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QUENCHING TIME OF SOME
NONLINEAR WAVE EQUATIONS

Firmin K. N’gohisse and Théodore K. Boni

Abstract. In this paper, we consider the following initial-boundary value
problem 

utt(x, t) = εLu(x, t) + f
(
u(x, t)

)
in Ω× (0, T ) ,

u(x, t) = 0 on ∂Ω× (0, T ) ,
u(x, 0) = 0 in Ω ,

ut(x, 0) = 0 in Ω ,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, L is an
elliptic operator, ε is a positive parameter, f(s) is a positive, increasing,
convex function for s ∈ (−∞, b), lims→b f(s) = ∞ and

∫ b
0
ds
f(s) < ∞ with

b = const > 0. Under some assumptions, we show that the solution of the
above problem quenches in a finite time and its quenching time goes to that
of the solution of the following differential equation{

α′′(t) = f(α(t)) , t > 0 ,
α(0) = 0 , α′(0) = 0 ,

as ε goes to zero. We also show that the above result remains valid if the
domain Ω is large enough and its size is taken as parameter. Finally, we give
some numerical results to illustrate our analysis.

1. Introduction

Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Consider the
following initial-boundary value problem

utt(x, t) = εLu(x, t) + f
(
u(x, t)

)
in Ω× (0, T ) ,(1)

u(x, t) = 0 on ∂Ω× (0, T ) ,(2)
u(x, 0) = 0 in Ω ,(3)
ut(x, 0) = 0 in Ω ,(4)

where ε is a positive parameter, f(s) is a positive, increasing and convex function
for s ∈ (−∞, b), lims→b f(s) =∞,

∫ b
0

ds
f(s) < +∞ with b = const > 0. The operator
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L is defined as follows

Lu =
N∑

i,j=1

∂

∂xi

(
aij(x) ∂u

∂xj

)
,

where aij : Ω→ R, aij ∈ C1(Ω), aij = aji, 1 ≤ i, j ≤ N and there exists a constant
C > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ C‖ξ‖2 ∀x ∈ Ω , ∀ξ = (ξ1, . . . , ξN ) ∈ RN ,

where ‖ · ‖ stands for the Euclidean norm of RN . Here (0, T ) is the maximal time
interval of existence of the solution u. The time T may be finite or infinite. When T
is infinite, we say that the solution u exists globally. When T is finite, the solution
u develops a singularity in a finite time, namely

lim
t→T
‖u(·, t)‖∞ = b

where ‖u(·, t)‖∞ = supx∈Ω |u(x, t)|. In this last case, we say that the solution u
quenches in a finite time and the time T is called the quenching time of the solution
u. Introduce the function F (s) =

∫ s
0 f(σ)dσ. Throughout this paper, we suppose

that
∫ b

0
ds√
F (s)

< +∞.
Solutions of nonlinear wave equations which quench in a finite time have been

the subject of investigation of many authors (see [4], [13], [11], [15], [18], and the
references cited therein).

By standard methods, local existence, uniqueness, quenching and global existence
have been treated (see for instance [18]). In this paper, we are interested in the
asymptotic behavior of the quenching time when ε approaches zero. Our work was
motivated by the paper of Friedman and Lacey in [5], where they have considered
the following initial-boundary value problem

ut(x, t) = ε∆u(x, t) + f(u(x, t)) in Ω× (0, T ) ,
u(x, t) = 0 on ∂Ω× (0, T ) ,
u(x, 0) = u0(x) in Ω ,

where ∆ is the Laplacian, f(s) is a positive, increasing, convex function for the
nonnegative values of s,

∫∞
0

ds
f(s) <∞, u0(x) is a continuous function in Ω. Under

some additional conditions on the initial data, they have shown that the solution
of the above problem blows up in a finite time and its blow-up time tends to that
of the solution λ(t) of the following differential equation

(5) λ
′
(t) = f(λ(t)) , λ(0) = M ,

as ε goes to zero where M = supx∈Ω u0(x) (we say that a solution blows up in a
finite time if it reaches the value infinity in a finite time).

The proof developed in [5] is based on the construction of upper and lower
solutions and it is difficult to extend the method in [5] to the problem described in
(1)–(4). In the present paper, we prove a similar result. More precisely, we show
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that when ε is small enough, the solution u of (1)–(4) quenches in a finite time and
its quenching time tends to that of the solution α(t) of the following differential
equation

(6) α
′′
(t) = f

(
α(t)

)
, α(0) = 0 , α

′
(0) = 0 ,

as ε goes to zero. We also prove that the above result remains valid if Ω is large
enough and its size is taken as parameter. Our paper is written in the following
manner. In the next section, under some assumptions, we show that the solution
u of (1)–(4) quenches in a finite time and its quenching time goes to that of the
solution α(t) of the differential equation defined in (6) when the parameter ε goes
to zero. We also extend this result taking the size of the domain Ω as parameter.
Finally, in the last section, we give some numerical results to illustrate our analysis.

