EXAMPLES OF HOMOTOPY LIE ALGEBRAS

Klaus Bering and Tom Lada

Abstract

We look at two examples of homotopy Lie algebras (also known as L_{∞} algebras) in detail from two points of view. We will exhibit the algebraic point of view in which the generalized Jacobi expressions are verified by using degree arguments and combinatorics. A second approach using the nilpotency of Grassmann-odd differential operators Δ to verify the homotopy Lie data is shown to produce the same results.

1. Introduction

Homotopy Lie algebras, or L_{∞} algebras, have been a topic of great interest to both mathematical physicists and to algebraists. By considering two different points of view, one can hope to gain a deeper understanding of these structures. In this note, we provide notations and definitions used by both communities, and hopefully illuminate both perspectives. On one hand, the second author and his collaborators [4, 5] have algebraicly constructed two concrete finite dimensional examples of homotopy Lie algebras from first principles. On the other hand, the first author and his collaborators have developed a generalization of the Batalin-Vilkovisky formalism [1] in which a nilpotent, Grassmann-odd, differential operator Δ may be used to identify L_{∞} structures, cf. Lemma in Sec. 2.3 of Ref. [3], and Theorem 3.6 in Ref. [2]. This method is here applied to rederive the two examples of the second author and his collaborators.

2. Homotopy Lie algebras

We begin by recalling the definition of an L_{∞} algebra [7], [6].
Definition 1. An L_{∞} algebra structure on a \mathbb{Z} graded vector space V is a collection of graded skew symmetric linear maps $l_{n}: V^{\otimes n} \rightarrow V$ of degree $2-n$ that satisfy generalized Jacobi identities

$$
\begin{align*}
\sum_{i+j=n+1} \sum_{\sigma} e(\sigma)(-1)^{\sigma}(-1)^{i(j-1)} & \tag{2.1}\\
& \times l_{j}\left(l_{i}\left(v_{\sigma(1)}, \ldots, v_{\sigma(i)}\right), v_{\sigma(i+1)}, \ldots, v_{\sigma(n)}\right)=0
\end{align*}
$$

[^0]where $(-1)^{\sigma}$ is the sign of the permutation, $e(\sigma)$ is the Koszul sign which is equal to -1 raised to the product of the degrees of the permuted elements, and σ is taken over all ($i, n-i$) unshuffles.

This is the cochain complex point of view; for chain complexes, require the maps l_{n} to have degree $n-2$.

2.1. Desuspension.

We will require an equivalent way to describe homotopy Lie algebra data that will be compatible with the operator approach.

Definition 2. Let $S^{c}(W)$ be the cofree cocommutative coassociative coalgebra on the graded vector space W. Then an L_{∞} algebra structure on W is a coderivation $D: S^{c}(W) \rightarrow S^{c}(W)$ of degree +1 such that $D^{2}=0$.

Given an L_{∞} algebra structure $\left(V, l_{i}\right)$ as in Definition 1 we may desuspend V to obtain the graded vector space $W=\downarrow V$, where $W_{n}=V_{n+1}$ and \downarrow is the desuspension operator. Define $D: S^{c}(W) \rightarrow S^{c}(W)$ by $D=\hat{l}_{0}+\hat{l}_{1}+\hat{l}_{2}+\ldots$, where each \hat{l}_{n} is a degree +1 symmetric map given by

$$
\begin{equation*}
\hat{l}_{n}=(-1)^{\frac{n(n-1)}{2}} \downarrow \circ l_{n} \circ \uparrow^{\otimes n}: S^{c}(W) \rightarrow W, \tag{2.2}
\end{equation*}
$$

and then extended to a coderivation in the usual fashion. We will demonstrate this construction explicitly in the examples.

The examples that we consider will be structures on relatively small graded vector spaces: $V=V_{0} \oplus V_{1}$, where each V_{i} is finite dimensional. When we desuspend V, we will consider the graded vector space $W=W_{-1} \oplus W_{0}$.

We now describe the Δ operator approach.

3. The Δ OPERATOR APPROACH

3.1. Vector space W with two Fermions.

To be concrete, we let $\operatorname{dim}\left(W_{-1}\right)=2$. We use Greek indices $\alpha, \beta, \ldots \in\{1,2\}$ for a Fermionic basis $\theta_{\alpha} \in W_{-1}$ with Grassmann parity $\varepsilon\left(\theta_{\alpha}\right)=1$. On the other hand, it will be useful to allow W_{0} in the beginning to have infinitely many dimensions, and only at the very end perform a consistent truncation to a finite dimensional subspace. We use roman indices $i, j, \ldots \in\{1,2, \ldots\}$ for the infinitely many Bosonic/even variables $x_{i} \in W_{0}$ with Grassmann parity $\varepsilon\left(x_{i}\right)=0$. Hence, we are given a (super) vector space

$$
\begin{equation*}
W:=W_{-1} \oplus W_{0}, \quad W_{-1}:=\operatorname{span}\left\langle\theta_{1}, \theta_{2}\right\rangle, \quad W_{0}:=\operatorname{span}\left\langle x_{1}, x_{2}, \ldots, x_{i}, \ldots\right\rangle . \tag{3.1}
\end{equation*}
$$

