LOWER BOUNDS FOR EXPRESSIONS OF LARGE SIEVE TYPE

Jan-Christoph Schlage-Puchta

Abstract

We show that the large sieve is optimal for almost all exponential sums.

Let $a_{n}, 1 \leq n \leq N$ be complex numbers, and set $S(\alpha)=\sum_{n \leq N} a_{n} e(n \alpha)$, where $e(\alpha)=\exp (2 \pi i \alpha)$. Large Sieve inequalities aim at bounding the number of places where this sum can be extraordinarily large, the basic one being the bound

$$
\sum_{q \leq Q} \sum_{\substack{1 \leq a \leq q \\(a, q)=1}}\left|S\left(\frac{a}{q}\right)\right|^{2} \leq\left(N+Q^{2}\right) \sum_{n \leq N}\left|a_{n}\right|^{2}
$$

(see e.g. [3] for variations and applications). P. Erdős and A. Rényi [1] considered lower bounds of the same type, in particular they showed that the bound

$$
\begin{equation*}
\sum_{q \leq Q} \sum_{(a, q)=1}\left|S\left(\frac{a}{q}\right)\right|^{2} \ll N \sum_{n \leq N}\left|a_{n}\right|^{2} \tag{1}
\end{equation*}
$$

valid for $Q \ll \sqrt{N}$, is wrong for almost all choices of coefficients $a_{n} \in\{1,-1\}$, provided that $Q>C \sqrt{N} \log N$, and that the standard probabilistic argument fails to decide whether (1) is true in the range $\sqrt{N}<Q<\sqrt{N} \log N$. In this note, we show that (1) indeed fails throughout this range.

Theorem 1. Let $S(\alpha)$ be as above. Then

$$
\begin{equation*}
\sum_{q \leq Q} \sum_{(a, q)=1}\left|S\left(\frac{a}{q}\right)\right|^{2} \geq \varepsilon Q^{2} \sum_{n \leq N}\left|a_{n}\right|^{2} \tag{2}
\end{equation*}
$$

holds true with probability tending to 1 provided ε tends to 0 , and Q^{2} / N tends to infinity.

Our approach differs from [1 in so far as we first prove an unconditional lower bound, which involves an awkward expression, and show then that almost always this expression is small. We show the following.

[^0]Lemma 1. Let $S(\alpha)$ be as above, and define

$$
M(x)=\sup _{\mathfrak{m}} \frac{\int_{\mathfrak{m}}|S(u)|^{2} d u}{\int_{0}^{1}|S(u)|^{2} d u},
$$

where \mathfrak{m} ranges over all measurable subsets of $[0,1]$ of measure x. Then for any real parameter $A>1$ we have the estimate

$$
\begin{equation*}
\sum_{q \leq Q} \sum_{(a, q)=1}\left|S\left(\frac{a}{q}\right)\right|^{2} \geq\left(\frac{Q^{2}}{A}\left(1-M\left(\frac{1}{A}\right)\right)-6 \pi N A\right) \sum_{n \leq N}\left|a_{n}\right|^{2} \tag{3}
\end{equation*}
$$

Proof. Our proof adapts Gallagher's proof of an upper bound large sieve [2]. For every $f \in C^{1}([0,1])$, we have

$$
f(1 / 2)=\int_{0}^{1} f(u) d u+\int_{0}^{1 / 2} u f^{\prime}(u) d u-\int_{1 / 2}^{1}(1-u) f^{\prime}(u) d u
$$

Putting $f(u)=|S(u)|^{2}$, and using the linear substitution $u \mapsto(\alpha-\delta / 2)+\delta u$, we obtain for every $\delta>0$ and any $\alpha \in[0,1]$

$$
\begin{aligned}
|S(\alpha)|^{2}= & \frac{1}{\delta} \int_{\alpha-\delta / 2}^{\alpha+\delta / 2}|S(u)|^{2} d u+\frac{1}{\delta} \int_{\alpha-\delta / 2}^{\alpha}(\delta / 2-|u-\alpha|)\left(S^{\prime}(u) S(-u)-S(u) S^{\prime}(-u)\right) d u \\
& -\frac{1}{\delta} \int_{\alpha}^{\alpha+\delta / 2}(\delta / 2-|u-\alpha|)\left(S^{\prime}(u) S(-u)-S(u) S^{\prime}(-u)\right) d u
\end{aligned}
$$

