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ON METRICS OF POSITIVE RICCI CURVATURE
CONFORMAL TO M ×Rm

Juan Miguel Ruiz

Abstract. Let (Mn, g) be a closed Riemannian manifold and gE the Eucli-
dean metric. We show that for m > 1, (Mn ×Rm, (g + gE)) is not conformal
to a positive Einstein manifold. Moreover, (Mn ×Rm, (g + gE)) is not confor-
mal to a Riemannian manifold of positive Ricci curvature, through a radial,
integrable, smooth function, ϕ : Rm → R+, for m > 1. These results are
motivated by some recent questions on Yamabe constants.

1. Introduction

We study the existence of positive Einstein metrics and of metrics of positive
Ricci curvature on the conformal class of the product manifold (Mn×Rm, g+ gE),
where g is a metric on a closed manifold with positive scalar curvature, gE the
Euclidean metric of Rm, and m > 1. The case m = 1 was studied recently by
A. Moroianu and L. Ornea [7], who have shown that when (Mn, g) is compact and
Einstein, then

(
Mn ×R, g + dt2

)
is conformal to a positive Einstein manifold, in

which case the function depends only on t, and is of the form α2Cosh−2(βt+ γ),
for some real constants α, β, γ.

Our first result shows that a conformal positive Einstein metric does not exist
when m > 1.

Theorem 1. Let (Mn, g) be a closed Riemannian manifold, and gE the Euclidean
metric of Rm, with m > 1. Then (Mn ×Rm, g + gE) is not conformal to a positive
Einstein manifold.

Tensorial obstructions to the existence of Riemannian metrics that are confor-
mally Einstein have been studied recently. See for instance the articles of Listing,
[5], [6], and of Gover and Nurowski, [3]. These obstructions work only under some
non-degeneracy hypothesis on the Weyl tensor, which do not apply in our case.

As our second result we show that in the conformal class of (Mn ×Rm, g̃) there
is no metric of positive Ricci curvature, at least for radial functions of the factor
Rm.
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Theorem 2. Let (Mn, g) be a closed Riemannian manifold of dimension n. Consi-
der (Rm, gE), with gE the Euclidean metric of Rm. Then, for m > 1, there is no
radial, smooth, positive, integrable function ϕ : Rm → R+, such that,(

Mn ×Rm, h̃
)

=
(
Mn ×Rm, ϕ(g + gE)

)
has positive Ricci curvature.

It seems reasonable to believe that this result should extend from a radial
function of Rm to any conformal factor. The inequality m > 1 is sharp, by the
already mentioned results of A. Moroianu and L. Ornea [7], showing that when
(Mn, g) is a compact, positive Einstein manifold, then (Mn×R, g+dt2) is conformal
to a positive Einstein manifold.

As we mentioned above, sets of Einstein metrics, or of positive Ricci curvature
metrics, on conformal classes have been recently studied on different contexts.
But our interest was originally motivated by some recent results about Yamabe
constants.

Let us recall that the Yamabe constant of the conformal class of a Riemannian
metric g on a closed manifold M is defined as

(1) Y (M, [g]) = inf
ĝ∈[g]

∫
M
Sĝdµĝ( ∫

M
dµĝ

)n−2
n

where Sĝ and dµĝ are the scalar curvature and the volume element corresponding to
ĝ, respectively. The existence of a conformal positive Einstein metric was used, for
instance, by Petean [9] to compute in some cases the Yamabe constant of M ×R.
Moreover, Akutagawa, Florit and Petean showed in [1] that if Sg > 0 then

(2) lim
t→∞

Y
(
Mn ×Nm, [g + th]

)
= Y

(
Mn ×Rm, [g + gE ]

)
.

One gets lower bounds on positive Yamabe constants with conditions on the
Ricci curvature. By a theorem of Obata [8] an Einstein metric is the unique unit
volume metric of constant scalar curvature in the conformal class. Moreover, S.
Ilias proved in [4] that if Rg ≥ λg, with λ > 0, then

(3) Y
(
M, [g]

)
≥ nλ

(
Vol(M, g)

) 2
n .

Therefore, existence of metrics of positive Ricci curvature on M ×Rm would
have give a way to obtain lower bounds for the Yamabe constants of M ×Rm, but
Theorems 1 and 2 say that this is not the case.
Acknowledgement. The author would like to thank his supervisor J. Petean for
many useful observations and valuable conversations on the subject.