We will for simplicity here only consider one kind of grading, although it is easy to generalize to several \mathbb{Z}_{2} and \mathbb{Z} gradings. In Section 2 we introduced a \mathbb{Z} grading, called the degree. From an operational point of view, only a \mathbb{Z}_{2} grading, the so-called Grassmann parity ε, is needed. We shall start by only considering the \mathbb{Z}_{2} grading ε, and only later implement the full \mathbb{Z} grading. This will lead to "selection rules", i.e., further restrictions.

3.2. Algebra.

For an operational point of view, we use the fact the cocommutative coalgebra $S^{c}(W)$ has the same underlying vector space as the (super) symmetric algebra $\mathcal{A}:=\operatorname{Sym}^{\bullet}(W)$, where

$$
\begin{equation*}
x_{i} \otimes x_{j}=x_{j} \otimes x_{i}, \quad x_{i} \otimes \theta_{\alpha}=\theta_{\alpha} \otimes x_{i}, \quad \theta_{\alpha} \otimes \theta_{\beta}=-\theta_{\beta} \otimes \theta_{\alpha} \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
z \otimes w=(-1)^{\varepsilon(z) \varepsilon(w)} w \otimes z \tag{3.3}
\end{equation*}
$$

for short, where $z, w \in W$.

3.3. Bracket hierarchy $\Phi^{\bullet} \equiv \hat{l}_{\bullet}$.

The family of maps \hat{l}_{\bullet} on W will be denoted by Φ^{\bullet} to conform with notation used in Ref. [3] and Ref. [2]. We shall not always write (super) symmetric tensor symbol \otimes explicitly. The sign convention is as follows:

$$
\begin{align*}
\varepsilon\left(\Phi^{n}\left(z_{1} \otimes z_{2} \otimes \cdots \otimes z_{n}\right)\right) & =1+\varepsilon\left(z_{1}\right)+\varepsilon\left(z_{2}\right)+\ldots+\varepsilon\left(z_{n}\right) \\
\Phi^{n}\left(\cdots \otimes z_{k} \otimes z_{k+1} \otimes \ldots\right) & =(-1)^{\varepsilon\left(z_{k}\right) \varepsilon\left(z_{k+1}\right)} \Phi^{n}\left(\cdots \otimes z_{k+1} \otimes z_{k} \otimes \ldots\right), \\
\Phi^{n}\left(\lambda z_{1} \otimes z_{2} \otimes \cdots \otimes z_{n}\right) & =(-1)^{\varepsilon(\lambda)} \lambda \Phi^{n}\left(z_{1} \otimes z_{2} \otimes \cdots \otimes z_{n}\right) \tag{3.4}\\
\Phi^{n}\left(z_{1} \otimes \cdots \otimes z_{n} \lambda\right) & =\Phi^{n}\left(z_{1} \otimes \cdots \otimes z_{n}\right) \lambda \\
z_{k} \lambda & =(-1)^{\varepsilon\left(z_{k}\right) \varepsilon(\lambda)} \lambda z_{k}
\end{align*}
$$

Here λ is a super number. We shall use multi-index notation

$$
\begin{gather*}
m=\left(m_{1}, m_{2}, \ldots, m_{i}, \ldots\right), \quad|m|=\sum_{i=1}^{\infty} m_{i}, \quad m!=\prod_{i=1}^{\infty} m_{i}!, \\
x^{\otimes m}=x_{1}^{\otimes m_{1}} \otimes x_{2}^{\otimes m_{2}} \otimes \cdots \otimes x_{i}^{\otimes m_{i}} \otimes \ldots \tag{3.5}
\end{gather*}
$$

The most general bracket hierarchy Φ^{\bullet} on W is

$$
\begin{align*}
\Phi^{|m|}\left(x^{\otimes m}\right) & =c_{m}^{\alpha} \theta_{\alpha} \tag{3.6}\\
\Phi^{|m|+1}\left(\theta_{\alpha} \otimes x^{\otimes m}\right) & =b_{\alpha m}^{i} x_{i} \tag{3.7}\\
\Phi^{|m|+2}\left(\theta_{\alpha} \otimes \theta_{\beta} \otimes x^{\otimes m}\right) & =\epsilon_{\alpha \beta} a_{m}^{\gamma} \theta_{\gamma} \tag{3.8}
\end{align*}
$$

where $a_{m}^{\alpha}, b_{\alpha m}^{i}$ and c_{m}^{γ} are coefficients, and where

$$
\begin{equation*}
\epsilon^{\alpha \beta}=-\epsilon^{\beta \alpha}, \quad \epsilon^{\alpha \beta} \epsilon_{\beta \gamma}=\delta_{\gamma}^{\alpha}, \quad \epsilon^{12}=1=\epsilon_{21} \tag{3.9}
\end{equation*}
$$

