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WEAKLY IRREDUCIBLE SUBGROUPS OF Sp(1, n+ 1)

Natalia I. Bezvitnaya

Abstract. Connected weakly irreducible not irreducible subgroups of Sp(1, n+
1) ⊂ SO(4, 4n+4) that satisfy a certain additional condition are classified. This
will be used to classify connected holonomy groups of pseudo-hyper-Kählerian
manifolds of index 4.

1. Introduction

The classification of connected holonomy groups of Riemannian manifolds is
well known [4, 5, 6, 10]. A classification of holonomy groups of pseudo-Riemannian
manifolds is an actual problem of differential geometry. Very recently were obtained
classifications of connected holonomy groups of Lorentzian manifolds [3, 11, 9]
and of pseudo-Kählerian manifolds of index 2 [7]. These groups are contained
in SO(1, n + 1) and U(1, n + 1) ⊂ SO(2, 2n + 2), respectively. As the next step,
we study connected holonomy groups contained in Sp(1, n+ 1) ⊂ SO(4, 4n+ 4),
i.e. holonomy groups of pseudo-hyper-Kählerian manifolds of index 4. By the Wu
theorem [12] and the results of Berger for connected irreducible holonomy groups of
pseudo-Riemannian manifolds [4], it is enough to consider only weakly irreducible
not irreducible holonomy groups (each such group does not preserve any proper
non-degenerate vector subspace of the tangent space, but preserves a degenerate
subspace).

In the present paper we classify connected weakly irreducible not irreducible
subgroups of Sp(1, n+ 1) ⊂ SO(4, 4n+ 4) (n ≥ 1) that satisfy a natural condition.
The case n = 0 will be considered separately. We generalize the method of [8, 7]. Let
G ⊂ Sp(1, n+1) be a weakly irreducible not irreducible subgroup and g ⊂ sp(1, n+1)
the corresponding subalgebra. The results of [7] allow us to expect that if g is
the holonomy algebra, then g containes a certain 3-dimensional ideal B. We will
prove this in another paper. Consider the action of G on the space H1,n+1, then G
acts on the boundary of the quaternionic hyperbolic space, which is diffeomorphic
to the 4n + 3-dimensional sphere S4n+3 and G preserves a point of this space.
We define a map s1 : S4n+3\{point} → Hn similar to the usual stereographic
projection. Then any f ∈ G defines the map F (f) = s1 ◦ f ◦ s2 : Hn → Hn,
where s2 : Hn → S4n+3\{point} is the inverse of the usual stereographic projection
restricted to Hn ⊂ Hn ⊕ R3 = R4n+3. We get that F (G) is contained in the group
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Sim Hn of similarity transformations of Hn. We show that F (G) preserves an affine
subspace L ⊂ R4n = Hn such that the minimal affine subspace of Hn containing L
is Hn. Moreover, F (G) does not preserve any proper affine subspace of L. Then
F (G) acts transitively on L [1]. We describe subspaces L with this property and
using results of [7] we find all connected Lie subgroups K ⊂ Sim Hn preserving L
and acting transitively on L. Note that the kernel of the Lie algebra homomorphism
dF : g → LA(Sim Hn) coincides with the ideal B. Consequently, g = (dF )−1(k),
where k ⊂ LA(Sim Hn) is the Lie algebra of one of the obtained Lie subgroups
K ⊂ Sim Hn.

Note that we classify weakly irreducible not irreducible subgroups of Sp(1, n+ 1)
up to conjugacy in SO(4, 4n+ 4). It is also possible to classify these subgroups up
to conjugacy in Sp(1, n+ 1), see Remark 1.
Acknowledgement. I am grateful to Jan Slovák for support and help. The author
has been supported by the grant GACR 201/05/H005.

2. Preliminaries

First we summarize some facts about quaternionic vector spaces. Let Hm be an
m-dimensional quaternionic vector space and e1, . . . , em a basis of Hm. We identify
an element X ∈ Hm with the column (Xt) of the left coordinates of X with respect
to this basis, X =

∑m
t=1 Xtet.

Let f : Hm → Hm be an H-linear map. Define the matrix Matf of f by the
relation fel =

∑m
t=1(Matf )tlet. Now if X ∈ Hm, then fX = (XtMattf )t and

because of the non-commutativity of the quaternions this is not the same as Matf X.
Conversely, to an m×m matrix A of the quaternions we put in correspondence the
linear map OpA : Hm → Hm such that OpA ·X = (XtAt)t. If f, g : Hm → Hm are
two H-linear maps, then Matfg = (MattgMattf )t. Note that the multiplications by
the imaginary quaternions are not H-linear maps. Also, for a, b ∈ H holds ab = b̄ā.
Consequently, for two square quaternionic matrices we have (AB)t = B̄tĀt.