2. Notation and general formulas for changes of metric

Let (N, g) be a Riemannian manifold of dimension k. For a function ϕ on N , we
denote ∆ϕ = −div(∇ϕ) the Laplacian of ϕ, ∇ϕ the gradient of ϕ and D2ϕ the
Hessian of ϕ, given by D2ϕ(X,Y ) = X(Y ϕ)− (∇XY )ϕ for any X,Y vector fields
on the manifold. We denote the Ricci curvature tensor of the metric g by Rg, the
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scalar curvature by Sg and the trace free part of the Ricci tensor by Zg. We recall
that Zg is given by Zg = Rg − Sg

k g.
Consider a conformal change of metric g̃ = ϕ−2g. The conformal transformation

of the trace free part of the Ricci tensor, Zg, under this conformal transformation
of the metric is given by (cf. in [8, page 255]):

(4) Zg̃ = Zg + k − 2
ϕ

(
D2ϕ+ ∆ϕ

k
g
)

Likewise, the conformal transformation of the scalar curvature Sg under this
conformal transformation of the metric is given by (cf. in [8, page 255]):

(5) Sg̃ = ϕ2Sg − 2(k − 1)ϕ∆ϕ− k(k − 1)|∇ϕ|2

In the proof of Theorem 2, it will be useful to choose the scaling factor in a
different form in order to simplify the expressions. Under the conformal transfor-
mation of the metric, g̃ = e2ψg, the conformal transformation of the Ricci tensor is
given by (cf. ([2, page 59]):

(6) Rg̃ = Rg − (k − 2)(D2ψ − dψ ⊗ dψ) +
(
∆ψ − (k − 2)|∇ψ|2

)
g

3. Proof of Theorem 1

Proof. Let (Mn, g) be a closed Riemannian manifold of dimension n, and let gE
denote the Euclidean metric of Rm, m > 1. Let h = g + gE .

We proceed by contradiction. Suppose we have a smooth, positive function
u : M ×Rm → R+ , such that (M ×Rm, u−2h) is positive Einstein.

Let h̃ = u−2h. Since (M ×Rm, h̃) is Einstein, we have from (4) that

0 = Zh + n+m− 2
u

(D2u+ ∆u
n+m

h).

Since Zh = Rh − Sh
n+mh, it follows that

(7) D2u = −u
n+m− 2Rh +

( uSh
(n+m− 2)(n+m) −

∆u
n+m

)
h .

Let {∂1, . . . , ∂m} be the usual global orthonormal frame for TRm and let X ∈
TM . We will denote by X̃ a vector field on M extending the tangent vector X.
From (7) we have

(8) D2u(∂i, X̃) = D2u(X̃, ∂i) = 0 ,

and therefore,

0 = D2u(X̃, ∂i) = ∂i(X̃u)− (∇∂iX̃)u ,

0 = D2u(∂i, X̃) = X̃(∂iu)− (∇X̃∂i)u .
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Note that ∇∂iX̃ = ∇X̃∂i = 0, because h is a product metric. It follows that for
any vector field X̃ on M ,

∂i(X̃u)) = 0 ,(9)

X̃(∂iu) = 0 .(10)
From (10), if we write u = u(x, t), where x ∈M and t ∈ Rn, for any i = 1, . . . ,m,

we have
∂iu(x, t) = ∂iu(x0, t) ,

for all x, x0 ∈M . Therefore
u(x, t)− u(x0, t) = w(x) ,

for some smooth function w on M . That is, u is the sum of a function that depends
only on M and a function that depends only on Rm. We write
(11) u(x, t) = v(t) + w(x) .

Then, since h is a Riemannian product, ∆hu = ∆gw + ∆gEv, |∇u|2 = |∇gw|2 +
|∇gEv|2.

It is also a consequence of (7) that

(12) D2u(∂i, ∂j) =
( uSh

(n+m− 2)(n+m) −
∆gw + ∆gEv

n+m

)
δij

for any i, j ≤ m.
And since

D2u(∂i, ∂j) = ∂i(∂ju)− (∇∂i∂j)u ,
where the last term vanishes because ∂i and ∂j belong to the orthonormal frame of
TRm with the Euclidean metric, (12) can be rewritten as

(13) D2u(∂i, ∂j) = ∂i(∂jv) =
( uSh

(n+m− 2)(n+m) −
∆gw + ∆gEv

n+m

)
δij

for any i, j ≤ m.

Now, given X̃ ∈ TM , D2u(X̃, X̃) = D2w(X̃, X̃) depends only on M , so
(14) ∂i

(
D2u(X̃, X̃)

)
= 0 .

Also for any i = 1, . . . ,m, and any k = 1, . . . ,m, i 6= k,
(15) ∂i

(
D2u(∂k, ∂k)

)
= 0 .

