ON SOME PROPERTIES OF THE PICARD OPERATORS

Lucyna Rempulska and Karolina Tomczak

Abstract

We consider the Picard operators \mathcal{P}_{n} and $\mathcal{P}_{n ; r}$ in exponential weighted spaces. We give some elementary and approximation properties of these operators.

1. Introduction

1.1. The Picard operators

$$
\begin{equation*}
\mathcal{P}_{n}(f ; x):=\frac{n}{2} \int_{\mathbb{R}} f(x-t) e^{-n|t|} d t=\frac{n}{2} \int_{\mathbb{R}} f(x+t) e^{-n|t|} d t \tag{1}
\end{equation*}
$$

$x \in \mathbb{R}$ and $n \in \mathbb{N},(\mathbb{N}=\{1,2, \ldots\}, \mathbb{R}=(-\infty,+\infty))$ are investigated for functions $f: \mathbb{R} \rightarrow \mathbb{R}$ from various classes in many monographs and papers (e.g. [2]-8] [10, 11).
G. H. Kirov in the paper [9] introduced the generalized Bernstein polynomials $\mathcal{B}_{n ; r}$ for r-times differentiable functions $f \in C^{r}([0,1])$ and he showed that $\mathcal{B}_{n ; r}$ have better approximation properties than classical Bernstein polynomials \mathcal{B}_{n}.

The Kirov method was used in [12] to the generalized Picard operators

$$
\begin{align*}
\mathcal{P}_{n ; r}(f ; x) & :=\mathcal{P}_{n}\left(F_{r}(t, x) ; x\right), \quad x \in \mathbb{R}, n \in \mathbb{N}, r \in \mathbb{N}_{0}, \tag{2}\\
F_{r}(t, x) & :=\sum_{j=0}^{r} \frac{f^{(j)}(t)}{j!}(x-t)^{j}, \tag{3}
\end{align*}
$$

$\left(\mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ of r-times differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Obviously $\mathcal{P}_{n ; 0}(f) \equiv$ $\mathcal{P}_{n}(f)$.

In this paper we examine the Picard operators \mathcal{P}_{n} (in Section 2) and $\mathcal{P}_{n ; r}$ (in Section 3) for functions f belonging to the exponential weighted spaces $L_{q}^{p}(\mathbb{R})$ and $L_{q}^{p, r}(\mathbb{R})$ which definition is given below. We present some elementary properties, the orders of approximation and the Voronovskaya - type theorems for these operators.

[^0]1.2. Let $q>0$ and $1 \leq p \leq \infty$ be fixed,
\[

$$
\begin{equation*}
v_{q}(x):=e^{-q|x|} \quad \text { for } \quad x \in \mathbb{R} \tag{4}
\end{equation*}
$$

\]

and let $L_{q}^{p} \equiv L_{q}^{p}(\mathbb{R})$ be the space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ for which $v_{q} f$ is Lebesgue integrable with p-th power over \mathbb{R} if $1 \leq p<\infty$ and uniformly continuous and bounded on \mathbb{R} if $p=\infty$. The norm in L_{q}^{p} is defined by

$$
\|f\|_{p, q} \equiv\|f(\cdot)\|_{p, q}:= \begin{cases}\left(\int_{\mathbb{R}}\left|v_{q}(x) f(x)\right|^{p} d x\right)^{1 / p} & \text { if } 1 \leq p<\infty \tag{5}\\ \sup _{x \in \mathbb{R}} v_{q}(x)|f(x)| & \text { if } p=\infty\end{cases}
$$

Moreover, let $r \in \mathbb{N}_{0}$ and $L_{q}^{p, r} \equiv L_{q}^{p, r}(\mathbb{R})$ be the class of all r-times differentiable functions $f \in L_{q}^{p}$ having the derivatives $f^{(k)} \in L_{q}^{p}, 1 \leq k \leq r$. The norm in $L_{q}^{p, r}$ is given by (5). $\left(L_{q}^{p, 0} \equiv L_{q}^{p}\right)$. The spaces L_{q}^{p} and $L_{q}^{p, r}$ are called exponential weighted spaces ([1]).

As usual, for $f \in L_{q}^{p}$ and $k \in \mathbb{N}$ we define the k-th modulus of smoothness:

$$
\begin{align*}
\omega_{k}\left(f ; L_{q}^{p} ; t\right) & :=\sup _{|h| \leq t}\left\|\Delta_{h}^{k} f(\cdot)\right\|_{p, q} \quad \text { for } \quad t \geq 0 \tag{6}\\
\Delta_{h}^{k} f(x) & :=\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} f(x+j h) \tag{7}
\end{align*}
$$

