ON RINGS ALL OF WHOSE MODULES ARE RETRACTABLE

Şule Ecevit and Muhammet Tamer Koşan

ABSTRACT. Let R be a ring. A right R-module M is said to be *retractable* if $\operatorname{Hom}_R(M, N) \neq 0$ whenever N is a non-zero submodule of M. The goal of this article is to investigate a ring R for which every right R-module is retractable. Such a ring will be called right *mod-retractable*. We proved that (1) The ring $\prod_{i \in \mathcal{I}} R_i$ is right mod-retractable if and only if each R_i is a right mod-retractable ring for each $i \in \mathcal{I}$, where \mathcal{I} is an arbitrary finite set. (2) If R[x] is a mod-retractable ring then R is a mod-retractable ring.

Throughout this paper, R is an associative ring with unity and all modules are unital right R-modules.

Khuri [1] introduced the notion of retractable modules and gave some results for non-singular retractable modules when the endomorphism ring is (quasi-)continuous. For retractable modules, we direct the reader to the excellent papers [1],[2], [3] and [4] for nice introduction to this topic in the literature.

Let M be an R-module. M is said to be a *retractable module* if $\operatorname{Hom}_R(M, N) \neq 0$ whenever N is a non-zero submodule of M ([1]). We give some examples.

- (i) Free modules and semisimple modules are retractable.
- (ii) Any direct sum of \mathbb{Z}_{p^i} is retractable, where p is a prime number.
- (iii) The \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ is not retractable.
- (iv) Let R be an integral domain with quotient ring F and $F \neq R$. Then $R \oplus F$ is a retractable R-module, because $\operatorname{End}_R(M) = \begin{pmatrix} F & F \\ 0 & R \end{pmatrix}$.
- (v) Assume that M_R is a finitely generated semisimple right *R*-module. Then the module M_R is retractable and $\operatorname{End}_R(M)$ is semisimple artinian By [3, Corollary 2.2]
- (vi) Take an *R*-module *M*. Let $0 \neq N \leq R \oplus M$; take $0 \neq n \in N$ and construct the map $\varphi \colon R \oplus M \to N$ by $\varphi(1) = n$ and $\varphi(m) = 0$ for all $m \in M$. Since $0 \neq \varphi \in \operatorname{Hom}_R(R \oplus M, N)$, we have $\operatorname{Hom}_R(R \oplus M, N) \neq 0$, thus $R \oplus M$ is retractable.

²⁰⁰⁰ Mathematics Subject Classification: primary 16D50; secondary 16D90.

Key words and phrases: retractable module, Morita invariant property.

received September 18, 2008, revised January 2009. Editor J. Trlifaj.

In this note, we deal with some ring extensions of a ring R for which every (right) R-module is retractable. Hence, such a ring will be called right *mod-retractable*. This will avoid a conflict of nomenclature with the existing concept of retractability. The following examples show that this definition is not meaningless.

We take \mathbb{Z} -modules $M = \mathbb{Q}$ and $N = \mathbb{Z}$. Note that \mathbb{Q} is a divisible group, so every its homomorphic image is a divisible group as well. Since the only divisible subgroup of \mathbb{Z} is 0, the only homomorphism of \mathbb{Q} into \mathbb{Z} is the zero homomorphism.

Let R, S be two rings and M be an R-S-bimodule. Then we consider the ring $R' = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$. Let $I = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$ and K = eR', where $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. We claim that $\operatorname{Hom}_{R'}(K, I) = 0$. Note that $I \notin K$. Let $f \in \operatorname{Hom}_{R'}(K, I)$. Then $f(K) = f(eR) = f(eeR) = f(e)eR = f(e)K \subseteq IK = 0$, i.e., R' is retractable.

A ring R is called *(finitely) mod-retractable* if all (finitely generated) right R-modules are retractable.

Example 1. (i) Any semisimple artinian ring is mod-retractable.

(ii) \mathbb{Z} is a finitely mod-retractable ring but is not mod-retractable ring.

We start the Morita invariant property for (finitely) mod-retractable rings.

Theorem 2. (Finite) mod-retractability is Morita invariant.

Proof. Let R and S be two Morita equivalent rings. Assume that $f: \operatorname{Mod} R \to \operatorname{Mod} S$ and $g: \operatorname{Mod} S \to \operatorname{Mod} R$ are two category equivalences. Let M be a retractable R-module. Then M is a retractable object in $\operatorname{Mod} R$. Let $0 \neq N \leq f(M)$. Then $\operatorname{Hom}_R(M, g(N)) \neq 0$ since g(N) is isomorphic to a submodule of M. Thus, we have $0 \neq \operatorname{Hom}_S(f(M), fg(N)) \cong \operatorname{Hom}_S(f(M), N)$. This follows that f(M) is a retractable object in $\operatorname{Mod} S$.

Let R be a ring, n a positive integer and the ring $\mathbb{M}_n(R)$ of all $n \times n$ matrices with entries in R.

Corollary 3. If R is (finitely) mod-retractable, then $M_n(R)$ is (finitely) mod-retractable.

Proof. By Theorem 2.

Theorem 4. The class of (finite) mod-retractable rings is closed under taking homomorphic images.

Proof. Suppose R is a (finite) mod-retractable ring. It is well-known that

$$\operatorname{Hom}_R(M, N) = \operatorname{Hom}_{R/I}(M, N)$$

for each ideal I of R and $M, N \in Mod-R/I$. Now the proof is clear.

Recall that a module M is said to be *e-retractable* if, for all every essential submodule N of M, $\operatorname{Hom}_R(M, N) \neq 0$ (see [1]).

Lemma 5. The following statements are equivalent for a ring R.