2. Quenching times

In this section, under some assumptions, we show that the solution u of (1)–(4)
quenches in a finite time and its quenching time goes to that of the solution of the
differential equation defined in (6) when ε tends to zero.

We also obtain an analogous result in the case where the domain Ω is large
enough and its size plays the role of parameter. Before starting, let us recall a well
known result. Consider the following eigenvalue problem

−Lϕ = λϕ in Ω ,(7)
ϕ = 0 on ∂Ω ,(8)
ϕ > 0 in Ω .(9)

The above problem admits a solution (ϕ, λ) with λ > 0. We can normalize ϕ so
that

∫
Ω ϕdx = 1.

Our first result on the quenching time concerns the case where the domain Ω is
fixed and ε is small enough. It is stated in the following theorem.

Theorem 2.1. Let A = λ
∫ b

0
ds
f(s) . If ε < A then the solution u of (1)–(4) quenches

in a finite time and its quenching time T satisfies the following estimates
(10) Te ≤ T ≤ (1 + εA/2)Te + o(ε)

where Te = 1√
2

∫ b
0

ds√
F (s)

is the quenching time of the solution α(t) of the differential
equation defined in (6).

Proof. Since (0, T ) is the maximal time interval on which the solution u exists,
our aim is to show that T is finite and satisfies the above estimates. Introduce the
function v(t) defined as follows

v(t) =
∫

Ω
ϕ(x)u(x, t) dx for t ∈ (0, T ) .

Take the derivative of v in t and use (1) to obtain

v′′(t) = ε

∫
Ω
ϕLudx+

∫
Ω
f(u)ϕdx .
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Applying Green’s formula, we arrive at

v′′(t) = ε

∫
Ω
uLϕdx+

∫
Ω
f(u)ϕdx .

Using (7) and Jensen’s inequality, we find that
v′′(t) ≥ −ελv(t) + f

(
v(t)

)
,

which implies that

v′′(t) ≥ f
(
v(t)

)(
1− ελv(t)

f(v(t))

)
.

We observe that ∫ b

0

ds

f(s) ≥ sup
0≤t≤b

∫ t

0

ds

f(s) ≥ sup
0≤t≤b

t

f(t)

because f(s) is an increasing function for the nonnegative values of s. We deduce
that v′′(t) ≥ (1− εA)f(v(t)) which implies that

v′(t) ≥ (1− εA)
∫ t

0
f
(
v(s)

)
ds , t ∈ (0, T ) ,(11)

v(0) = 0 .(12)

Let γ(t) be the solution of the following differential equation

γ′(t) = (1− εA)
∫ t

0
f
(
γ(s)

)
ds , t ∈ (0, T0) ,(13)

γ(0) = 0 ,(14)

where (0, T0) is the maximal time interval of existence of γ(t). It is not hard to see
that

γ′′(t) = (1− εA)f
(
γ(t)

)
.

Multiply both sides of the above equality by γ′(t) to obtain( (γ′(t))2

2

)′
= (1− εA)

(
F (γ(t))

)
t
.(15)

Integrating the equality in (15) over (0, t), we find that

(γ′(t))2

2 = (1− εA)
(
F (γ(t))

)
,(16)

which implies that

γ′(t) =
√

2(1− εA)F
(
γ(t)

)
.

This equality may be rewritten as follows
dγ√
F (γ)

=
√

2(1− εA) dt .
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After integration over (0, T0), we discover that

T0 = 1√
2(1− εA)

∫ b

0

ds√
F (s)

.

Since the above integral converges, we see that γ(t) quenches at the time T0. On
the other hand, the maximum principle implies that
(17) v(t) ≥ γ(t) for t ∈ (0, T∗) ,
where T∗ = min{T0, T}. We deduce that T ≤ T0. Indeed, suppose that T > T0.
From (17), it is not difficult to see that v(T0) = b which implies that u quenches at
the times T0. But this contradicts the fact that (0, T ) is the maximal time interval
of existence of the solution u. Hence, we have

(18) T ≤ T0 = 1√
2(1− εA)

∫ b

0

ds√
F (s)

.

Now let us define the function U(t) as follows
U(t) = sup

x∈Ω
u(x, t) for t ∈ (0, T ) .