The above ω_{k} has the following properties:

$$
\begin{align*}
\omega_{k}\left(f ; L_{q}^{p} ; t_{1}\right) & \leq \omega_{k}\left(f ; L_{q}^{p} ; t_{2}\right) \quad \text { for } \quad 0 \leq t_{1}<t_{2} \tag{8}\\
\omega_{k}\left(f ; L_{q}^{p} ; \lambda t\right) & \leq(1+\lambda)^{k} e^{k q \lambda t} \omega_{k}\left(f ; L_{q}^{p} ; t\right) \quad \text { for } \quad \lambda, t \geq 0 \tag{9}\\
\lim _{t \rightarrow 0+} \omega_{k}\left(f ; L_{q}^{p} ; t\right) & =0
\end{align*}
$$

for every $f \in L_{q}^{p}$ and $k \in \mathbb{N}$ (see [6, Chapter 6] and [13, Chapter 3]).
By ω_{k} we define the Lipschitz class

$$
\begin{equation*}
\operatorname{Lip}_{M}^{k}\left(L_{q}^{p} ; \alpha\right):=\left\{f \in L_{q}^{p}: \omega_{k}\left(f ; L_{q}^{p} ; t\right) \leq M t^{\alpha} \quad \text { for } \quad t \geq 0\right\} \tag{11}
\end{equation*}
$$

for fixed numbers: $1 \leq p \leq \infty, q>0, k \in \mathbb{N}, M>0$ and $0<\alpha \leq k$.

2. Some properties of \mathcal{P}_{n}

2.1. By elementary calculations can be obtained the following two lemmas.

Lemma 1. The equality

$$
\begin{equation*}
\int_{0}^{\infty} t^{r} e^{-s t} d t=\frac{r!}{s^{r+1}} \tag{12}
\end{equation*}
$$

there holds for every $r \in \mathbb{N}_{0}$ and $s>0$.
Lemma 2. Let $e_{0}(x)=1, e_{1}(x)=x$ and let $\varphi_{x}(t)=t-x$ for $x, t \in \mathbb{R}$. Then

$$
\begin{equation*}
\mathcal{P}_{n}\left(e_{i} ; x\right)=e_{i}(x) \quad \text { for } \quad x \in \mathbb{R}, n \in \mathbb{N}, i=0,1 \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
\mathcal{P}_{n}\left(\varphi_{x}^{k}(t) ; x\right) & =\frac{\left(1+(-1)^{k}\right) k!}{2 n^{k}}, \tag{14}\\
\mathcal{P}_{n}\left(\left|\varphi_{x}(t)\right|^{k} \exp \left(q\left|\varphi_{x}(t)\right|\right) ; x\right) & =\frac{k!n}{(n-q)^{k+1}}, \tag{15}
\end{align*}
$$

for $x \in \mathbb{R}, n \geq q+1$ and $k \in \mathbb{N}_{0}$.
Using the above results and arguing analogously to the proof of Lemma 2 in [10] we can obtain the following basic lemma.

Lemma 3. Let $f \in L_{q}^{p}$ with fixed $1 \leq p \leq \infty$ and $q>0$. Then

$$
\begin{equation*}
\left\|\mathcal{P}_{n}(f)\right\|_{p, q} \leq(1+q)\|f\|_{p, q} \quad \text { for } \quad n \geq q+1 \tag{16}
\end{equation*}
$$

The formula (1) and (16) show that $\mathcal{P}_{n}, n \geq q+1$, is a positive linear operator acting from the space L_{q}^{p} to L_{q}^{p}.
2.2. By (6), (7), (11) and (16) can be derived the following geometric properties of \mathcal{P}_{n} given by (1).

Theorem 1. Let $f \in L_{q}^{p}$ with fixed $1 \leq p \leq \infty$ and $q>0$ and let $q+1 \leq n \in \mathbb{N}$. Then
(i) if f is non-decreasing (non-increasing) on \mathbb{R}, then $\mathcal{P}_{n}(f)$ is also non-decreasing (non-increasing) on \mathbb{R},
(ii) if f is convex (concave) on \mathbb{R}, then $\mathcal{P}_{n}(f)$ is also convex (concave) on \mathbb{R},
(iii) for every $k \in \mathbb{N}$ there holds the inequality

$$
\omega_{k}\left(\mathcal{P}_{n}(f) ; L_{q}^{p} ; t\right) \leq(1+q) \omega_{k}\left(f ; L_{q}^{p} ; t\right), \quad t \geq 0
$$

(iv) if $f \in \operatorname{Lip}_{M}^{k}\left(L_{q}^{p} ; \alpha\right)$ with fixed $k \in \mathbb{N}, 0<\alpha \leq k$ and $M>0$, then also $\mathcal{P}_{n}(f) \in \operatorname{Lip}_{M^{*}}^{k}\left(L_{q}^{p} ; \alpha\right)$ with the same k and α and $M^{*}=(1+q) M$,
(v) If $f \in L_{q}^{\infty, r}$ with a fixed $r \in \mathbb{N}$, then $\mathcal{P}_{n}(f) \in L_{q}^{\infty, r}$ and for derivatives of $\mathcal{P}_{n}(f)$ there holds

$$
\left\|\mathcal{P}_{n}^{(k)}(f)\right\|_{\infty, q}=\left\|\mathcal{P}_{n}\left(f^{(k)}\right)\right\|_{\infty, q} \leq(1+q)\left\|f^{(k)}\right\|_{\infty, q}
$$