A pseudo-quaternionic-Hermitian metric g on Hm is a non-degenerate R-bilinear
map g : Hm × Hm → H such that g(aX, Y ) = ag(X,Y ) and g(Y,X) = g(X,Y ),
where a ∈ H, X,Y ∈ Hm. Hence, g(X, aY ) = g(X,Y )ā. There exists a basis
e1, . . . , em of Hm and integers (r, s) with r + s = m such that g(et, el) = 0 if t 6= l,
g(et, et) = −1 if 1 ≤ t ≤ s and g(et, et) = 1 if s+1 ≤ t ≤ m. The pair (r, s) is called
the signature of g. In this situation we denote Hm by Hr,s. The realification of Hm
gives us the vector space R4m with the quaternionic structure (i, j, k). Conversely,
a quaternionic structure on R4m, i.e. a triple (I, J,K) of endomorphisms of R4m

such that I2 = J2 = K2 = − id and K = IJ = −JI, allows us to consider R4m as
Hm. A pseudo-quaternionic-Hermitian metric g on Hm of signature (r, s) defines on
R4m the i, j, k-invariant pseudo-Euclidean metric η of signature (4r, 4s), η(X,Y ) =
Re g(X,Y ), X,Y ∈ R4m. Conversely, a I, J,K-invariant pseudo-Euclidean metric
on R4m defines a pseudo-quaternionic-Hermitian metric g on Hm,

g(X,Y ) = η(X,Y ) + iη(X, IY ) + jη(X, JY ) + kη(X,KY ).
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The Lie group Sp(r, s) and its Lie algebra sp(r, s) are defined as follows

Sp(r, s) =
{
f ∈ Aut(Hr,s) | g(fX, fY ) = g(X,Y ) for all X,Y ∈ Hr,s

}
,

sp(r, s) =
{
f ∈ End(Hr,s) | g(fX, Y ) + g(X, fY ) = 0 for all X,Y ∈ Hr,s

}
.

3. The main theorem

Definition 1. A subgroup G ⊂ SO(r, s) (or a subalgebra g ⊂ so(r, s)) is called
weakly irreducible if it does not preserve any non-degenerate proper vector subspace
of Rr,s.

Let R4,4n+4 be a (4n + 8)-dimensional real vector space endowed with a qua-
ternionic structure I, J,K ∈ End(R4,4n+4) and an I, J,K-invariant metric η of
signature (4, 4n+ 4). We identify this space with the (n+ 2)-dimensional quater-
nionic space H1,n+1 endowed with the pseudo-quaternionic-Hermitian metric g of
signature (1, n+ 1) as above.

Obviously, if a Lie subgroup G ⊂ Sp(1, n + 1) acts weakly irreducibly not
irreducibly on R4,4n+4, then G acts weakly irreducibly not irreducibly on H1,n+1.
The converse is not true, see Example 2 below. If G acts weakly irreducibly not
irreducibly on H1,n+1, then G preserves a proper degenerate subspace W ⊂ H1,n+1.
Consequently, G preserves the intersection W ∩W⊥ ⊂ H1,n+1, which is an isotropic
quaternionic line.

Fix a Wit basis p, e1, . . . , en, q of H1,n+1, i.e. the Gram matrix of the metric g with

respect to this basis has the form

0 0 1
0 En 0
1 0 0

 , where En is the n-dimensional

identity matrix. Denote by Sp(1, n+ 1)Hp the Lie subgroup of Sp(1, n+ 1) acting
on H1,n+1 and preserving the quaternionic isotropic line Hp. Note that any weakly
irreducible and not irreducible subgroup of Sp(1, n+ 1) is conjugated to a weakly
irreducible subgroup of Sp(1, n+1)Hp. The Lie subalgebra sp(1, n+1)Hp ⊂ sp(1, n+1)
corresponding to the Lie subgroup Sp(1, n+ 1)Hp ⊂ Sp(1, n+ 1) has the following
form

sp(1, n+ 1)Hp =

Op

ā −X̄t b
0 Math X
0 0 −a

∣∣∣ a ∈ H, X ∈ Hn,
h ∈ sp(n), b ∈ Im H

 .

Let (a,A,X, b) denote the above element of sp(1, n + 1)Hp. Define the following
vector subspaces of sp(1, n+ 1)Hp :

A1 ={(a, 0, 0, 0) | a ∈ R}, A2 ={(a, 0, 0, 0) | a ∈ Im H},
N ={(0, 0, X, 0) | X ∈ Hn}, B ={(0, 0, 0, b) | b ∈ Im H} .