Since
∂i
(
D2u(∂k, ∂k)

)
= ∂i

(
∂k(∂ku)

)
= ∂k

(
∂i(∂ku)

)
= 0 ,

where the last equality follows from (13).
Now, let

p =
( uSh

(n+m− 2)(n+m) −
∆u
n+m

)
,

and let i ∈ {1, . . . ,m}. Since m > 1, choose k ≤ m, such that k 6= i. (15) and (12)
imply that
(16) ∂i

(
D2u(∂k, ∂k)

)
= ∂ip = 0 .
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To finish the proof we have to consider two cases: when g is Ricci flat and when it
is not.

Case 1: (M, g) is not Ricci flat.
Since (M, g) is not Ricci flat, we choose some X̃ ∈ TM such that Rg(X̃, X̃) 6= 0.

Evaluating (7) in X̃ we have

D2w(X̃, X̃) = −u
n+m− 2Rh(X̃, X̃) + p g(X̃, X̃) .

Differentiating this equation by ∂i, for any i ≤ m, we have

0 = ∂i
(
D2u(X̃, X̃)

)
= ∂i

( −u
n+m− 2Rh(X̃, X̃)

)
+ ∂i

(
p h(X̃, X̃)

)
= −∂iu
n+m− 2 Rh(X̃, X̃) ,(17)

where the first equality follows from (14), and the last equality from the fact
that Rh(X̃, X̃) and h(X̃, X̃) do not depend on Rm, and neither does p, by (16).
This implies that v is constant and then we can write u = w as in (11). Then
D2u(∂k, ∂k) = 0, ∀k ≤ m, and (12) imply that

(18) Sh = n+m− 2
w

∆gw .

On the other hand, since (M ×Rm, h̃) is Einstein, Sh̃ = λ(n+m), where λ is
the Einstein constant. Thus from (5) we have

(19) Sh = λ(n+m)
w2 + 2(n+m− 1)∆gw

w
+ (n+m)(n+m− 1) |∇gw|

2

w2 .

Combining (18) and (19) yields

(20) λ+ w∆gw + (n+m− 1)|∇gw|2 = 0 .

Finally, we integrate (20) over M ,

0 =
∫
M

(
w∆gw + (n+m− 1)|∇gw|2 + λ

)
dVg

=
∫
M

(
(n+m)|∇gw|2 + λ

)
dVg .

This shows that λ cannot be positive (and if λ = 0 the function u has to be a
constant).

Case 2: (M, g) is Ricci flat.
Since (M, g) is Ricci flat, it follows from (7) that

D2
gw = −∆gw −∆gEv

n+m
g ,(21)

D2
gEv = −∆gw −∆gEv

n+m
gE .(22)



110 J. M. RUIZ

Taking the trace of (21) with respect to g we have that

−∆gw = −∆gw −∆gEv

n+m
n ,

it follows that
m

n
∆gw = ∆gEv = c ,

for some constant c, since ∆gw depends only on M and ∆gEv, only on Rm.
It follows that c = 0 since, by Green’s first identity,

0 =
∫
M

∆gwdVg = c

∫
M

dVg ,

and therefore w is constant.
Finally, since ∆gw = ∆gEv = 0, it follows from (22) that

∂i(∂jv) = 0 ,

for all i, j ≤ m. This implies that v is an affine function of Rm and since u is
positive, v has to be constant. Clearly if u is constant h̃ is Ricci flat.
This finishes the proof of Theorem 1. �

4. Proof of Theorem 2

Proof. Let (Mn, g) be a complete Riemannian manifold and gE the Euclidean
metric of Rm, m > 1. Let h = g + gE . We proceed by contradiction. Suppose
Theorem 2 is not true; and let ϕ = ϕ(r), r =

√∑
i x

2
i , be a radial, positive,

integrable, C2 function, ϕ : Rn → R+, such that (Mn, ϕh) is Ricci positive. Let
f(r) = − 1

2 Log
[
ϕ(r)

]
, so that ϕ(r) = e2(−f(r)).

Let {∂1, . . . , ∂m} denote the usual global orthonormal frame for Rm. Let X,Y ∈
TM . We will denote by X̃ and Ỹ vector fields on M extending the tangent vectors
X and Y respectively. From (6) we have that

Rh̃(X̃, Ỹ ) = Rh(X̃, Ỹ ) +
(
−∆f − (n+m− 2)|∇f |2

)
g(X̃, Ỹ ) ,(23)

Rh̃(∂i, ∂j) = (n+m− 2)
(
D2f(∂i, ∂j) + df ⊗ df(∂i, ∂j)

)
+
(
−∆f − (n+m− 2)|∇f |2

)
δij ,(24)

and

Rh̃(∂i, X̃) = 0 .