Proof. For example we prove (iii). From the formulas (1) and (7) there results that

$$
\Delta_{h}^{k} \mathcal{P}_{n}(f ; x)=\mathcal{P}_{n}\left(\Delta_{h}^{k} f ; x\right) \quad \text { for } \quad x, h \in \mathbb{R}, k \in \mathbb{N}
$$

Next, by (5) and (16), we have

$$
\left\|\Delta_{h}^{k} \mathcal{P}_{n}(f ; \cdot)\right\|_{p, q}=\left\|\mathcal{P}_{n}\left(\Delta_{h}^{k} f, \cdot\right)\right\|_{p, q} \leq(1+q)\left\|\Delta_{h}^{k} f(\cdot)\right\|_{p, q}
$$

for $h \in \mathbb{R}$ and $n \geq q+1$, and using (6), we get the statement (iii).
2.3. Arguing similarly to [5] and 10 and applying (6)-(9), (12) and (16) we can prove the following approximation theorem.

Theorem 2. Suppose that $f \in L_{q}^{p}$ with fixed $1 \leq p \leq \infty$ and $q>0$. Then

$$
\left\|\mathcal{P}_{n}(f)-f\right\|_{p, q} \leq \frac{5}{2}(1+3 q)^{3} \omega_{2}\left(f ; L_{q}^{p} ; \frac{1}{n}\right)
$$

for every $n \geq 3 q+1$.
From Theorem 2 and (8), 10) and (11) there results the following
Corollary 1. If $f \in L_{q}^{p}, 1 \leq p \leq \infty, q>0$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\mathcal{P}_{n}(f)-f\right\|_{p, q}=0 \tag{17}
\end{equation*}
$$

In particular, if $f \in \operatorname{Lip}_{M}^{2}\left(L_{q}^{p} ; \alpha\right)$ with fixed $0<\alpha \leq 2$ and $M>0$, then

$$
\left\|\mathcal{P}_{n}(f)-f\right\|_{p, q}=O\left(n^{-\alpha}\right) \quad \text { as } \quad n \rightarrow \infty
$$

Applying Corollary 1 we shall prove the Voronovskaya-type theorem for \mathcal{P}_{n}.
Theorem 3. Let $f \in L_{q}^{\infty, 2}$ with a fixed $q>0$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{2}\left[\mathcal{P}_{n}(f ; x)-f(x)\right]=f^{\prime \prime}(x) \tag{18}
\end{equation*}
$$

for every $x \in \mathbb{R}$.
Proof. Choose $f \in L_{q}^{\infty, 2}$ and $x \in \mathbb{R}$. Then, by the Taylor formula, we have

$$
f(t)=f(x)+f^{\prime}(x)(t-x)+\frac{1}{2} f^{\prime \prime}(x)(t-x)^{2}+\psi(t ; x)(t-x)^{2} \quad \text { for } \quad t \in \mathbb{R}
$$

where $\psi(t) \equiv \psi(t, x)$ is a function belonging to L_{q}^{∞} and $\lim _{t \rightarrow x} \psi(t ; x)=\psi(x)=0$. Using operator $\mathcal{P}_{n}, n \geq 2 q+1$, and (13) and (14), we get

$$
\begin{equation*}
\mathcal{P}_{n}(f(t) ; x)=f(x)+n^{-2} f^{\prime \prime}(x)+\mathcal{P}_{n}\left(\psi(t) \varphi_{x}^{2}(t) ; x\right) \tag{19}
\end{equation*}
$$

and by the Hölder inequality and (14):

$$
\begin{aligned}
\left|\mathcal{P}_{n}\left(\psi(t) \varphi_{x}^{2}(t) ; x\right)\right| & \leq\left(\mathcal{P}_{n}\left(\psi^{2}(t) ; x\right) \mathcal{P}_{n}\left(\varphi_{x}^{4}(t) ; x\right)\right)^{1 / 2} \\
& =n^{-2}\left(24 \mathcal{P}_{n}\left(\psi^{2}(t) ; x\right)\right)^{1 / 2}
\end{aligned}
$$

From properties of ψ and (17) there results that $\lim _{n \rightarrow \infty} \mathcal{P}_{n}\left(\psi^{2}(t) ; x\right)=\psi^{2}(x)=0$. Consequently,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{2} \mathcal{P}_{n}\left(\psi(t) \varphi_{x}^{2}(t) ; x\right)=0 \tag{20}
\end{equation*}
$$

and by (19) and 20 follows (18).
Now we estimate the rate of convergence given by 18.
Theorem 4. Let $f \in L_{q}^{\infty, 2}$ with a fixed $q>0$. Then

$$
\begin{equation*}
\left\|n^{2}\left[\mathcal{P}_{n}(f)-f\right]-f^{\prime \prime}\right\|_{\infty, q} \leq 4(1+q)^{4} \omega_{1}\left(f^{\prime \prime} ; L_{q}^{\infty} ; \frac{1}{n}\right) \tag{21}
\end{equation*}
$$

for $n \geq q+1$.