Obviously, sp(n) is a subalgebra of sp(1, n+ 1)Hp with the inclusion

h ∈ sp(n) 7→ Op

0 0 0
0 Math 0
0 0 0

 ∈ sp(1, n+ 1)Hp .
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We obtain that A1 is a one-dimensional commutative subalgebra that commutes
with A2 and sp(n), A2 is a subalgebra isomorphic to sp(1) and commuting with
sp(n), B is a commutative ideal, which commutes with sp(n) and N . Also,

[(a, 0, 0, 0), (0, 0, X, b)] =(0, 0, aX, 2 Im ab) ,

[(0, 0, X, 0), (0, 0, Y, 0)] =(0, 0, 0, 2 Im g(X,Y )) ,

[(0, A, 0, 0), (0, 0, X, 0)] =(0, 0, (XtAt)t, 0) ,

where a ∈ H, X,Y ∈ Hn, A = Math, h ∈ sp(n), b ∈ Im H. Thus we have the
decomposition

sp(1, n+ 1)Hp = (A1 ⊕A2 ⊕ sp(n)) n (N +B) ' (R⊕ sp(1)⊕ sp(n)) n (Hn + R3) .

Now consider two examples.

Example 1. The subalgebra g = {(0, 0, X, b) | X ∈ Rn, b ∈ Im H} ⊂ sp(1, n+1)Hp
acts weakly irreducibly on R4,4n+4.

Proof. Assume the converse. Let g preserve a non-degenerate proper vector sub-
space L ⊂ R4,4n+4. Suppose the projection of L to Hq ⊂ H1,n+1 = R4,4n+4 is
non-zero, then there is a vector v ∈ L such that v = v0p+v1 +v2q, where v0, v2 ∈ H,
v2 6= 0 and v1 ∈ Hn. Consider elements ξ1 = (0, 0, X, 0) ∈ g with g(X,X) = 1
and ξ2 = (0, 0, 0, b) ∈ g. Then, ξ1(ξ1v) = −v2p ∈ L and ξ2v = v2bp ∈ L. Since
v2 6= 0, we have Hp ⊂ L. It follows that L⊥η ⊂ Hp⊕Hn and L⊥η is a g-invariant
non-degenerate proper subspace. Now we can assume that g preserves a non-trivial
non-degenerate vector subspace L ⊂ Hp ⊕ Hn. Let v = v0p + v1 ∈ L, v 6= 0. If
v1 = 0, then L is degenerate. If v1 6= 0, then there is X ∈ Rn with g(v1, X) 6= 0.
We get (0, 0, X, 0)v = −g(v1, X)p ∈ L. Hence L is degenerate. Thus we have a
contradiction. �

Example 2. The subalgebra g = {(0, 0, X, 0)| X ∈ Rn} ⊂ sp(1, n + 1)Hp acts
weakly irreducibly on H1,n+1 and not weakly irreducibly on R4,4n+4.

Proof. The proof of the first statement is similar to the proof of Example 1. Clearly,
the subalgebra g preserves the non-degenerate vector subspace spanR{p, e1, . . . ,
en, q} ⊂ R4,4n+4. �

The classification of the holonomy algebras contained in u(1, n+ 1) [7] gives us
the following hypothesis: If n ≥ 1 and g ⊂ sp(1, n + 1)Hp is a holonomy algebra,
then g containes the ideal B. We will prove this hypothesis in an other paper.

In the following theorem we denote the real vector subspace L ⊂ R4n = Hn of
the form

L = spanH{e1, . . . , em} ⊕ spanR⊕iR{em+1, . . . , em+k} ⊕ spanR{em+k+1, . . . , en}

by Hm ⊕Ck ⊕Rn−m−k. Let u(k) be the subalgebra of sp(spanH{em+1, . . . , em+k})

that consists of the elements Op
(
A 0
0 A

)
, whereA ∈ u

(
spanR⊕iR{em+1, . . . , em+k}

)
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and we use the decomposition

spanH{em+1, . . . , em+k}
= spanR⊕iR{em+1, . . . , em+k}+ jspanR⊕iR{em+1, . . . , em+k} .

Similarly, let so(n−m− k) be the subalgebra of sp
(
spanH{em+k+1, . . . , en}

)
that

consists of the elements

Op


A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A

 , where A ∈ so
(
spanR{em+k+1, . . . , en}

)
and we use the decomposition Hn−m−k = Rn−m−k ⊕ iRn−m−k ⊕ jRn−m−k ⊕
kRn−m−k. For a Lie algebra h we denote by h′ the commutant [h, h] of h.
Theorem 1. Let n ≥ 1. Any weakly irreducible subalgebra of sp(1, n+ 1)Hp that
contains the ideal B is conjugated by an element of SO(4, 4n + 4) to one of the
following subalgebras:

Type I. g =
{

(a1 + a2, A,X, b) | a1 ∈ R, a2 ∈ h0, A ∈ h, X ∈ Hn, b ∈ Im H
}

,
where h0 ⊂ sp(1) is a subalgebra of dimension 2 or 3, h ⊂ sp(n) is a subalgebra.