For Rh̃ to be positive, it is thus necessary that both (23) and (24), be positive
definite.

Let fi = ∂if and ∂j(∂kf) = fjk. As f = f(r), we have,

fj = f ′

r
xj ,

fjk = rf ′′ − f ′

r3 xjxk + f ′

r
δjk ,
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where the prime denotes the derivative with respect to r.
Thus,

fjfk = f ′2

r2 xjxk ,

∆f = −f ′′ − (m− 1)f
′

r
,

|∇f |2 = f ′2 .

It follows that for the 2-tensor on Rm, given by (24), to be positive definite it
is necessary that the 2-tensor αT + βIdm is positive definite, where α, β are the
functions given by

α = (n+m− 2)−f
′ + rf ′′ + f ′2r

r3 ,

β = f ′′ + (m− 1)f
′

r
− (n+m− 2)f ′2 + (n+m− 2)f

′

r
,

and T is the 2-tensor given in the orthonormal coordinates by

Tjk = xjxk .

Thus, in order to have a positive definite Ricci tensor Rh̃, we need the eigenvalues
of the 2-tensor αT + βIdm to be positive.

Note that the eigenvalues of T are {0, . . . , 0, r2} and therefore the eigenvalues
of αT + βIdm are {β, . . . , β, αr2 + β}. Therefore, if h̃ has positive Ricci curvature,
then f must satisfy

αr2 + β = (n+m− 1)f ′′ + (m− 1)f
′

r
> 0 ,(25)

and

β = f ′′ + (2m+ n− 3)f
′

r
− (m+ n− 2)f ′2 > 0 .(26)

We now collect some immediate observations:
a) The function in the hypothesis, ϕ = e−2f , is integrable, so it approaches zero as
r →∞. As a consequence, we must have f →∞ as r →∞.

b) As f cannot have local maximums, by (25), it can only have one local mi-
nimum. So f ′ = 0 can occur at most only once; since f is radial and smooth, this
can only occur at r = 0.

c) Since f(r) → ∞ as r → ∞ (by a) and f ′(r) 6= 0 for r > 0, then f ′(r) > 0 for
r > 0.

Next, we obtain an upper bound for f(r).
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Consider (26). Let p = (2m+ n− 3), q = (m+ n− 2). Since f ′ > 0, we have
f ′′

f ′
+ p

r
> qf ′ > 0 .

Then for any a > 0 and r > 0, we integrate from a to r to get

Log
(f ′(r)
f ′(a)

)
+ Log

( rp
ap

)
> qf(r)− qf(a) > 0 .

Since the exponential function is increasing we have

f ′(r)rp > eqf(r)(e−qf(a)apf ′(a)
)
> 1 > 0 .

And then,

f ′(r)e−qf(r) >
C1

rp
> 0 ,

with C1 = (e−qf(a)apf ′(a)) > 0.
For s > a, we now integrate from s to r to obtain

−1
q
e−qf(r) + 1

q
e−qf(s) > C1

1
(1− p)

( 1
rp−1 −

1
sp−1

)
> 0 .

Since this works for all r > s > a, the inequality is preserved in the limit as
r →∞,

1
q
e−qf(s) ≥ C1

(p− 1)

( 1
sp−1

)
≥ 0 ,

since 1
rp−1 → 0 and e−f(r) → 0, as we observed earlier.

We then have an upper bound for f(s), s > a > 0.

(27) f(s) < Log
[
C2s

p−1
q
]

= K1 +K2 Log[s]

for some constants K1, K2.
We now obtain a lower bound for f(r). Let m0 = (m− 1)/(n+m− 1), we note

that 0 < m0 < 1.
By (25),

f ′′(r) +m0
f ′(r)
r

> 0 ,

and since f ′(r) > 0 we have
m0

r
> −f

′′(r)
f ′(r) .

We fix r0 > 0 and pick r0 < a < r. Integrating from a to r the previous inequality
we get

m0 Log
[ r
a

]
> −Log

[f ′(r)
f ′(a)

]
.

Since the exponential is increasing we have
rm0

am0
>
f ′(a)
f ′(r) ,
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or,

f ′(r) > f ′(a)am0

rm0
.

We integrate again, now from b > a to r > b, to get

f(r)− f(b) > f ′(a)am0

(1−m0) (r1−m0 − b1−m0) .

Thus, there are positive constants c1 and c2, such that
(28) f(r) > c1r

1−m0 + c2 .

This lower bound contradicts the upper bound obtained in (27), because
c1r

n
n+m−1 + c2 < f(r) < K1 +K2 Log[r] ,

does not hold as r →∞.
We conclude that a function ϕ = e−2f as in Theorem 2 cannot exist. �
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