Proof. For $f \in L_{q}^{\infty, 2}$ and $x, t \in \mathbb{R}$ there holds the Taylor-type formula

$$
f(t)=f(x)+f^{\prime}(x)(t-x)+\frac{1}{2} f^{\prime \prime}(x)(t-x)^{2}+(t-x)^{2} I(t, x),
$$

where

$$
\begin{equation*}
I(t, x):=\int_{0}^{1}(1-u)\left[f^{\prime \prime}(x+u(t-x))-f^{\prime \prime}(x)\right] d u \tag{22}
\end{equation*}
$$

Using operator $\mathcal{P}_{n}, n \geq q+1$, and (13)-(15), we get

$$
\mathcal{P}_{n}(f(t) ; x)=f(x)+n^{-2} f^{\prime \prime}(x)+\mathcal{P}_{n}\left(\varphi_{x}^{2}(t) I(t, x) ; x\right),
$$

which implies that

$$
\begin{equation*}
\left|n^{2}\left[\mathcal{P}_{n}(f ; x)-f(x)\right]-f^{\prime \prime}(x)\right| \leq n^{2} \mathcal{P}_{n}\left(\varphi_{x}^{2}(t)|I(t, x)| ; x\right) \tag{23}
\end{equation*}
$$

for $x \in \mathbb{R}$ and $n \geq q+1$. Now, applying (6), (8) and (9), we get from (22):

$$
\begin{aligned}
|I(t, x)| & \leq \int_{0}^{1}(1-u) \omega_{1}\left(f^{\prime \prime} ; L_{q}^{\infty} ; u|t-x|\right) e^{q|x|} d u \\
& \leq \frac{1}{2} \omega_{1}\left(f^{\prime \prime} ; L_{q}^{\infty} ;|t-x|\right) e^{q|x|} \\
& \leq \frac{1}{2} \omega_{1}\left(f^{\prime \prime} ; L_{q}^{\infty} ; \frac{1}{n}\right)(1+n|t-x|) e^{q|x|+q|t-x|} .
\end{aligned}
$$

and next by (4) and 15 we can write

$$
\begin{aligned}
& n^{2} v_{q}(x) \mathcal{P}_{n}\left(\varphi_{x}^{2}(t)|I(t, x)| ; x\right) \leq \frac{n^{2}}{2} \omega_{1}\left(f^{\prime \prime} ; L_{q}^{\infty} ; \frac{1}{n}\right) \\
& \times\left\{\mathcal{P}_{n}\left((t-x)^{2} e^{q|t-x|} ; x\right)+n \mathcal{P}_{n}\left(|t-x|^{3} e^{q|t-x|} ; x\right)\right\} \\
& \quad=\omega_{1}\left(f^{\prime \prime} ; L_{q}^{\infty} ; \frac{1}{n}\right)\left(\frac{n^{3}}{(n-q)^{3}}+\frac{3 n^{4}}{(n-q)^{4}}\right) \\
& \quad \leq 4(1+q)^{4} \omega_{1}\left(f^{\prime \prime} ; L_{q}^{\infty} ; \frac{1}{n}\right) \quad \text { for } \quad x \in \mathbb{R}, n \geq q+1
\end{aligned}
$$

Now the estimate (21) is obvious by (23), the last inequality and (5).
Theorem 5. Suppose that $f \in L_{q}^{\infty, r}$ with fixed $q>0$ and $r \in \mathbb{N}$. Then

$$
\begin{equation*}
\left\|\mathcal{P}_{n}^{(r)}(f)-f^{(r)}\right\|_{\infty, q} \leq \frac{5}{2}(1+3 q)^{3} \omega_{2}\left(f^{(r)} ; L_{q}^{\infty} ; \frac{1}{n}\right) \tag{24}
\end{equation*}
$$

for $n \geq 3 q+1$.
Proof. If $f \in L_{q}^{\infty, r}$, then for the r-th derivative of $\mathcal{P}_{n}(f)$ we have by Theorem 1 . (13) and (7):

$$
\begin{aligned}
\mathcal{P}_{n}^{(r)}(f ; x)-f^{(r)}(x) & =\frac{n}{2} \int_{\mathbb{R}}\left[f^{(r)}(x+t)-f^{(r)}(x)\right] e^{-n|t|} d t \\
& =\frac{n}{2} \int_{0}^{\infty}\left[\Delta_{t}^{2} f^{(r)}(x-t)\right] e^{-n t} d t
\end{aligned}
$$

From this and by (6), (9) and $\sqrt{12}$ we deduce that

$$
\begin{aligned}
\left\|\mathcal{P}_{n}^{(r)}(f)-f^{(r)}\right\|_{\infty, q} & \leq \frac{n}{2} \int_{0}^{\infty} \omega_{2}\left(f^{(r)} ; L_{q}^{\infty} ; t\right) e^{-(n-q) t} d t \\
& \leq \omega_{2}\left(f^{(r)} ; L_{q}^{\infty} ; \frac{1}{n}\right) \frac{n}{2} \int_{0}^{\infty}(1+n t)^{2} e^{-(n-3 q) t} d t \\
& =\omega_{2}\left(f^{(r)} ; L_{q}^{\infty} ; \frac{1}{n}\right)\left\{\frac{n}{2(n-3 q)}+\frac{n^{2}}{(n-3 q)^{2}}+\frac{n^{3}}{(n-3 q)^{3}}\right\}
\end{aligned}
$$

for $n \geq 3 q+1$, which yields the estimate 24 .