Type II. g =
{

(a1 + ta2 + φ(A), A,X, b) | a1, t ∈ R, A ∈ h, X ∈ Hn, b ∈
ImH

}
, where a2 ∈ sp(1), h ⊂ sp(n) is a subalgebra, φ : h → sp(1) is a

homomorphism.
If a2 6= 0, then rkφ ≤ 1 and [Imφ, a2] ⊂ Ra2.

Type III. g =
{

(ϕ(a2, A) + a2, A,X, b) | a2 ∈ h0, A ∈ h, X ∈ Hn, b ∈ ImH
}
,

where h0 ⊂ sp(1) is a subalgebra of dimension 2 or 3, h ⊂ sp(n) is a subalgebra,
ϕ ∈ Hom(h0 ⊕ h,R), ϕ|h′0⊕h′ = 0. In particular, if dim h0 = 3, i.e. h0 = sp(1),
then ϕ|h0 = 0.

Type IV. g =
{

(ϕ(t, A) + ta2 + φ(A), A,X, b) | t ∈ R, A ∈ h, X ∈ Hn, b ∈
Im H

}
, where a2 ∈ sp(1), h ⊂ sp(n) is a subalgebra, ϕ ∈ Hom(R ⊕ h,R),

ϕ|h′ = 0, φ : h → sp(1) is a homomorphism. If a2 6= 0, then rkφ ≤ 1 and
[Imφ, a2] ⊂ Ra2. If a2 6= 0 and φ 6= 0, then ϕ|R = 0.

Type V. g =
{

(a1 + a2i, A,X, b) | a1, a2 ∈ R, A ∈ h, X ∈ Hm ⊕ Cn−m, b ∈
Im H

}
, where 0 ≤ m < n, h ⊂ sp(m)⊕ u(n−m) is a subalgebra.

Type VI. g =
{

(a1 + φ(A)i, A,X, b) | a1 ∈ R, A ∈ h, X ∈ Hm ⊕ Ck ⊕
Rn−m−k, b ∈ Im H

}
, where 0 ≤ m < n, 0 ≤ k ≤ n−m, h ⊂ sp(m)⊕ u(k)⊕

so(n −m − k) is a subalgebra, φ ∈ Hom(h,R), φ|h′ = 0. If n −m − k ≥ 1,
then φ = 0.

Type VII. g =
{

(ϕ(a2, A) + a2i, A,X, b) | a2 ∈ R, A ∈ h, X ∈ Hm ⊕
Cn−m, b ∈ Im H

}
, where 0 ≤ m < n, h ⊂ sp(m) ⊕ u(n − m) is a subal-

gebra, ϕ ∈ Hom(R⊕ h,R), ϕ|h′ = 0.
Type VIII. g =

{
(ϕ(A)+φ(A)i, A,X, b) | A ∈ h, X ∈ Hm⊕Ck⊕Rn−m−k, b ∈

Im H
}

, where 0 ≤ m < n, 0 ≤ k ≤ n−m, h ⊂ sp(m)⊕ u(k)⊕ so(n−m− k)
is a subalgebra, ϕ, φ ∈ Hom(h,R), ϕ|h′ = φ|h′ = 0. If n −m − k ≥ 1, then
φ = 0.
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Type IX. g =
{

(0, A, ψ(A) +X, b) | A ∈ h, X ∈W, b ∈ Im H
}

. Here 0 ≤ m ≤
n and 0 ≤ k ≤ n−m. For L = Hm ⊕ Ck ⊕ Rn−m−k ⊂ R4n = Hn we have an
η-orthogonal decomposition L = W ⊕ U , h ⊂ sp(W ∩ iW ∩ jW ∩ kW ) is a
subalgebra and ψ : h→W is a surjective linear map with ψ|h′ = 0.

4. Relation with the group of similarity transformations of Hn

Let Hn be the n-dimensional quaternionic vector space endowed with a quaternio-
nic-Hermitian metric g. For elements a1 ∈ R+, a2 ∈ Sp(1), f ∈ Sp(n) and X ∈ Hn
consider the following transformations of Hn: d(a1) : Y 7→ a1Y (real dilation),
a2 : Y 7→ a2Y (quaternionic dilation), f : Y 7→ fY (rotation), t(Y ) : Y 7→ Y + X
(translation), here Y ∈ Hn. Note that the elements a2 ∈ Sp(1) act on Hn as
R-linear (but not H-linear) isomorphism. These transformations generate the Lie
group Sim Hn of similarity transformations of Hn. We get the decomposition

Sim Hn = (R+ × Sp(1) · Sp(n))iHn.

The Lie group Sim Hn is a Lie subgroup of the connected Lie group Sim0 R4n of
similarity transformations of R4n, Sim0 R4n = (R+ × SO(4n))i R4n.
The corresponding Lie algebra LA(Sim Hn) to the Lie group Sim Hn has the
following decomposition

LA(Sim Hn) = (R⊕ sp(1)⊕ sp(n)) n Hn.