3.4. The Δ operator.

Define generating functions

$$
\begin{equation*}
f^{\alpha}(p):=\sum_{m} a_{m}^{\alpha} \frac{p^{m}}{m!}, \quad g_{\alpha}^{i}(p):=\sum_{m} b_{\alpha m}^{i} \frac{p^{m}}{m!}, \quad h^{\alpha}(p):=\sum_{m} c_{m}^{\alpha} \frac{p^{m}}{m!} . \tag{3.10}
\end{equation*}
$$

Define Δ operator

$$
\begin{equation*}
\Delta:=\Delta_{2}+\Delta_{1}+\Delta_{0} \tag{3.11}
\end{equation*}
$$

$$
\begin{align*}
\Delta_{2} & :=\frac{1}{2} \theta_{\gamma} f^{\gamma}\left(\frac{\partial}{\partial x}\right) \epsilon_{\alpha \beta} \frac{\partial}{\partial \theta_{\beta}} \frac{\partial}{\partial \theta_{\alpha}} \tag{3.12}\\
\Delta_{1} & :=x_{i} g_{\alpha}^{i}\left(\frac{\partial}{\partial x}\right) \frac{\partial}{\partial \theta_{\alpha}} \tag{3.13}\\
\Delta_{0} & :=\theta_{\alpha} h^{\alpha}\left(\frac{\partial}{\partial x}\right) \tag{3.14}
\end{align*}
$$

We will from now on not always write the $\frac{\partial}{\partial x}$ dependence explicitly in the formula for Δ.

3.5. Koszul bracket hierarchy Φ_{Δ}^{\bullet}.

Define Koszul brackets hierarchy Φ_{Δ}^{\bullet} as

$$
\begin{align*}
\Phi_{\Delta}^{n}\left(z_{1} \otimes \cdots \otimes z_{n}\right) & :=\underbrace{\left[\left[\ldots\left[\Delta, L_{z_{1}}\right], \ldots\right], L_{z_{n}}\right]}_{n \text { commutators }} 1 \tag{3.15}\\
\Phi_{\Delta}^{0} & :=\Delta(1) \equiv \theta_{\alpha} c_{0}^{\alpha} \tag{3.16}
\end{align*}
$$

where

$$
\begin{equation*}
L_{z}(w):=z w \tag{3.17}
\end{equation*}
$$

is the left multiplication operator with algebra element z.
It is easy to check that the Φ_{Δ}^{\bullet} Koszul brackets hierarchy (3.15)-(3.16) reproduces the original Φ^{\bullet} bracket hierarchy $(3.6)-(\sqrt{3.8})$:

$$
\begin{equation*}
\Phi_{\Delta}^{\bullet}=\Phi^{\bullet} . \tag{3.18}
\end{equation*}
$$

3.6. L_{∞} structure and nilpotency conditions.

A consequence of Lemma in Section 2.3 of [3], or alternatively Theorem 3.6 in [2], is that Φ_{Δ}^{\bullet} forms a homotopy Lie algebra if and only if Δ is nilpotent (of order two), i.e., Δ squares to zero,

$$
\begin{equation*}
\Delta^{2} \equiv \frac{1}{2}[\Delta, \Delta]=0 \tag{3.19}
\end{equation*}
$$

We calculate:

$$
\begin{align*}
& {\left[\Delta_{2}, \Delta_{2}\right]=0} \tag{3.20}\\
& {\left[\Delta_{2}, \Delta_{1}\right]=\frac{1}{2} x_{i} g_{\gamma}^{i} f^{\gamma} \epsilon_{\alpha \beta} \frac{\partial}{\partial \theta_{\beta}} \frac{\partial}{\partial \theta_{\alpha}}} \tag{3.21}\\
& {\left[\Delta_{1}, \Delta_{1}\right]=2 x_{i} g_{\alpha, j}^{i} g_{\beta}^{j} \frac{\partial}{\partial \theta^{\alpha}} \frac{\partial}{\partial \theta^{\beta}}=x_{i} g_{\alpha, j}^{i} \epsilon^{\alpha \beta} g_{\beta}^{j} \epsilon_{\gamma \delta} \frac{\partial}{\partial \theta^{\delta}} \frac{\partial}{\partial \theta^{\gamma}}} \tag{3.22}\\
& {\left[\Delta_{2}, \Delta_{0}\right]=\theta_{\gamma} f^{\gamma} h^{\alpha} \epsilon_{\alpha \beta} \frac{\partial}{\partial \theta_{\beta}},} \tag{3.23}\\
& {\left[\Delta_{1}, \Delta_{0}\right]=\theta_{\alpha} h^{\alpha}{ }_{, i} g_{\beta}^{i} \frac{\partial}{\partial \theta^{\beta}}+x_{i} g_{\alpha}^{i} h^{\alpha},} \tag{3.24}\\
& {\left[\Delta_{0}, \Delta_{0}\right]=0 .} \tag{3.25}
\end{align*}
$$