3. Some properties of $\mathcal{P}_{n ; r}$

3.1. The formulas (1)-(3) show that the operators $\mathcal{P}_{n ; r}, r \in \mathbb{N}_{0}$, generalize \mathcal{P}_{n} and $\mathcal{P}_{n ; 0}(f) \equiv \mathcal{P}_{n}(f)$ for $f \in L_{q}^{p, 0}$. By this fact and Section 1 , we shall consider $\mathcal{P}_{n ; r}$ for $r \in \mathbb{N}$ only.

Lemma 4. Let $1 \leq p \leq \infty, q>0$ and $k \in \mathbb{N}$ be fixed numbers. Then for every $f \in L_{q}^{p, r}$ and $n \geq q+1$ there holds

$$
\begin{equation*}
\left\|\mathcal{P}_{n ; r}(f)\right\|_{p, q} \leq(1+q) \sum_{j=0}^{r}\left\|f^{(j)}\right\|_{p, q} . \tag{25}
\end{equation*}
$$

The formulas (1)-(3) and the inequality (24) show that $\mathcal{P}_{n ; r}, n \geq q+1$, is a linear operator acting from $L_{q}^{p, r}$ to L_{q}^{p}.

Proof. Let $1 \leq p<\infty$. Then, by (1)-(3), the Minkowski inequality and (12), we get for $f \in L_{q}^{p, r}$ and $n \geq q+1$:

$$
\begin{aligned}
\left\|\mathcal{P}_{n ; r}(f)\right\|_{p, q} & \leq \sum_{j=0}^{r} \frac{1}{j!}\left\|\mathcal{P}_{n}\left(f^{(j)}(t) \varphi_{x}^{j}(t) ; \cdot\right)\right\|_{p, q} \\
& \leq \sum_{j=0}^{r} \frac{1}{j!}\left(\int_{\mathbb{R}}\left|e^{-q|x|} \frac{n}{2} \int_{\mathbb{R}} t^{j} f^{(j)}(x+t) e^{-n|t|} d t\right|^{p} d x\right)^{1 / p} \\
& \leq \sum_{j=0}^{r} \frac{n}{2 j!} \int_{\mathbb{R}}|t|^{j} e^{-n|t|}\left(\int_{\mathbb{R}}\left|e^{-q|x|} f^{(j)}(x+t)\right|^{p} d x\right)^{1 / p} d t \\
& \leq \sum_{j=0}^{r} \frac{n}{2 j!}\left\|f^{(j)}\right\|_{p, q} \int_{\mathbb{R}}|t|^{j} e^{-(n-q)|t|} d t \\
& =\sum_{j=0}^{r}\left\|f^{(j)}\right\|_{p, q} \frac{n}{(n-q)^{j+1}} \leq(1+q) \sum_{j=0}^{r}\left\|f^{(j)}\right\|_{p, q} .
\end{aligned}
$$

The proof of 25 for $p=\infty$ is similar.
3.2. First we shall prove an analogy of Theorem 2

Theorem 6. Suppose that $f \in L_{q}^{p, r}$ with fixed $1 \leq p \leq \infty, q>0$ and $r \in \mathbb{N}$. Then

$$
\begin{equation*}
\left\|\mathcal{P}_{n ; r}(f)-f\right\|_{p, q} \leq M_{1} n^{-r} \omega_{1}\left(f^{(r)} ; L_{q}^{p} ; \frac{1}{n}\right) \tag{26}
\end{equation*}
$$

for every $n \geq q+1$, where $M_{1}=(r+2)(1+2 q)^{r+2}$.
Proof. For every $f \in L_{q}^{p, r}$ and $x, t \in \mathbb{R}$ there holds the following Taylor-type formula:

$$
\begin{equation*}
f(x)=\sum_{j=0}^{r} \frac{f^{(j)}(t)}{j!}(x-t)^{j}+\frac{(x-t)^{r}}{(r-1)!} I_{r}(t, x), \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{r}(t, x):=\int_{0}^{1}(1-u)^{r-1}\left[f^{(r)}(t+u(x-t))-f^{(r)}(t)\right] d u \tag{28}
\end{equation*}
$$