Let p, e1, . . . , en, q be the basis of H1,n+1 as above. Consider also the basis
e0, e1, . . . , en, en+1, where e0 =

√
2

2 (p− q) and en+1 =
√

2
2 (p+ q). With respect to

this basis the Gram matrix of g has the form
(
−1 0
0 En+1

)
.

The subset of the (n+1)-dimensional quaternionic projective space PH1,n+1 that
consists of all quaternionic isotropic lines is called the boundary of the quaternionic
hyperbolic space and is denoted by ∂Hn+1

H .
Let h0, . . . , hn+1, where hs = xs + iys + jzs + kws ∈ H (0 ≤ s ≤ n+ 1) be the

coordinates on H1,n+1 with respect to the basis e0, . . . , en+1. Denote by Hn and
Hn+1 the subspaces of H1,n+1 spanned by the vectors e1, . . . , en and e1, . . . , en+1,
respectively. Note that the intersection (e0 + Hn+1) ∩ {X ∈ H1,n+1| g(X,X) = 0}
is given by the system of equations:

x0 = 1 , y0 = 0 , z0 = 0 , w0 = 0 ,

x2
1 + y2

1 + z2
1 + w2

1 + · · ·+ x2
n+1 + y2

n+1 + z2
n+1 + w2

n+1 = 1 ,

i.e. this set is the (4n+3)-dimensional unite sphere S4n+3. Moreover, each isotropic
line intersects this set at a unique point, e.g. Hp intersects it at the point

√
2p.

Thus we identify the space ∂Hn+1
H with the sphere S4n+3. Any f ∈ Sp(1, n+ 1)Hp

takes quaternionic isotropic lines to quaternionic isotropic lines and preserves the
quaternionic isotropic line Hp. Hence it acts on ∂Hn+1

H \ {Hp} = S4n+3 \ {
√

2p}.
Consider the connected Lie subgroups A1, A2,Sp(n) and P of Sp(1, n + 1)Hp

corresponding to the subalgebras A1,A2, sp(n) and N + B of the Lie algebra
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sp(1, n + 1)Hp. With respect to the basis p, e1, . . . , en, q these groups have the
following matrix form:

A1 =

Op

a1 0 0
0 En 0
0 0 a−1

1

∣∣∣∣∣ a1 ∈ R+

 ,

A2 =

Op

e−a2 0 0
0 En 0
0 0 e−a2

∣∣∣∣∣ a2 ∈ Im H

 ,

Sp(n) =

Op

1 0 0
0 Matf 0
0 0 1

∣∣∣∣∣ f ∈ Sp(n)

 ,

P =

Op

1 −Ȳ t b− 1
2Y
tȲ

0 En Y
0 0 1

∣∣∣∣∣ Y ∈ Hn ,
b ∈ Im H

 .

We have the decomposition

Sp(1, n+ 1)Hp = (A1 ×A2 × Sp(n))i P ' (R+ × Sp(1)× Sp(n))i (Hn · R3) .

Let s1 : S4n+3 \ {
√

2p} → e0 + Hn be the map defined as the usual stereographic
projection, but using quaternionic lines. More precisely, for s ∈ S4n+3 \ {

√
2p} we

define s1(s) to be the point of the intersection of e0 + Hn with the quaternionic
line passing through the points

√
2p and s. It is easy to see that this intersection

consists of a single point. Let s2 : e0 + Hn → S4n+3 \ {
√

2p} be the restriction to
e0 + Hn of the inverse to the usual stereographic projection from S4n+3 \ {

√
2p} to

e0 + Hn ⊕ (Im H)en+1. Note that s1 ◦ s2 = ide0+Hn , but unlike in the usual case,
s1 is not surjective. We have s2 ◦ s1|Im s2 = idIm s2 . Also, let e0 and −e0 denote the
translations Hn → e0 + Hn and e0 + Hn → Hn, respectively.

For f ∈ Sp(1, n+ 1)Hp define the map

F (f) = (−e0) ◦ s1 ◦ f ◦ s2 ◦ e0 : Hn → Hn .

Now we will show that F is a surjective homomorphism from the Lie group
Sp(1, n+1)Hp to the Lie group Sim Hn and kerF = Z2×B, where Z2 = {id,− id} ∈
Sp(1, n+ 1)Hp and B is the connected Lie subgroup of Sp(1, n+ 1)Hp corresponding
to the ideal B ⊂ sp(1, n+ 1)Hp. First of all, the computations show that for a1 ∈ R,
a2 ∈ Im H, f ∈ Sp(n) and Y ∈ Hn it holds

F

Op

a1 0 0
0 En 0
0 0 a−1

1

 = d(a1) ∈ R+ ⊂ Sim Hn ,

F

Op

e−a2 0 0
0 En 0
0 0 a−a2

 = ea2 ∈ Sp(1) ⊂ Sim Hn,
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F

Op

1 0 0
0 Matf 0
0 0 1

 = f ∈ Sp(n) ⊂ Sim Hn ,

F

Op

1 −Ȳ t b− 1
2Y
tȲ

0 En Y
0 0 1

 = t

(
−
√

2
2 Y

)
∈ Hn ⊂ Sim Hn.

