CORRIGENDUM TO "NONLINEAR DIFFERENTIAL POLYNOMIALS SHARING A SMALL FUNCTION" [ARCH. MATH. 44 (2008), 41–56]

Abhijit Banerjee and Sonali Mukherjee

This shorte note concerns the paper mentioned in the title.

The statement of **Theorem 1.1(ii)** and so that of **Corollary 1.2** given in that paper is not correct. For the uniqueness of f and g some extra conditions are required. Since the proof of that particular portion of **Theorem 1.1(ii)** depends upon **Lemma 2.11(ii)**, so the statement as well as the proof of **Lemma 2.11(ii)** should also be rectified. In the statement of **Theorem 1.1(ii)** and so in **Corollary 1.2** the extra condition "and the two expressions $\frac{b}{n+2}g\sum_{i=0}^{n+1}\left(\frac{f}{g}\right)^{i} + \frac{c}{n+1}\sum_{i=0}^{n}\left(\frac{f}{g}\right)^{i}$ and

 $\sum_{j=0}^{n+2} \left(\frac{f}{g}\right)^j$ have no common simple zeros" should be added. Naturally in the proof of the **Lemma 2.11(ii)** some more analysis regarding the zeros of $\eta - u_k$ which

are not the poles of g is required since the salient part of the proof is depending on the proof that $\eta - u_k$ has multiple zeros. The corrected statements and proofs of **Theorem 1.1(ii)** and the corresponding **Lemma 2.11(ii)** are given below.

Theorem 1.1. Let f and g be two transcendental meromorphic functions such that $f^n(af^2 + bf + c)f'$ and $g^n(ag^2 + bg + c)g'$ where $a \neq 0$ and $|b| + |c| \neq 0$ share " $(\alpha, 2)$ ". Then the following holds.

(ii) If $b \neq 0$, $c \neq 0$, $n > [12 - 2\Theta(\infty; f) - 2\Theta(\infty; g) - \min\{\Theta(\infty; f), \Theta(\infty; g)\}]$, the roots of the equation $az^2 + bz + c = 0$ are distinct, one of f and g is non entire meromorphic functions having only multiple poles and the two expressions $\frac{b}{n+2} g \sum_{j=0}^{n+1} \left(\frac{f}{g}\right)^j + \frac{c}{n+1} \sum_{j=0}^n \left(\frac{f}{g}\right)^j$ and $\sum_{j=0}^{n+2} \left(\frac{f}{g}\right)^j$ have no common simple zeros then $f \equiv g$.

Corollary 1.2. Let f and g be two transcendental meromorphic functions, one of f and g is non entire meromorphic functions having only multiple poles and the two expressions $\frac{b}{n+2} g \sum_{j=0}^{n+1} \left(\frac{f}{g}\right)^j + \frac{c}{n+1} \sum_{j=0}^n \left(\frac{f}{g}\right)^j$ and $\sum_{j=0}^{n+2} \left(\frac{f}{g}\right)^j$ have no common simple

²⁰⁰⁰ Mathematics Subject Classification: primary 30D35.

Key words and phrases: meromorphic function, uniqueness, nonlinear differential polynomials, small function, weakly weighted sharing.

zeros, such that $n > [12 - 2\Theta(\infty; f) - 2\Theta(\infty; g) - \min\{\Theta(\infty; f), \Theta(\infty; g)\}]$ be an integer. If $af^n(f - \beta_1)(f - \beta_2)f'$ and $ag^n(g - \beta_1)(g - \beta_2)g'$ share " $(\alpha, 2)$ ", where β_1 and β_2 are the distinct roots of the equation $az^2 + bz + c = 0$ with $|\beta_1| \neq |\beta_2|$, then $f \equiv g$.

Lemma 2.11. Let F and G be given as in Lemma 2.9 and $n \geq 6$ be an integer. Suppose $F \equiv G$. Then the following holds.

(ii) If $b \neq 0$, $c \neq 0$, and the roots of the equation $az^2 + bz + c = 0$ are distinct and one of f and g is non entire meromorphic function having only multiple poles and the two expressions $\frac{b}{n+2} g \sum_{j=0}^{n+1} \left(\frac{f}{g}\right)^j + \frac{c}{n+1} \sum_{j=0}^n \left(\frac{f}{g}\right)^j$ and $\sum_{j=0}^{n+2} \left(\frac{f}{g}\right)^j$ have no common simple zero then $f \equiv g$.

Proof. Case 2. Suppose $b \neq 0$ and $c \neq 0$. Then $F \equiv G$ implies

(1)
$$Af^{n+3} + Bf^{n+2} + Cf^{n+1} \equiv Ag^{n+3} + Bg^{n+2} + Cg^{n+1},$$

where $A = \frac{a}{n+3}$, $B = \frac{b}{n+2}$ and $C = \frac{c}{n+1}$. Let us assume $f \neq g$.

Subcase 2.1. Suppose the roots of the equation $az^2 + bz + c = 0$ are distinct. Since (1) implies f, g share (∞, ∞) without loss of generality we may assume that g has some multiple poles. Putting $\eta = \frac{f}{a}$ in (1) we get

$$Ag^{2}(\eta^{n+3}-1) + Bg(\eta^{n+2}-1) + C(\eta^{n+1}-1) \equiv 0$$

i.e.,

(2)
$$Ag^{2} \equiv -Bg \ \frac{\eta^{n+2}-1}{\eta^{n+3}-1} - C \ \frac{\eta^{n+1}-1}{\eta^{n+3}-1}.$$

First we observe that since a meromorphic function can not have more than two Picard exceptional values, η takes at least n values among $u_k = exp(\frac{2k\pi i}{n+3})$ where $k = 1, 2, \ldots, n+2$.

Let z_0 be a pole of g with multiplicity $p(\geq 2)$, which is not a root of $\eta - u_k = 0$. Then from (2) we have

$$2p=p\quad {\rm i.e.},\quad p=0\,,$$

which is impossible.

Hence from (2) we see that the poles of g are precisely the roots of $\eta - u_k = 0$. Suppose z_1 is a zero of $\eta - u_k$ of multiplicity r which is a pole of g with multiplicity s (say) then from (2) we see that

$$2s = r + s$$

i.e.,

$$r = s$$
.

Since g has no simple pole, it follows that such points are multiple zeros of $\eta - u_k$.

CORRIGENDUM

From (2) we know

(3)
$$Ag^{2} \equiv -\frac{Bg\sum_{j=0}^{n+1}\eta^{j} + C\sum_{j=0}^{n}\eta^{j}}{\sum_{j=0}^{n+2}\eta^{j}}.$$

Suppose z_2 be a simple zero of $\eta - u_k$ where k = 1, 2, ..., n + 2, which is a zero of multiplicity $q(\geq 2)$ of the numerator of (3). Then from (3), z_2 would be a zero of order q-1 of g^2 . So it follows that z_2 would be a zero of $\sum_{j=0}^n \eta^j$. Since $\sum_{j=0}^n \eta^j$ and $\sum_{k=0}^{n+2} \eta^j$ may have at most one common factor, we see that $\eta - u_k$ has multiple zeros

for at least n-1 values of $k \in \{1, 2, \dots, n+2\}$. Hence

$$\Theta(u_k;\eta) \ge \frac{1}{2}\,,$$

for at least n-1 values of k, which implies a contradiction as $n \ge 6$.

DEPARTMENT OF MATHEMATICS, KALYANI GOVERNMENT ENGINEERING COLLEGE West Bengal 741235, India

E-mail: abanerjee_kal@yahoo.co.in, abanerjee_kal@rediffmail.com