgh Math. Soc. (2) 29 (1) (1986), 23–39.
- [19] Varadarajan, V. S., Measures on topological spaces, Amer. Math. Soc. Transl. Ser. 2 48 (1965), 161–220.
- [20] Wheeler, R. F., Survey of Baire measures and strict topologies, Exposition. Math. 2 (1983), 97–190.
- [21] Wright, J. D. M., Stone-algebra-valued measures and integrals, Proc. London Math. Soc. (3) 19 (1969), 107–122.
- [22] Wright, J. D. M., The measure extension problem for vector lattices, Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85.

- [23] Wright, J. D. M., Vector lattice measures on locally compact spaces, Math. Z. 120 (1971), 193–203.
- [24] Wright, J. D. M., Measures with values in partially ordered vector spaces, Proc. London Math. Soc. 25 (1972), 675–688.
- [25] Wright, J. D. M., An algebraic characterization of vector lattices with Borel regularity property, J. London Math. Soc. 7 (1973), 277–285.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA IOWA CITY, IOWA 52242, USA *E-mail*: khurana@math.uiowa.edu