We have $|S(u)|=|S(-u)|$ and $\left|S^{\prime}(-u)\right|=\left|S^{\prime}(u)\right|$, thus $\left|S^{\prime}(u) S(-u)-S(u) S^{\prime}(-u)\right| \leq$ $2\left|S(u) S^{\prime}(u)\right|$, and we obtain

$$
\begin{aligned}
|S(\alpha)|^{2} & \geq \frac{1}{\delta} \int_{\alpha-\delta / 2}^{\alpha+\delta / 2}|S(u)|^{2} d u-\frac{1}{\delta} \int_{\alpha-\delta / 2}^{\alpha+\delta / 2} 2\left(\frac{1}{2}-\frac{|u-\alpha|}{\delta}\right)\left|S(u) S^{\prime}(u)\right| d u \\
& \geq \frac{1}{\delta} \int_{\alpha-\delta / 2}^{\alpha+\delta / 2}|S(u)|^{2} d u-\int_{\alpha-\delta / 2}^{\alpha+\delta / 2}\left|S(u) S^{\prime}(u)\right| d u
\end{aligned}
$$

We now set $\delta=A / Q^{2}$. We can safely assume that $\delta<\frac{1}{2}$, since our claim would be trivial otherwise. Summing over all fractions $\alpha=\frac{a}{q}$ with $q \leq Q,(a, q)=1$, we get
(4) $\sum_{q \leq Q} \sum_{(a, q)=1}\left|S\left(\frac{a}{q}\right)\right|^{2} \geq \frac{Q^{2}}{A} \int_{0}^{1}|S(u)|^{2} d u$

$$
-\frac{Q^{2}}{A} \int_{m(Q, A)}|S(u)|^{2} d u-\int_{0}^{1} R(u)\left|S(u) S^{\prime}(u)\right| d u
$$

where

$$
R(u)=\#\left\{a, q:(a, q)=1, q \leq Q,\left|u-\frac{a}{q}\right| \leq \frac{A}{Q^{2}}\right\}
$$

and

$$
m(Q, A)=\{u \in[0,1]: R(u)=0\} .
$$

To bound $R(u)$, let $\frac{a_{1}}{q_{1}}<\frac{a_{2}}{q_{2}}<\cdots<\frac{a_{k}}{q_{k}}$ be the list of all fractions with $q_{i} \leq Q$, $\left|u-\frac{a_{i}}{q_{i}}\right| \leq \frac{A}{Q^{2}}$. We have for $i \neq j$ the bound

$$
\left|\frac{a_{i}}{q_{i}}-\frac{a_{j}}{q_{j}}\right| \geq \frac{1}{q_{i} q_{j}} \geq \frac{1}{Q^{2}},
$$

that is, the fractions $\frac{a_{1}}{q_{1}}, \ldots, \frac{a_{k}}{q_{k}}$ form a set of points with distance $>\frac{1}{Q^{2}}$ in an interval of length $\frac{2 A}{Q^{2}}$. There can be at most $2 A+1$ such points, hence, $R(u) \leq 3 A$.

Next, we bound $|m(Q, A)|$. By Dirichlet's theorem, we have that for each real number $\alpha \in[0,1]$ there exists some $q \leq Q$ and some a, such that $\left|\alpha-\frac{a}{q}\right| \leq \frac{1}{q Q}$. If $\alpha \in m(Q, A)$, we must have $\frac{1}{q Q}>\frac{A}{Q^{2}}$, that is, $q<Q / A$. Hence, we obtain

$$
\begin{aligned}
|m(Q, A)| & \leq\left|\bigcup_{q<Q / A} \bigcup_{(a, q)=1}\left[\frac{a}{q}-\frac{1}{q Q}, \frac{a}{q}+\frac{1}{q Q}\right] \backslash\left[\frac{a}{q}-\frac{A}{Q^{2}}, \frac{a}{q}+\frac{A}{Q^{2}}\right]\right| \\
& \leq \sum_{q<Q / A} \frac{\varphi(q)(2 Q-2 A q)}{q Q^{2}} \leq \frac{1}{Q^{2}} \int_{0}^{Q / A}(2 Q-2 A t) d t=\frac{1}{A} .
\end{aligned}
$$