It follows that if f1, f2 ∈ P , then F (f1f2) = F (f1)F (f2), i.e. F |P is a homomor-
phism from P to Sim Hn. It can easily be checked that any f ∈ A1 ×A2 × Sp(n)
considered as a map from S4n+3 \ {

√
2p} to itself preserves Im s2 ⊂ S4n+3 \ {

√
2p}.

Hence if f1 is from P or A1 ×A2 × Sp(n) and f2 ∈ A1 ×A2 × Sp(n), then

F (f1f2) = (−e0) ◦ s1 ◦ f1 ◦ f2 ◦ s2 ◦ e0

= (−e0) ◦ s1 ◦ f1 ◦ s2 ◦ e0 ◦ (−e0) ◦ s1 ◦ f2 ◦ s2 ◦ e0 = F (f1)F (f2) ,
since s2 ◦ s1|Im s2 = idIm s2 . Therefore it is enough to prove that F (f1f2) =
F (f1)F (f2), for f1 ∈ A1 ×A2 × Sp(n) and f2 ∈ P . Let

f1 = Op

a1e
−a2 0 0
0 A 0
0 0 a−1

1 e−a2

 ∈ A1 ×A2 × Sp(n) ,

f2 = Op

1 −Ȳ t b− 1
2Y
tȲ

0 En Y
0 0 1

 ∈ P .
Then f1f2f

−1
1 = f ′2 ∈ P , where

f ′2 = Op

1 −((A−1)tȲ a1e
−a2)t a2

1e
a2(b− 1

2Y
tȲ )e−a2

0 En a1e
a2(Y tAt)t

0 0 1

 .

We have

F (f1f2) = F (f ′2f1) = F (f ′2)F (f1) = t

(
−
√

2
2 a1e

a2(Y tAt)t
)
a1e
a2 OpA

= t

(
−
√

2
2 a1e

a2 OpA · Y
)
a1e
a2 OpA

= a1e
a2 OpA · t

(
−
√

2
2 Y

)
= F (f1)F (f2) ,

since for any f ∈ R+ × SO(4n) and X ∈ R4n it holds ft(X)f−1 = t(fX) or
t(fX)f = ft(X). Thus F is the homomorphism from the Lie group Sp(1, n+ 1)Hp
to the Lie group Sim Hn. Obviously, F is surjective. The claim is proved.

Let L ⊂ R4n be a vector (affine) subspace. We call the subset L ⊂ Hn a real
vector (affine) subspace.

Theorem 2. Let G ⊂ Sp(1, n + 1)Hp act weakly irreducibly on H1,n+1. Then if
F (G) ⊂ Sim Hn preserves a proper real affine subspace L ⊂ Hn, then the minimal
affine subspace of Hn containing L is Hn.
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Proof. First we prove that the subgroup F (G) ⊂ Sim Hn does not preserve any
proper affine subspace of Hn. Assume that F (G) preserves a vector subspace
L ⊂ Hn. Choosing the basis e1, . . . , en of Hn in a proper way, we can suppose that
L = Hm = spanH{e1, . . . , em}. Consequently, F (G) ⊂ (R+ × (Sp(1) · (Sp(m) ×
Sp(n−m))))iHm. Hence, G ⊂ (R+×Sp(1)×Sp(m)×Sp(n−m))i(Hm ·R3) and G
preserves the non-degenerate vector subspace spanH{em+1, . . . , en} ⊂ H1,n+1. Now
suppose that F (G) preserves an affine subspace L ⊂ Hn. Let L = Y + L0, where
Y ∈ L and L0 ⊂ Hn is the vector subspace corresponding to L. We may assume

that L0 = Hm = spanH{e1, . . . , em}. Consider f = Op

1
√

2Ȳ t −Y tȲ
0 En −

√
2Y

0 0 1

 ∈ P
and the subgroup G̃ = f−1Gf ⊂ Sp(1, n + 1)Hp. For F (G̃) we get that F (G̃) =
−t(Y )F (G)t(Y ). By the above G̃ preserves the non-degenerate vector subspace
spanH{em+1, . . . , en} ⊂ H1,n+1. Hence G preserves the non-degenerate vector
subspace f(spanH{em+1, . . . , en}) ⊂ H1,n+1. Since G is weakly irreducible, we get
m = n.