From (27), (28) and (3) there results that

$$
F_{r}(t, x)=f(x)-\frac{(x-t)^{r}}{(r-1)!} I_{r}(t, x),
$$

and next by (2), (13) and (7) it follows that

$$
\begin{align*}
\mathcal{P}_{n ; r}(f ; x)-f(x) & =\frac{(-1)^{r+1}}{(r-1)!} \mathcal{P}_{n}\left((t-x)^{r} I_{r}(t, x) ; x\right) \\
& =\frac{(-1)^{r+1} n}{2(r-1)!} \int_{\mathbb{R}}\left(t^{r} \int_{0}^{1}(1-u)^{r-1} \Delta_{-u t}^{1} f^{(r)}(x+t) d u\right) e^{-n|t|} d t \tag{29}
\end{align*}
$$

for $x \in \mathbb{R}$ and $n \geq 2 q+1$.
If $1 \leq p<\infty$, then using the Minkowski inequality and (5)-(9) and (12), we get from (29):

$$
\begin{aligned}
& \left\|\mathcal{P}_{n ; r}(f)-f\right\|_{p, q} \\
& =\frac{n}{2(r-1)!}\left(\int_{\mathbb{R}}\left|e^{-q|x|} \int_{\mathbb{R}} t^{r} e^{-n|t|}\left(\int_{0}^{1}(1-u)^{r-1} \Delta_{-u t}^{1} f^{(r)}(x+t) d u\right) d t\right|^{p} d x\right)^{1 / p} \\
& \leq \frac{n}{2(r-1)!} \int_{\mathbb{R}}|t|^{r} e^{-(n-q)|t|}\left(\int_{0}^{1}(1-u)^{r-1}\left\|\Delta_{-u t}^{1} f^{(r)}(\cdot)\right\|_{p, q} d u\right) d t \\
& \leq \frac{n}{2(r-1)!} \int_{\mathbb{R}}|t|^{r} e^{-(n-q)|t|}\left(\int_{0}^{1}(1-u)^{r-1} \omega_{1}\left(f^{(r)} ; L_{q}^{p} ; u|t|\right) d u\right) d t \\
& \leq \frac{n}{2 r!} \int_{\mathbb{R}}|t|^{r} e^{-(n-q)|t|} \omega_{1}\left(f^{(r)} ; L_{q}^{p} ;|t|\right) d t \\
& \leq \frac{n}{r!} \omega_{1}\left(f^{(r)} ; L_{q}^{p} ; \frac{1}{n}\right) \int_{0}^{\infty} t^{r}(1+n t) e^{-(n-2 q) t} d t \\
& =\omega_{1}\left(f^{(r)} ; L_{q}^{p} ; \frac{1}{n}\right)\left(\frac{n}{(n-2 q)^{r+1}}+\frac{(1+r) n^{2}}{(n-2 q)^{r+2}}\right)
\end{aligned}
$$

for $n \geq 2 q+1$, which implies (26) for $1 \leq p<\infty$.

The proof of (26) for $f \in L_{q}^{\infty, r}$ is analogous.
From Theorem 6 we can derive the following
Corollary 2. If $f \in L_{q}^{p, r}, 1 \leq p \leq \infty, q>0$ and $r \in \mathbb{N}$, then

$$
\lim _{n \rightarrow \infty} n^{r}\left\|\mathcal{P}_{n ; r}(f)-f\right\|_{p, q}=0
$$

Moreover, if $f^{(r)} \in \operatorname{Lip}_{M}^{1}\left(L_{q}^{p} ; \alpha\right)$ with some $0<\alpha \leq 1$ and $M>0$ then

$$
\left\|\mathcal{P}_{n ; r}(f)-f\right\|_{p, q}=O\left(n^{-r-\alpha}\right) \quad \text { as } \quad n \rightarrow \infty .
$$

Arguing analogously to the proof of Theorem 2 given in paper 12 and applying Corollary 1, we can obtain the following Voronovskaya-type theorem for operators $\mathcal{P}_{n ; r}$.

Theorem 7. Let $f \in L_{q}^{\alpha, r}$ with fixed $r \in \mathbb{N}$ and $q>0$. Then

$$
\begin{aligned}
\mathcal{P}_{n ; r}(f ; x) & -f(x)=\frac{(-1)^{r}-1}{2 n^{r+1}} f^{(r+1)}(x) \\
& +\frac{(r+1)\left[1+(-1)^{r}\right]}{2 n^{r+2}} f^{(r+2)}(x)+o\left(n^{-r-2}\right) \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

at every $x \in \mathbb{R}$. In particular, if r is even number, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{r+2}\left[\mathcal{P}_{n ; r}(f ; x)-f(x)\right]=(r+1) f^{(r+2)}(x) \tag{30}
\end{equation*}
$$

at every $x \in \mathbb{R}$.
Similarly to Theorem 4 now we shall estimate the rate of convergence given by (30).