For instance, eq. (3.21) is proved as follows. Write shorthand $\Delta_{2}=\theta_{\gamma} D^{\gamma}$, where

$$
\begin{equation*}
D^{\gamma}:=\frac{1}{2} f^{\gamma}\left(\frac{\partial}{\partial x}\right) \epsilon_{\alpha \beta} \frac{\partial}{\partial \theta_{\beta}} \frac{\partial}{\partial \theta_{\alpha}} . \tag{3.26}
\end{equation*}
$$

Then

$$
\begin{align*}
{\left[\Delta_{2}, \Delta_{1}\right] } & =\theta_{\gamma}\left[D^{\gamma}, \Delta_{1}\right]+\left[\theta_{\gamma}, \Delta_{1}\right] D^{\gamma} \\
& =\theta_{\gamma}\left[D^{\gamma}, \Delta_{1}\right]+\left[\Delta_{1}, \theta_{\gamma}\right] D^{\gamma} \\
& =\theta_{\gamma}\left[D^{\gamma}, x_{i} g_{\delta}^{i} \frac{\partial}{\partial \theta_{\delta}}\right]+\left[x_{i} g_{\alpha}^{i} \frac{\partial}{\partial \theta_{\alpha}}, \theta_{\gamma}\right] D^{\gamma} \\
& =\theta_{\gamma}\left[D^{\gamma}, x_{i}\right] g_{\delta}^{i} \frac{\partial}{\partial \theta_{\delta}}+x_{i} g_{\alpha}^{i}\left[\frac{\partial}{\partial \theta_{\alpha}}, \theta_{\gamma}\right] D^{\gamma} \\
& =\frac{1}{2} \theta_{\gamma} f^{\gamma}{ }_{, i} \epsilon_{\alpha \beta} \frac{\partial}{\partial \theta_{\beta}} \frac{\partial}{\partial \theta_{\alpha}} g_{\delta}^{i} \frac{\partial}{\partial \theta_{\delta}}+x_{i} g_{\gamma}^{i} D^{\gamma} . \tag{3.27}
\end{align*}
$$

Note that the first term on the right-hand side of (3.27) must vanish because it contains three Fermionic derivatives, but there are only two different Fermions. The second term yields the result (3.21.

Altogether, the nilpotency condition $\Delta^{2}=0$ read

$$
\begin{align*}
g_{\gamma}^{i} f^{\gamma}+g_{\alpha, j}^{i} \epsilon^{\alpha \beta} g_{\beta}^{j} & =0, \tag{3.28}\\
f^{\alpha} h^{\gamma} \epsilon_{\gamma \beta}+h^{\alpha}{ }_{, i} g_{\beta}^{i} & =0, \tag{3.29}\\
g_{\alpha}^{i} h^{\alpha} & =0 . \tag{3.30}
\end{align*}
$$

3.7. Special cases.

Let us now discuss special cases. Let us assume $h^{\alpha} \equiv 0$. Then the two last nilpotency conditions are satisfied, and only the first of the three nilpotency conditions (3.28-3.30) remains.

Notice that we can explain $h^{\alpha} \equiv 0$ as a "selection rule" from the degree \mathbb{Z} grading, where $x_{i} \in W_{0}$ have degree $0 ; \theta_{\alpha} \in W_{-1}$ have degree -1 ; the brackets Φ_{Δ}^{\bullet} have degree +1 ; and the Δ operator has degree +1 . Then $c_{m}^{\alpha} \equiv 0, h^{\alpha} \equiv 0$, and $\Delta_{0} \equiv 0$.