Obviously, we have U(0) = 0, U ′(0) = 0 and there exists x0 ∈ Ω such U(t) = u(x0, t).
It is not hard to see that Lu(x0, t) ≤ 0. Consequently, we getU

′′(t) ≤ f(U(t)) , t ∈ (0, T ) ,

U(0) = 0 , U ′(0) = 0 ,

which implies that

U ′(t) ≤
∫ t

0
f
(
U(s)

)
ds , t ∈ (0, T ) ,(19)

U(0) = 0 .(20)

Let β(t) be the solution of the differential equation below

β′(t) =
∫ t

0
f
(
β(s)

)
ds , t ∈ (0, T1) ,(21)

β(0) = 0 ,(22)

where (0, T1) is the maximal time interval of existence of β(t). As we have seen for
the solution γ(t), β(t) quenches at the time T1 = 1√

2

∫ b
0

ds√
F (s)

. By the maximum
principle, we find that

U(t) ≤ β(t) for t ∈ (0, T∗∗) ,
where T∗∗ = min{T, T1}. This implies that T∗∗ = T . In fact, if T1 > T , we obtain
U(T ) ≤ β(T ) < b which is a contradiction. Therefore

(23) T ≥ T1 = 1√
2

∫ b

0

ds√
F (s)

.
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Apply Taylor’s expansion to obtain
1√

1− εA
= 1 + εA

2 + o(ε) .

Use (18), (23) and the above relation to complete the rest of the proof. �

Now, let us consider the case where the domain Ω is large enough and ε is fixed.
Let a ∈ Ω be such that δ = dist(a, ∂Ω) > 0. Consider the following eigenvalue
problem

−Lψ(x) = λδψ(x) in B(a, δ) ,
ψ(x) = 0 on ∂B(a, δ) ,
ψ(x) > 0 in B(a, δ) ,

where B(a, δ) = {x ∈ RN ; ‖x − a‖ < δ} ⊂ Ω. It is well known that the above
problem admits a solution (ψ, λδ) such that 0 < λδ ≤ D

δ2 where D is a positive
constant which depends only on the upper bound of the coefficients of the operator
L and the dimension N . We have the following result.

Theorem 2.2. Let Q = D
∫ b

0
ds
f(s) and suppose that dist(a, ∂Ω) >

√
εQ. Then the

solution u of (1)–(4) quenches in a finite time and its quenching time T satisfies
the following estimates

Te ≤ T ≤ Te + εQTe
2(dist(a, ∂Ω))2 + o

( 1
(dist(a, ∂Ω))2

)
,

where Te = 1√
2

∫ b
0

ds√
F (s)

is the quenching time of the solution α(t) of the differential
equation defined in (6).

Proof. Since B(a, δ) ⊂ Ω then we have 0 < λ ≤ λδ where λ is the eigenvalue of
the eigenvalue problem defined in (7)–(9). Reasoning as in the proof of Theorem
2.1, it is not hard to see that

1√
2

∫ b

0

dσ√
F (σ)

≤ T ≤ 1√
2(1− εA)

∫ b

0

dσ√
F (σ)

where A = λ
∫ b

0
ds
f(s) . Obviously, we have

1− εA ≥ 1− ελδ
∫ b

0

ds

f(s) ≥ 1− εD

δ2

∫ b

0

ds

f(s)

because 0 < λ ≤ λδ ≤ D
δ2 . Due to the fact that Q = D

∫ b
0

ds
f(s) , we deduce that

(24) 1√
2

∫ b

0

dσ√
F (σ)

≤ T ≤ 1√
2(1− ε

δ2Q)

∫ b

0

dσ√
F (σ)

.

We observe that
1√

2(1− εQ
δ2 )

= 1√
2

+ εQ

2
√

2δ2
+ o( 1

δ2 ).
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It follows from (24) that

Te ≤ T ≤ Te + εQ

2
√

2δ2

∫ b

0

dσ√
F (σ)

+ o( 1
δ2 ) .

Taking into account the expression of Te, we arrive at

Te ≤ T ≤ Te + εQTe
2δ2 + o( 1

δ2 ) .

Use the fact that δ=dist(a, ∂Ω) to complete the rest of the proof. �

Remark 2.1. If f(s) = (1 − s)−1 then F (s) = −ln(1 − s). Consequently Te =
1√
2

∫ 1
0

ds√
−ln(1−s)

and its value is approximately equal 1.25.

Remark 2.2. From Theorem 2.2, we see that if dist(a, ∂Ω) tends to infinity then
the quenching time T of the solution u of (1)–(4) tends to Te = 1√

2

∫ b
0

ds
F (s) . A

direct consequence of this fact is that if Ω = RN then T = Te.