Theorem 8. Let $q>0$ and even number $r \in \mathbb{N}$ be fixed. Then for every $f \in L_{q}^{\infty, r+2}$ and $n \geq 2 q+1$ there holds

$$
\begin{equation*}
\left\|n^{r+2}\left[\mathcal{P}_{n ; r}(f)-f\right]-(r+1) f^{(r+2)}\right\|_{p, q} \leq M_{2} \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ; \frac{1}{n}\right) \tag{31}
\end{equation*}
$$

where $M_{2}=(1+2 q)^{r+4}(r+4)^{2}$.
Proof. Similarly to the proof of Theorem 6 we use the Taylor-type formula of $f \in L_{q}^{\infty, r+2}$:

$$
\begin{equation*}
f(x)=\sum_{j=0}^{r+2} \frac{f^{(j)}(t)}{j!}(x-t)^{j}+\frac{(x-t)^{r+2}}{(r+1)!} I_{1}(t, x), \tag{32}
\end{equation*}
$$

for $x, t \in \mathbb{R}$, where

$$
\begin{equation*}
I_{1}(t, x):=\int_{0}^{1}(1-u)^{r+1}\left[f^{(r+2)}(t+u(x-t))-f^{(r+2)}(t)\right] d u \tag{33}
\end{equation*}
$$

Analogously for $f^{(r+1)} \in L_{q}^{\infty, 1}$ and $x, t \in \mathbb{R}$ we have

$$
\begin{equation*}
f^{(r+1)}(t)=f^{(r+1)}(x)+f^{(r+2)}(x)(t-x)+(t-x) I_{2}(t, x) \tag{34}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{2}(t, x):=\int_{0}^{1}\left[f^{(r+2)}(x+u(t-x))-f^{(r+2)}(x)\right] d u . \tag{35}
\end{equation*}
$$

By (3) and (34) the formula (32) can be rewritten in the form:

$$
\begin{align*}
f(x)= & F_{r}(t, x)+\frac{(x-t)^{r+1}}{(r+1)!} f^{(r+1)}(x) \\
& +\left(\frac{1}{(r+2)!}-\frac{1}{(r+1)!}\right) f^{(r+2)}(x)(x-t)^{r+2} \\
& -\frac{(x-t)^{r+2}}{(r+1)!} I_{2}(t, x)+\frac{(x-t)^{r+2}}{(r+2)!}\left[f^{(r+2)}(t)-f^{(r+2)}(x)\right] \\
& +\frac{(x-t)^{r+2}}{(r+1)!} I_{1}(t, x) \quad \text { for } \quad x, t \in \mathbb{R} . \tag{36}
\end{align*}
$$

Let now $x \in \mathbb{R}$ be a fixed point. Using operator \mathcal{P}_{n} and (1)-(3) and (13)-(15), we get from 36):

$$
f(x)=\mathcal{P}_{n ; r}(f ; x)-\frac{r+1}{n^{r+2}} f^{(r+2)}(x)+\sum_{i=1}^{3} T_{i}(x) \quad \text { for } \quad n \geq 2 q+1
$$

where

$$
\begin{aligned}
& T_{1}(x):=\frac{1}{(r+1)!} \mathcal{P}_{n}\left((t-x)^{r+2} I_{2}(t, x) ; x\right), \\
& T_{2}(x):=\frac{1}{(r+2)!} \mathcal{P}_{n}\left((t-x)^{r+2}\left[f^{(r+2)}(t)-f^{(r+2)}(x)\right] ; x\right), \\
& T_{3}(x):=\frac{1}{(r+1)!} \mathcal{P}_{n}\left((t-x)^{r+2} I_{1}(t, x) ; x\right) .
\end{aligned}
$$

Consequently we have

$$
\begin{equation*}
\left\|n^{r+2}\left[\mathcal{P}_{n, r}(f)-f\right]-(r+1) f^{(r+2)}\right\|_{\infty, q} \leq n^{r+2} \sum_{i=1}^{3}\left\|T_{i}\right\|_{\infty, q} \tag{37}
\end{equation*}
$$

From (35) and (6)-(9) it follows that

$$
\begin{aligned}
v_{q}(x)\left|T_{1}(x)\right| \leq & \frac{e^{-q|x|}}{(r+1)!} \mathcal{P}_{n}\left(|t-x|^{r+2}\left|I_{2}(t, x)\right| ; x\right) \\
\leq & \frac{1}{(r+1)!} \mathcal{P}_{n}\left(|t-x|^{r+2} \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ;|t-x|\right) ; x\right) \\
\leq & \frac{1}{(r+1)!} \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ; \frac{1}{n}\right) \\
& \times\left[\mathcal{P}_{n}\left(|t-x|^{r+1} e^{q|t-x|} ; x\right)+n \mathcal{P}_{n}\left(|t-x|^{r+2} e^{q|t-x|} ; x\right)\right]
\end{aligned}
$$

and further by we have

$$
\begin{equation*}
\left\|T_{1}\right\|_{\infty, q} \leq \frac{1}{(r+1)!} \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ; \frac{1}{n}\right)\left[\frac{n(r+2)!}{(n-q)^{r+3}}+\frac{n^{2}(r+3)!}{(n-q)^{r+4}}\right] . \tag{38}
\end{equation*}
$$