Let us assume only one Bosonic/even variable $x \equiv x_{1}$, i.e., $0=x_{2}=x_{3}=\ldots$. Then the first nilpotency condition 3.28 reads:

$$
\begin{equation*}
g_{\gamma} f^{\gamma}+W\left(g_{1}, g_{2}\right)=0 \tag{3.31}
\end{equation*}
$$

where

$$
\begin{equation*}
W\left(g_{1}, g_{2}\right):=g_{\alpha}^{\prime} \epsilon^{\alpha \beta} g_{\beta} \equiv g_{1}^{\prime} g_{2}-g_{1} g_{2}^{\prime} \tag{3.32}
\end{equation*}
$$

is the Wronskian.
Let us assume that g_{1} is given with $g_{1}(p=0) \equiv b_{\alpha=1, m=0} \neq 0$. Then we can interpret the inverse $1 / g_{1}$ as a formal power series.

If there is also given g_{2}, then we can e.g., choose

$$
\begin{equation*}
f^{1}=-\frac{W\left(g_{1}, g_{2}\right)}{g_{1}}, \quad f^{2}=0 \tag{3.33}
\end{equation*}
$$

Or if there instead is also given f^{1}, then we can e.g., choose

$$
\begin{equation*}
\frac{g_{2}}{g_{1}}=\int d p \frac{f^{1}}{g_{1}}, \quad f^{2}=0 \tag{3.34}
\end{equation*}
$$

4. First example

4.1. Algebra approach.

The following L_{∞} algebra was studied in [5]. Let $V=V_{0} \oplus V_{1}$ be the graded vector space where V_{0} has basis $\left\langle v_{1}, v_{2}\right\rangle$ and V_{1} has basis $\langle w\rangle$. Define $l_{n}: V^{\otimes n} \rightarrow V$ by

$$
\begin{gather*}
l_{1}\left(v_{1}\right)=l_{1}\left(v_{2}\right)=w, \quad l_{2}\left(v_{1} \otimes v_{2}\right)=v_{1}, \quad l_{2}\left(v_{1} \otimes w\right)=w \\
l_{n}\left(v_{2} \otimes w^{\otimes n-1}\right)=C_{n} w \quad \text { for } \quad n \geq 3 \tag{4.1}
\end{gather*}
$$

and all other sectors are zero, and where $C_{n}=(-1)^{\frac{(n-2)(n-3)}{2}}(n-3)$!.
To verify the L_{∞} relations (2.1), the summands in the L_{∞} relation can be calculated as follows. The first summand reads

$$
\begin{equation*}
l_{1} \circ l_{n}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)=0 . \tag{4.2}
\end{equation*}
$$

The next summand reads

$$
\begin{align*}
l_{2} & \circ l_{n-1}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right) \\
& =(-1)^{n-1} l_{2}\left(l_{n-1}\left(v_{2} \otimes w^{\otimes n-2}\right) \otimes v_{1}\right) \\
& =(-1)^{n-1} C_{n-1} l_{2}\left(w \otimes v_{1}\right)=(-1)^{n} C_{n-1} w . \tag{4.3}
\end{align*}
$$

For all $3 \leq k \leq n-3$ we have

$$
\begin{equation*}
l_{k} \circ l_{n-k+1}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)=0 \tag{4.4}
\end{equation*}
$$

because each summand in this expansion contains the term $l_{k}\left(v_{1} \otimes w^{\otimes k-1}\right)=0$. The second-last summand reads

$$
\begin{align*}
l_{n-1} & \circ l_{2}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right) \\
& =l_{n-1}\left(l_{2}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)-(n-2) l_{n-1}\left(l_{2}\left(v_{1} \otimes w\right) \otimes v_{2} \otimes w^{\otimes n-3}\right)\right. \\
& =l_{n-1}\left(v_{1} \otimes w^{\otimes n-2}\right)-(n-2) l_{n-1}\left(w \otimes v_{2} \otimes w^{\otimes n-3}\right) \\
& =0+(n-2) l_{n-1}\left(v_{2} \otimes w^{\otimes n-2}\right)=(n-2) C_{n-2} w . \tag{4.5}
\end{align*}
$$

The last summand reads

$$
\begin{align*}
l_{n} \circ l_{1}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)=l_{n}\left(w \otimes v_{2} \otimes\right. & \left.w^{\otimes n-2}\right) \tag{4.6}\\
& -l_{n}\left(w \otimes v_{1} \otimes w^{\otimes n-2}\right)=-C_{n} w
\end{align*}
$$

Consequently, the nth Jacobi expression is satisfied if and only if

$$
\begin{gather*}
\sum_{p=1}^{n}(-1)^{p(n-p)} l_{n-p+1} \circ l_{p}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)=0 \\
\Leftrightarrow(-1)^{(n-1) 1}(-1)^{n} C_{n-1} w+(-1)^{2(n-2)}(n-2) C_{n-1} w \\
+(-1)^{1(n-1)}(-1) C_{n} w=0 \\
\Leftrightarrow(-1) C_{n-1}+(n-2) C_{n-1}+(-1)^{n} C_{n}=0 \\
\Leftrightarrow C_{n}=(-1)^{n-1}(n-3) C_{n-1} . \tag{4.7}
\end{gather*}
$$

One can check that C_{n} must equal $(-1) \frac{(n-2)(n-3)}{2}(n-3)$!.