3. Numerical results

In this section, we give some computational experiments to confirm the theory
developed in the previous section. We consider the radial symmetric solution of
(1)–(4) when Ω = B(0, 1), L = ∆ and f(u) = (1 − u)−p with p > 0. Hence the
problem (1)–(4) may be rewritten as follows

utt = ε
(
urr + N − 1

r
ur

)
+ (1− u)−p , r ∈ (0, 1) , t ∈ (0, T ) ,(25)

ur(0, t) = 0 , u(1, t) = 0 , t ∈ (0, T ) ,(26)
u(r, 0) = 0 , ut(r, 0) = 0 , r ∈ (0, 1) .(27)

We start by the construction of some adaptive schemes as follows. Let I be a positive
integer and let h = 1/I. Define the grid xi = ih, 0 ≤ i ≤ I and approximate the
solution u of (25)–(27) by the solution U

(n)
h = (U (n)

0 , . . . , U
(n)
I )T of the following

explicit scheme

U
(n+1)
0 − 2U (n)

0 + U
(n−1)
0

∆t2n
= εN

2U (n)
1 − 2U (n)

0
h2 + (1− U (n)

0 )−p ,

U
(n+1)
i − 2U (n)

i + U
(n−1)
i

∆t2n
= ε
(U (n)

i+1 − 2U (n)
i + U

(n)
i−1

h2 + (N − 1)
ih

U
(n)
i+1 − U

(n)
i−1

2h

)
+ (1− U (n)

i )−p , 1 ≤ i ≤ I − 1 ,

U
(n)
I = 0 ,

U
(0)
i = 0 , U

(1)
i = 0 , 0 ≤ i ≤ I ,

where n ≥ 1. In order to permit the discrete solution to reproduce the properties of
the continuous solution, we need to adapt the size of the time step so that we take

∆tn = min(h2, (1− ‖U (n)
h ‖∞)p)
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with ‖U (n)
h ‖∞ = sup0≤i≤I |U

(n)
i |. We also approximate the solution u of (25)–(27)

by the solution U
(n)
h of the implicit scheme below

U
(n+1)
0 − 2U (n)

0 + U
(n−1)
0

∆t2n
= εN

2U (n+1)
1 − 2U (n+1)

0
h2 + (1− U (n)

0 )−p,

U
(n+1)
i − 2U (n)

i + U
(n−1)
i

∆t2n

= ε
(U (n+1)

i+1 − 2U (n+1)
i + U

(n+1)
i−1

h2 + (N − 1)
ih

U
(n+1)
i+1 − U (n+1)

i−1
2h

)
+ (1− U (n)

i )−p , 1 ≤ i ≤ I − 1 ,

U
(n+1)
I = 0 , U

(0)
i = 0 , U

(1)
i = 0 , 0 ≤ i ≤ I ,

where n ≥ 1. As in the case of the explicit scheme, we also take here

∆tn = min
{
h2, (1− ‖U (n)

h ‖∞)p
}
.

For our time step, we remark that if the norm of the discrete solution approaches
one, the time step tends to zero. This is the general idea of adaptive schemes.
Let us notice that it is possible to choose other time steps. For instance, one may
take ∆tn = min{h2, (1−‖U (n−1)

h ‖∞)p}. In this last case, we see that if ‖U (n−1)
h ‖∞

tends to one for the large values of n, then the time step approaches zero. This
time step does not perturb the final result on the numerical quenching time.
We need the following definition.

Definition 3.1. We say that the discrete solution U
(n)
h of the explicit scheme or

the implicit scheme quenches in a finite time if limn→∞ ‖U (n)
h ‖∞ = 1 and the series∑∞

n=0 ∆tn converges where ‖U (n)
h ‖∞ = sup0≤i≤I |U

(n)
i |. The quantity

∑∞
n=0 ∆tn

is called the numerical quenching time of the discrete solution U
(n)
h .

In the tables 1 and 2, in rows, we present the numerical quenching times, the
numbers of iterations n, the CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128. We take for the numerical quenching
time Tn =

∑n−1
j=0 ∆tj which is computed at the first time when

∆tn = |Tn+1 − Tn| ≤ 10−16 .

The order(s) of the method is computed from

s = log((T4h − T2h)/(T2h − Th))
log(2) .

Numerical experiments for N = 3; ε = 1/50

Table 1: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit Euler
method
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I Tn n CPUt s
16 1.247227 642 2 -
32 1.251864 2567 12 -
64 1.253119 10267 98 1.88
128 1.253450 41069 769 1.92

Table 2: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit
Euler method

I Tn n CPUt s
16 1.247227 642 3 -
32 1.251864 2567 10 -
64 1.253119 10267 96 1.88
128 1.253450 41069 759 1.92

Remark 3.1. To obtain the above computational results, we have used MATLAB.
Let us notice that in MATLAB, implicit schemes and explicit schemes have practi-
cally the same importance because one transforms all operations in linear systems.
For this fact, we remark that the CPU time of the explicit scheme is approximately
equal to that of the implicit scheme. We also notice that the CPU time of the
implicit scheme is slightly better than that of the explicit scheme. If we had used
for instance C++, we would see that the CPU time of the explicit scheme would
be better than that of the implicit scheme because in this last case, for the implicit
scheme, C++ needs to solve linear systems which is not the case for the explicit
scheme.
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the presentation of the paper.
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