Analogously, by (6)-(9) there results that

$$
\begin{aligned}
\left|f^{(r+2)}(t)-f^{(r+2)}(x)\right| & \leq \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ;|t-x|\right) e^{q|x|} \\
& \leq e^{q|x|+q|t-x|}(1+n|t-x|) \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ; \frac{1}{n}\right)
\end{aligned}
$$

and from (33):

$$
\begin{aligned}
\left|I_{1}(t, x)\right| & \leq \int_{0}^{1}(1-u)^{r+1} \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ; u|t-x|\right) e^{q|t|} d u \\
& \leq e^{q|t|} \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ;|t-x|\right) \int_{0}^{1}(1-u)^{r+1} d u \\
& \leq \frac{1}{r+2} e^{q|t|+q|t-x|}(1+n|t-x|) \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ; \frac{1}{n}\right) .
\end{aligned}
$$

Using the above inequalities and (15), we deduce that

$$
\begin{equation*}
\left\|T_{2}\right\|_{\infty, q} \leq \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ; \frac{1}{n}\right)\left[\frac{n}{(n-q)^{r+3}}+\frac{(r+3) n^{2}}{(n-q)^{r+4}}\right] \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T_{3}\right\|_{\infty, q} \leq \omega_{1}\left(f^{(r+2)} ; L_{q}^{\infty} ; \frac{1}{n}\right)\left[\frac{n}{(n-2 q)^{r+3}}+\frac{(r+3) n^{2}}{(n-2 q)^{r+4}}\right] \tag{40}
\end{equation*}
$$

for $n \geq 2 q+1$. Summarizing (37)-40), we immediately obtain the desired inequality (31).

Remarks 1. Theorem 6 shows that the order of approximation of function $f \in L_{q}^{p, r}$ by $\mathcal{P}_{n ; r}(f)$ is dependent on r and it improves if r grows. Moreover, Theorem 6 and Theorem 2 show that the operators $\mathcal{P}_{n ; r}$ with $r \geq 2$ have better approximation properties than \mathcal{P}_{n} for $f \in L_{q}^{p, r}$.

We mention also that the similar theorems can be obtained for the Gauss-Weierstrass operators

$$
W_{n}(f ; x):=\sqrt{n / \pi} \int_{\mathbb{R}} f(x-t) e^{-n t^{2}} d t, \quad x \in \mathbb{R}, n \in \mathbb{N},
$$

defined in exponential weighted spaces $L_{q}^{p}(\mathbb{R})$ with the weighted function $v_{q}(x)=$ $e^{-q x^{2}}, q>0$.

References

[1] Becker, M., Kucharski, D., Nessel, R. J., Global approximation theorems for the Szász-Mirakyan operators in exponential weight spaces, in Linear Spaces and Approximation, Proc. Conf. Oberwolfach, 1977, Birkhäuser Verlag, Basel, 1978, pp. 319-333.
[2] Brown, B. M., Elliott, D., Paget, D. F., Lipschitz constants for the Bernstein polynomials of Lipschitz continuous function, J. Approx. Theory 49 (1987), 196-199.
[3] Butzer, P. L., Nessel, R. J., Fourier Analysis and Approximation, vol. 1, Birkhäuser Verlag, Basel und Stuttgart, 1971.
[4] De Vore, R. A., Lorentz, G. G., Constructive Approximation, Springer-Verlag, Berlin, 1993.
[5] Deeba, E., Mohapatra, R. N., Rodriguez, R. S., On the degree of approximation of some singular integrals, Rend. Mat. Appl. (7) (1988), 345-355.
[6] Ditzian, Z., Totik, V., Moduli of Smoothness, Springer-Verlag, New-York, 1987.
[7] Khan, A., On the degree of approximation of K. Picard and E. Poisson - Cauchy singular integrals, Rend. Mat. Appl. (7) (1982), 123-128.
[8] Khan, M. K., Vecchia, B. D., Fassih, A., On the monotonicity of positive linear operators, J. Approx. Theory 92 (1998), 22-37.
[9] Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balkanica (N.S.) 2 (2) (1992), 147-153.
[10] Leśniewicz, A., Rempulska, L., Wasiak, J., Approximation properties of the Picard singular integral in exponential weight spaces, Publ. Mat. 40 (2) (1996), 233-242.
[11] Mohapatra, R. N., Rodriguez, R. S., On the rate of convergence of singular integrals for Hölder continuous functions, Math. Nachr. 149 (1990), 117-124.
[12] Rempulska, L., Walczak, Z., On modified Picard and Gauss - Weierstrass singular integrals, Ukrain. Math. Zh. 57 (11) (2005), 1577-1584.
[13] Timan, A. F., Theory of Approximation of Functions of a Real Variable, Moscow, 1960, (Russian).

[^1]
[^0]: 2000 Mathematics Subject Classification: primary 41A25.
 Key words and phrases: Picard operator, exponential weighted space, degree of approximation, Voronovskaya type theorem.

 Received August 27, 2008, revised March 2009. Editor O. Došlý.

[^1]: Institute of Mathematics, Poznan University of Technology
 ul. Piotrowo 3a, 60-965 Poznań, Poland
 E-mail: lucyna.rempulska@math.put.poznan.pl