- (1) R is (finitely) mod-retractable.
- (2) Every (finitely generated) R-module M is e-retractable.

(3) For every (finitely generated) R-module M and $N \leq M$, $\operatorname{Hom}_R(M, N) = 0$ if and only if $\operatorname{Hom}_R(M, E(N)) = 0$, where E(N) is an injective hull of N.

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are clear.

 $(2) \Rightarrow (1)$ Let M be a (finitely generated) right R-module and N be a submodule of M. Since E(N) is an injective module, we extend the inclusion $N \subseteq E(N)$ to the map $\alpha \colon M \to E(N)$. This implies that $\alpha(N) = N$. Thus $\alpha(M) \cap N = N$. Since $N \leq_e N$, we have $N \leq_e \alpha(M)$. This implies that $\operatorname{Hom}_R(\alpha(M), N) \neq 0$. Moreover, for $K = \operatorname{Ker}(\alpha)$,

$$\operatorname{Hom}_{R}(\alpha(M), N) = \operatorname{Hom}_{R}(M/K, N) \subseteq \operatorname{Hom}_{R}(M, N).$$

As such, $\operatorname{Hom}_R(M, N) \neq 0$.

 $(3) \Rightarrow (2)$ Let N be an essential submodule of a (finitely generated) right R-module M. Then $E(N) \cong E(M)$. By (3), we can obtain that $\operatorname{Hom}_R(M, N) = 0$, and so $\operatorname{Hom}_R(M, E(N)) = 0$. Hence $\operatorname{Hom}_R(M, E(M)) = 0$.

By Example 1, a commutative ring need not be retractable.

Theorem 6. Any ring that is Morita equivalent to a commutative ring is finitely mod-retractable.

Proof. By Theorem 2, it suffices to prove the claim for a commutative ring R. Let M be a finitely generated R-module and $N \leq M$. Assume that $\operatorname{Hom}_R(M, E(N)) \neq 0$, and take $0 \neq \alpha \in \operatorname{Hom}_R(M, E(N))$. Since M is a finitely generated R-module, we can write $\alpha(M)$ as follows (where the sum is not necessarily direct): $\alpha(M) = Rm_1 + Rm_2 + \ldots Rm_n$ with $m_i \in E(N)$, $1 \leq i \leq n$. Since N is essential in E(N), thus there exists $r \in R$ such that $rm_i \in N$ for all i and $r\alpha(M) \neq 0$. Now we can define $0 \neq \beta \colon \alpha(M) \to N$ such that $\beta(m_i) = rm_i$ for all $1 \leq i \leq n$. Thus $0 \neq \beta \alpha \in \operatorname{Hom}_R(M, N)$. This implies that $\operatorname{Hom}_R(M, N) \neq 0$. By Lemma 5, the R-module M is retractable.

Example 7. Let R be a commutative artin ring. Assume that a ring S is Morita equivalent to R. First, note that every S-module is retractable and has a maximal submodule. We consider an S-module M. Let N be a maximal submodule of M. Hence we have a simple submodule K of N. Then there exits an S-homomorphism $f: M \to E(K)$, where E(K) is the injective hull of K. Clearly, f(M) is a finitely generated S-module. By Theorem 6, f(M) is a retractable S-module and so M is a retractable S-module.

Example 7 shows that the class of right mod-retractable rings is not closed under direct sums.

Theorem 8. The ring $\prod_{i \in \mathcal{I}} R_i$ is right mod-retractable if and only if each R_i is a right mod-retractable ring for each $i \in \mathcal{I}$, where \mathcal{I} is an arbitrary finite set.

Proof. :=> Indeed, R_i is a homomorphic image of $\prod_{i \in \mathcal{I}} R_i$. So the result follows from Theorem 4.

 \Leftarrow : Let each e_i denote the unit element of R_i for all $i \in \mathcal{I}$. A module M over $\prod_{i \in \mathcal{I}} R_i$ can be written as set direct product $\prod_{i \in \mathcal{I}} M_i$, where $M_{iR_i} = Me_i$ and external operation defined as $(r_i)_{i \in \mathcal{I}} (m_i)_{i \in \mathcal{I}} = (r_i m_i)_{i \in \mathcal{I}}$. Thus retractability of M

is given by retractability of each $M_{ii \in \mathcal{I}}$. But, since each R_i is mod-retractable, this condition is satisfied.

Corollary 9. The class of all right mod-retractable rings is closed under taking finite direct products.

Proof. By Theorem 8.

Giving a ring R, R[X] denotes the polynomial ring with X a set of commuting indeterminate over R. If $X = \{x\}$, then we use R[x] in place of $R[\{x\}]$.

Theorem 10. If R[x] is a mod-retractable ring then R is a mod-retractable ring.

Proof. Since $R \cong R[x]/R[x]x$, the result is clear from Theorem 4.

References

- [1] Khuri, S. M., Endomorphism rings and lattice isomorphism, J. Algebra 56 (2) (1979), 401–408.
- [2] Khuri, S. M., Endomorphism rings of nonsingular modules, Ann. Sci. Math. Québec 4 (2) (1980), 145–152.
- Khuri, S. M., The endomorphism rings of a non-singular retractable module, East-West J. Math. 2 (2) (2000), 161–170.
- [4] Rizvi, S. T., Roman, C. S., Baer and quasi-Baer Modules, Comm. Algebra 32 (1) (2004), 103–123.

DEPARTMENT OF MATHEMATICS, GEBZE INSTITUTE OF TECHNOLOGY ÇAYIROVA CAMPUS, 41400 GEBZE-KOCAELI, TURKEY *E-mail*: secevit@gyte.edu.tr, mtkosan@gyte.edu.tr