4.2. Desuspension.

We next desuspend V to obtain $W=W_{-1} \oplus W_{0}$ where W_{-1} has basis $\left\langle\theta_{1}, \theta_{2}\right\rangle$ and W_{0} has basis $\langle x\rangle$ and then rewrite the L_{∞} data in terms of degree +1 maps

$$
\begin{gather*}
\hat{l}_{1}\left(\theta_{1}\right)=\hat{l}_{1}\left(\theta_{2}\right)=x, \quad \hat{l}_{2}\left(\theta_{1} \otimes \theta_{2}\right)=\theta_{1}, \\
\hat{l}_{n}\left(\theta_{2} \otimes x^{\otimes n-1}\right)=(-1)^{n}(n-3)!x, \tag{4.8}
\end{gather*}
$$

and all other sectors are zero. The \hat{l}_{n} 's will correspond to the Φ^{n} 's in the next section.

4.3. Δ operator approach.

The algebra of [5] has only one Bosonic generator $x \equiv x_{1}$, and is given as

$$
\begin{gather*}
\Phi^{2}\left(\theta_{1} \otimes \theta_{2}\right)=\theta_{1}, \quad \Phi^{1}\left(\theta_{1}\right)=x, \quad \Phi^{2}\left(\theta_{1} \otimes x\right)=x \\
\Phi^{m+1}\left(\theta_{2} \otimes x^{\otimes m}\right)=\left\{\begin{array}{lr}
x & \text { for } m=0 \\
0 & \text { for } m=1 \\
-(-1)^{m}(m-2)!x & \text { for } m \geq 2
\end{array}\right. \tag{4.9}
\end{gather*}
$$

and all other sectors are zero. Thus the coefficients are

$$
\begin{gather*}
a_{m}^{1}=-\delta_{m}^{0}, \quad a_{m}^{2}=0, \quad b_{1 m}=\delta_{m}^{0}+\delta_{m}^{1} \\
b_{2 m}= \begin{cases}1 & \text { for } \quad m=0 \\
0 & \text { for } \quad m=1 \\
-(-1)^{m}(m-2)! & \text { for } \quad m \geq 2\end{cases} \tag{4.10}
\end{gather*}
$$

The generating functions become

$$
\begin{gather*}
f^{1}(p)=-1, \quad f^{2}(p)=0, \quad g_{1}(p)=1+p \\
g_{2}(p)=1-\sum_{m=2}^{\infty} \frac{(-p)^{m}}{m(m-1)}=(1+p)[1-\ln (1+p)] . \tag{4.11}
\end{gather*}
$$

It is easy to check that the nilpotency condition (3.31) is satisfied. Alternatively, g_{2} could have been predicted from eq. (3.34).

5. SECOND EXAMPLE

5.1. Algebra approach.

This next example was constructed by M. Daily [4]. Let $V=V_{0} \oplus V_{1}$ with $\operatorname{dim}\left(V_{1}\right) \geq \operatorname{dim}\left(V_{0}\right)$. Denote the basis for V_{0} by $\left\langle v_{1}, \ldots, v_{i}\right\rangle$ and the basis for V_{1} by $\left\langle w_{1}, \ldots, w_{j}\right\rangle$. Define

$$
l_{1}\left(v_{i}\right)=w_{i}, \quad l_{2}\left(v_{i} \otimes v_{j}\right)=0, \quad l_{2}\left(v_{i} \otimes w_{j}\right)=w_{i}+w_{j}
$$

(5.1) $\quad l_{n}\left(v_{i} \otimes v_{j} \otimes w\right.$-terms $)=0, \quad l_{n}\left(v_{i} \otimes w\right.$-terms $)=C_{n} w_{i} \quad$ for $\quad n \geq 3$,
and all other sectors are zero.
We begin verification of the L_{∞} algebra relations (2.1) with

$$
\begin{align*}
& l_{1} \circ l_{2}\left(v_{i} \otimes v_{j}\right)-l_{2} \circ l_{1}\left(v_{i} \otimes v_{j}\right) \\
& \quad=l_{1}(0)-\left[l_{2}\left(l_{1}\left(v_{i}\right) \otimes v_{j}\right)-l_{2}\left(l_{1}\left(v_{j}\right) \otimes v_{i}\right)\right] \\
& \quad=0-l_{2}\left(w_{i} \otimes v_{j}\right)+l_{2}\left(w_{j} \otimes v_{i}\right)=w_{j}+w_{i}-\left(w_{i}+w_{j}\right)=0 . \tag{5.2}
\end{align*}
$$