Let F (G) preserve a real affine subspace L ⊂ Hn and let L0 ⊂ Hn be the
corresponding real vector subspace. Consider the vector subspace (spanH L0)⊥ ⊂ Hn.
As above, it can be proved that G preserves the non-degenerate vector subspace
f((spanH L0)⊥) ⊂ H1,n+1. Since G is weakly irreducible, we have (spanH L0)⊥ = 0
and spanH L0 = Hn. The theorem is proved. �

5. Proof of the main theorem

First of all, from Example 1 it follows that the algebras of Types I–VIII act
weakly irreducibly on R4,4n+4. For the algebras of Type IX it can be proved in the
same way. Therefore we must only prove that any subalgebra g ⊂ sp(1, n+ 1)Hp
that acts weakly irreducibly on R4,4n+4 and contains the ideal B is conjugated (by
an element from SO(4, 4n+ 4)) to one of the algebras of Types I–IX. Suppose that
g ⊂ sp(1, n+ 1)Hp acts weakly irreducibly on R4,4n+4 and contains the ideal B. Let
G ⊂ Sp(1, n + 1)Hp be the corresponding connected Lie subgroup. By Theorem
2, F (G) preserves a real affine subspace L ⊂ Hn such that the minimal affine
subspace of Hn containing L is Hn. We already know that G is conjugated to a
subgroup G̃ ⊂ Sp(1, n + 1)Hp such that F (G̃) preserves a real vector subspace
L0 ⊂ Hn with spanH L0 = Hn. Hence we can assume that F (G) preserves a real
vector subspace L ⊂ Hn and spanH L = Hn. Moreover, assume that F (G) does not
preserve any proper affine subspace of L. Then F (G) acts transitively on L [1]. The
connected transitively acting groups of similarity transformations of the Euclidean
spaces are well know. In [7] these groups were divided into three types. We describe
real subspaces L ⊂ Hn with spanH L = Hn and subalgebras k ⊂ LA(Sim Hn) such
that the corresponding connected Lie subgroups K ⊂ Sim Hn preserve L and
act transitively on L. Then the algebra g must be of the form (dF )−1(k) for a
subalgebra k.

Now we describe real vector subspaces L ⊂ Hn with spanH L = Hn. Let L be such
a subspace. Put L1 = L ∩ iL ∩ jL ∩ kL, i.e. L1 is the maximal quaternionic vector
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subspace in L. Let L2 be the orthogonal complement to L1 in L, then L = L1⊕L2
and L2 ∩ iL2 ∩ jL2 ∩ kL2 = 0. Now let L3 = L2 ∩ iL2, i.e. L3 is the maximal
i-invariant real vector subspace in L2. Let L4 be its orthogonal complement in
L2, then L2 = L3 ⊕ L4. Similarly, define the spaces L5, L6, L7, L8 ⊂ L such that
L5 = L4 ∩ jL4, L4 = L5 ⊕ L6, L7 = L6 ∩ kL6 and L6 = L7 ⊕ L8. By construction,
we get the orthogonal decomposition L = L1 ⊕L3 ⊕L5 ⊕L7 ⊕L8 and there exists
a g-orthogonal basis e1, . . . , en of Hn such that this decomposition has the form
L = spanH{e1, . . . em} ⊕ spanR⊕iR{em+1, . . . em1} ⊕ spanR⊕jR{em1+1, . . . em2}

⊕ spanR⊕kR{em2+1, . . . em3} ⊕ spanR{em3+1, . . . en} .(1)

Obviously, there is an f ∈ SO(n) such that
(2) fL = spanH{e1, . . . em}⊕spanR⊕iR{em+1, . . . em+k}⊕spanR{em+k+1, . . . en},
where m + k = m3. Since we consider the subgroups of Sp(1, n + 1)Hp up to
conjugacy in SO(4, 4n+ 4), we can assume that L has the form (2). We will write
for short

L = Hm ⊕ Ck ⊕ Rn−m−k .
Suppose that a subgroup K ⊂ Sim Hn preserves L. Since K ⊂ Sim Hn ⊂

Sim0 R4n = (R+ × SO(4n)) i R4n, we have K ⊂ (R+ × SO(L) × SO(L⊥)) i L.
But K ⊂ Sim Hn, hence prSO(4n) K ⊂ Sp(1) · Sp(n). Consequently, prSO(4n) K =
prSp(1)·Sp(n) K ⊂ Sp(1) · Sp(n) ∩ SO(L) × SO(L⊥). For the corresponding subal-
gebra k ⊂ LA(Sim Hn), we have prsp(1)⊕sp(n) k ⊂ sp(1)⊕ sp(n) ∩ so(L)⊕ so(L⊥).
Considering the matrices of the elements of these algebras in the basis of R4n, we
obtain

sp(1)⊕ sp(n) ∩ so(L)⊕ so(L⊥) =



sp(1)⊕ sp(n) , if m = n ;
sp(m)⊕ u(n−m)⊕ iR , if 0 ≤ m < n ,

n−m = k ;
sp(m)⊕ u(k)

⊕so(n−m− k) , if 0 ≤ m < n ,
n−m− k ≥ 1 .