We can now estimate the right hand side of 4. The first summand is $\frac{Q^{2}}{A} \sum_{n \leq N}\left|a_{n}\right|^{2}$, while the second is by definition at most $\frac{Q^{2}}{A} M(1 / A)$. For the third we apply the Cauchy-Schwarz-inequality to obtain

$$
\begin{aligned}
\left(\int_{0}^{1}\left|S(u) S^{\prime}(u)\right| d u\right)^{2} & \leq\left(\int_{0}^{1}|S(u)|^{2} d u\right)\left(\int_{0}^{1}\left|S^{\prime}(u)\right|^{2} d u\right) \\
& =\left(\sum_{n \leq N}\left|a_{n}^{2}\right|\right)\left(\sum_{n \leq N}(2 \pi n)^{2}\left|a_{n}^{2}\right|\right) \\
& \leq(2 \pi N)^{2}\left(\sum_{n \leq N}\left|a_{n}^{2}\right|\right)^{2}
\end{aligned}
$$

Hence, the last term in (4) is bounded above by $3 A(2 \pi N) \sum_{n \leq N}\left|a_{n}\right|^{2}$, and inserting our bounds into (4) yields the claim of our lemma.

Now we deduce Theorem 1. Let $S(\alpha)$ be a random sum in the sense that the coefficients $a_{n} \in\{1,-1\}$ are chosen at random. We compute the expectation of the fourth moment of $S(\alpha)$.

$$
\begin{aligned}
\mathrm{E} \int_{0}^{1}|S(u)|^{4} d u & =\mathrm{E} \sum_{\substack{\mu_{1}, \mu_{2}=\nu_{1}+\nu_{2} \\
\mu_{1}, \mu_{2}, \nu_{1}, \nu_{2} \leq N}} a_{\nu_{1}} a_{\nu_{2}} a_{\mu_{1}} a_{\mu_{2}} \\
& =\#\left\{\mu_{1}, \mu_{2}, \nu_{1}, \nu_{2} \leq N:\left\{\mu_{1}, \mu_{2}\right\}=\left\{\nu_{1}, \nu_{2}\right\}\right\} \\
& =2 N^{2}-N .
\end{aligned}
$$

If $m \subseteq[0,1]$ is of measure x, then $\int_{m}|S(u)|^{2} d u \leq \sqrt{x}\left(\int_{m}|S(u)|^{4} d u\right)^{1 / 2}$, thus $\mathrm{E} M(x) \leq \sqrt{2 x}$. In particular, we have $M(x) \leq 1 / 2$ with probability $\geq 1-\sqrt{8 x}$. Let $\delta>0$ be given, and set $A=8 \delta^{-2}$. Then with probability $\geq 1-\delta$ we have $M(1 / A) \leq 1 / 2$, and (3) becomes

$$
\begin{aligned}
\sum_{q \leq Q} \sum_{(a, q)=1}\left|S\left(\frac{a}{q}\right)\right|^{2} & \geq\left(\frac{Q^{2} \delta^{2}}{16}-48 \delta^{-2} \pi N\right) \sum_{n \leq N}\left|a_{n}\right|^{2} \\
& \geq \frac{Q^{2} \delta^{2}}{32} \sum_{n \leq N}\left|a_{n}\right|^{2}
\end{aligned}
$$

provided that $Q^{2}>1536 \delta^{4} N$. Hence, for fixed ϵ, the relation (22 becomes true with probability $1-\sqrt{1024 \epsilon}$, provided that Q^{2} / N is sufficiently large. Hence, our claim follows.

I would like to thank the referee for improving the quality of this paper.

References

[1] Erdős, P., Rényi, A., Some remarks on the large sieve of Yu. V. Linnik, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 11 (1968), 3-13.
[2] Gallagher, P. X., The large sieve, Mathematika 14 (1967), 14-20.
[3] Montgomery, H. L., Multiplicative Number Theory, Lecture Notes in Math. 227 (1971).

Department of Pure Mathematics and Computer Algebra
Universiteit Gent
Krijgslaan 281, 9000 Gent, Belgium
E-mail: jcsp@cage.ugent.be

[^0]: 2000 Mathematics Subject Classification: primary 11N35; secondary 30B20.
 Key words and phrases: Large sieve, random series.
 Received January 8, 2008, revised January 2009. Editor R. Kučera.