We next consider the generalized Jacobi expression evaluated on $v_{i} \otimes v_{j} \otimes w_{k}$. The first summand reads

$$
\begin{equation*}
l_{1} \circ l_{3}\left(v_{i} \otimes v_{j} \otimes w_{k}\right)=0 \tag{5.3}
\end{equation*}
$$

The next summand reads

$$
\begin{aligned}
l_{2} & \circ l_{2}\left(v_{i} \otimes v_{j} \otimes w_{k}\right) \\
& =l_{2}\left(l_{2}\left(v_{i} \otimes v_{j}\right) \otimes w_{k}\right)-l_{2}\left(l_{2}\left(v_{i} \otimes w_{k}\right) \otimes v_{j}\right)+l_{2}\left(l_{2}\left(v_{j} \otimes w_{k}\right) \otimes v_{i}\right) \\
& =0-l_{2}\left(\left(w_{i}+w_{k}\right) \otimes v_{j}\right)+l_{2}\left(\left(w_{j}+w_{k}\right) \otimes v_{i}\right) \\
& =\left(w_{j}+w_{i}\right)+\left(w_{j}+w_{k}\right)-\left(w_{i}+w_{j}\right)-\left(w_{i}+w_{k}\right) \\
& =-w_{i}+w_{j} .
\end{aligned}
$$

The last summand reads

$$
\begin{align*}
l_{3} \circ l_{1}\left(v_{i} \otimes v_{j} \otimes w_{k}\right) & =l_{3}\left(w_{i} \otimes v_{j} \otimes w_{k}\right)-l_{3}\left(w_{j} \otimes v_{i} \otimes w_{k}\right) \\
& =-C_{3} w_{j}+C_{3} w_{i} . \tag{5.5}
\end{align*}
$$

Thus, the generalized Jacobi expression

$$
\begin{align*}
& \left(l_{1} \circ l_{3}+l_{2} \circ l_{2}+l_{3} \circ l_{1}\right)\left(v_{i} \otimes v_{j} \otimes w_{k}\right)=0 \\
& \quad \Leftrightarrow w_{i}+w_{j}-C_{3} w_{j}+C_{3} w_{i}=0 \Leftrightarrow C_{3}=1 \tag{5.6}
\end{align*}
$$

For $n \geq 4$, we compute

$$
\begin{equation*}
\sum_{p=1}^{n}(-1)^{p(n-p)} l_{n-p+1} \circ l_{p}\left(v_{i} \otimes v_{j} \otimes w_{k_{1}} \otimes \cdots \otimes w_{k_{n-2}}\right) \tag{5.7}
\end{equation*}
$$

The first summand with $p=1$ reads

$$
\begin{align*}
l_{n} \circ & l_{1}\left(v_{i} \otimes v_{j} \otimes w_{k_{1}} \otimes \cdots \otimes w_{k_{n-2}}\right) \\
= & l_{n}\left(w_{i} \otimes v_{j} \otimes w_{k_{1}} \otimes \cdots \otimes w_{k_{n-2}}\right) \\
& -l_{n}\left(w_{j} \otimes v_{i} \otimes w_{k_{1}} \otimes \cdots \otimes w_{k_{n-2}}\right) \\
= & -C_{n} w_{j}+C_{n} w_{i}=C_{n}\left(w_{i}-w_{j}\right) . \tag{5.8}
\end{align*}
$$

The next summand with $p=2$ reads

$$
\begin{align*}
l_{n-1} \circ & l_{2}\left(v_{i} \otimes v_{j} \otimes w_{k_{1}} \otimes \cdots \otimes w_{k_{n-2}}\right) \\
= & -\sum_{\alpha} l_{n-1}\left(l_{2}\left(v_{i} \otimes w_{k_{\alpha}}\right) \otimes v_{j} \otimes w \text {-terms }\right) \\
& +\sum_{\alpha} l_{n-1}\left(l_{2}\left(v_{j} \otimes w_{k_{\alpha}}\right) \otimes v_{i} \otimes w \text {-terms }\right) \\
= & -\sum_{\alpha} l_{n-1}\left(\left(w_{i}+w_{k_{\alpha}}\right) \otimes v_{j} \otimes w \text {-terms }\right) \\
& +\sum_{\alpha} l_{n-1}\left(\left(w_{j}+w_{k_{\alpha}}\right) \otimes v_{i} \otimes w \text {-terms }\right) \\
= & 2(n-2) C_{n-1}\left(w_{j}-w_{i}\right) . \tag{5.9}
\end{align*}
$$