The action of the Lie algebras u(n−m) and so(n−m−k) on Cn−m and Rn−m−k,
respectively, is described in Section 3.

Let E be a Euclidean space. In [7] subalgebras k ⊂ LA(SimE) corresponding to
connected transitively acting subgroups of SimE were divided into the following
three types:

Type R. k = (R⊕ h) n E, where h ⊂ so(E) is a subalgebra.
Type ϕ. k = {ϕ(A) + A|A ∈ h} n E, where h ⊂ so(E) is a subalgebra, ϕ ∈

Hom(h,R), ϕ|h′ = 0.
Type ψ. k = {A+ψ(A)|A ∈ h}nU , where we have an orthogonal decomposition
E = W ⊕ U , h ⊂ so(W ) is a subalgebra, ψ : h→W is surjective linear map,
ψ|h′ = 0.

Suppose that m = n, i.e. L = Hn. If k is of Type R, then k = (R ⊕ h) n L,
where h ⊂ sp(1)⊕ sp(n) is a subalgebra. If h ⊂ sp(n), then (dF )−1(k) is of Type
II with a2 = 0 and φ = 0. Let h have the form h0 ⊕ h1, where h0 ⊂ sp(1) and
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h1 ⊂ sp(n). If dim h0 = 1, then (dF )−1(k) is of Type II with φ = 0 and h changed
to h1. If dim h0 = 2 or 3, then (dF )−1(k) is of Type I with h changed to h1. Suppose
that h 6= prsp(1) h⊕ prsp(n) h. If h ∩ sp(1) = 0, then (dF )−1(k) is of Type II with
a2 = 0. Now let dim h ∩ sp(1) = 1 and let a2 ∈ h ∩ sp(1) be a non-zero element.
Obviously, h = {A + φ(A)|A ∈ prsp(n) h} + Ra2, where φ : prsp(n) h → sp(1)
is a homomorphism, φ 6= 0 and Imφ ∩ Ra2 = 0. For A + φ(A) ∈ h, we have
[A+ φ(A), a2] = [φ(A), a2] ∈ h ∩ sp(1). Hence, [φ(A), a2] ⊂ Ra2. If rkφ = 1, then
(dF )−1(k) is of Type II. If rkφ = 2, then there exist A1, A2 ∈ prsp(n) h such that
φ(A1), φ(A2) and a2 span sp(1). But this is impossibly, since sp(1)′ = sp(1). In the
same way, if dim h ∩ sp(1) = 2 and h = {A+ φ(A)}+ (h ∩ sp(1)), then φ = 0. If
k = {ϕ(A) +A|A ∈ h}n L is of Type ϕ, then all (dF )−1(k) can be obtained from
the above, since k is obtained from (R⊕h)nL by twisting between h and R. We will
get that (dF )−1(k) is of Type III or IV. Let k be of Type ψ, i.e. k = {A+ψ(A)}nU ,
where L = W ⊕ U is an orthogonal decomposition, h ⊂ so(W ) is a subalgebra and
ψ : h → W is surjective linear map, ψ|h′ = 0. Since h ⊂ sp(1) ⊕ sp(n), we have
h ⊂ sp(1) ⊕ sp(n) ∩ so(W ) = sp(W ∩ iW ∩ jW ∩ kW ). We obtain Type IX for
m = n. The case m < n can be consider similarly. If k is of Type R, then g is of
Type V or VI. If k is of Type ϕ, then g is of Type VII or VIII. If k is of Type ψ,
then g is of Type IX. The theorem is proved. �

Remark 1. It is also possible to classify weakly irreducible subalgebras of sp(1, n+
1)Hp containing the ideal B up to conjugacy by elements of Sp(1, n+ 1). For this
we should consider in addition the real vector subspace L ⊂ Hn of the form (1)
such that at least two of the inequalities m < m1 < m2 < m3 hold. Note that

sp(1)⊕ sp(n) ∩ so(L)⊕ so(L⊥) = sp(spanH{e1, . . . em})
⊕ u(spanR⊕iR{em+1, . . . em1})⊕ u(spanR⊕jR{em1+1, . . . em2})
⊕ u(spanR⊕kR{em2+1, . . . em3})⊕ so(spanR{em3+1, . . . en}) .

We should generalize Type IX assuming that L has the form (1) and we should in
addition add two types of Lie algebras:

Type X. g =
{

(a1, A,X, b) | a1 ∈ R, A ∈ h, X ∈ L, b ∈ Im H
}

, where
h ⊂ sp(1)⊕ sp(n) ∩ so(L)⊕ so(L⊥) is a subalgebra.

Type XI. g =
{

(ϕ(A), A,X, b) | A ∈ h, X ∈ L, b ∈ ImH
}

, where h ⊂ sp(1)⊕
sp(n) ∩ so(L)⊕ so(L⊥) is a subalgebra, ϕ ∈ Hom(h,R), ϕ|h′ = 0.
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