For $3 \leq p \leq n-2$, we have

$$
\begin{align*}
l_{n-p+1} \circ & l_{p}\left(v_{i} \otimes v_{j} \otimes w_{k_{1}} \otimes \cdots \otimes w_{k_{n-2}}\right) \\
= & (-1)^{p-1}\binom{n-2}{p-1} l_{n-p+1}\left(l_{p}\left(v_{i} \otimes w \text {-terms }\right) \otimes v_{j} \otimes w \text {-terms }\right) \\
& -(-1)^{p-1}\binom{n-2}{p-1} l_{n-p+1}\left(l_{p}\left(v_{j} \otimes w \text {-terms }\right) \otimes v_{i} \otimes w \text {-terms }\right) \\
= & (-1)^{p-1}\binom{n-2}{p-1} l_{n-p+1}\left(C_{p} w_{i} \otimes v_{j} \otimes w \text {-terms }\right) \\
& -(-1)^{p-1}\binom{n-2}{p-1} l_{n-p+1}\left(C_{p} w_{j} \otimes v_{i} \otimes w \text {-terms }\right) \\
= & (-1)^{p}\binom{n-2}{p-1} C_{n-p+1} C_{p} w_{j}-(-1)^{p}\binom{n-2}{p-1} C_{n-p+1} C_{p} w_{i} \\
= & (-1)^{p+1}\binom{n-2}{p-1} C_{n-p+1} C_{p}\left(w_{i}-w_{j}\right) . \tag{5.10}
\end{align*}
$$

The second-last summand with $p=n-1$ reads

$$
\begin{align*}
l_{2} \circ & l_{n-1}\left(v_{i} \otimes v_{j} \otimes w_{k_{1}} \otimes \cdots \otimes w_{k_{n-2}}\right) \\
= & (-1)^{n-2} l_{2}\left(l_{n-1}\left(v_{i} \otimes w \text {-terms }\right) \otimes v_{j}\right) \\
& -(-1)^{n-2} l_{2}\left(l_{n-1}\left(v_{j} \otimes w \text {-terms }\right) \otimes v_{i}\right) \\
= & (-1)^{n-2} l_{2}\left(C_{n-1} w_{i} \otimes v_{j}\right)-(-1)^{n-2} l_{2}\left(C_{n-1} w_{j} \otimes v_{i}\right) \\
= & (-1)^{n-1} C_{n-1}\left(w_{j}+w_{i}\right)-(-1)^{n-1} C_{n-1}\left(w_{i}+w_{j}\right)=0 . \tag{5.11}
\end{align*}
$$

The last summand with $p=n$ reads

$$
\begin{equation*}
l_{1} \circ l_{n}\left(v_{i} \otimes v_{j} \otimes w_{k_{1}} \otimes \cdots \otimes w_{k_{n-2}}\right)=0 \tag{5.12}
\end{equation*}
$$

We add together all of the above summands with $p=1,2, \ldots, n$ to obtain

$$
\begin{align*}
& \sum_{p=1}^{n}(-1)^{p(n-p)} l_{n-p+1} \circ l_{p}\left(v_{i} \otimes v_{j} \otimes w_{k_{1}} \otimes \cdots \otimes w_{k_{n-2}}\right) \tag{5.13}\\
& \quad=(-1)^{n-1} C_{n}\left(w_{i}-w_{j}\right)-2(n-2) C_{n-1}\left(w_{i}-w_{j}\right) \\
& \quad+\sum_{p=3}^{n-2}(-1)^{p(n-p)}(-1)^{p+1}\binom{n-2}{p-1} C_{n-p+1} C_{p}\left(w_{i}-w_{j}\right)+0+0
\end{align*}
$$

So,

$$
\begin{align*}
\sum_{p=1}^{n} & (-1)^{p(n-p)} l_{n-p+1} \circ l_{p}\left(v_{i} \otimes v_{j} \otimes w_{k_{1}} \otimes \cdots \otimes w_{k_{n-2}}\right)=0 \\
& \Leftrightarrow(-1)^{n-1} C_{n}-2(n-2) C_{n-1} \tag{5.14}\\
& +\sum_{p=3}^{n-2}(-1)^{p n+1}\binom{n-2}{p-1} C_{n-p+1} C_{p}=0
\end{align*}
$$

One can then solve for

$$
\begin{equation*}
C_{n}=(-1)^{n}\left[-2(n-2) C_{n-1}+\sum_{p=3}^{n-2}(-1)^{p n+1}\binom{n-2}{p-1} C_{n-p+1} C_{p}\right] \tag{5.15}
\end{equation*}
$$

with $C_{3}=1$.

5.2. Desuspension.

As before, we desuspend the vector space to obtain $W=W_{-1} \oplus W_{0}$ and convert the l_{n} 's to degree +1 symmetric maps and end up with the homotopy Lie algebra structure given by

$$
\begin{align*}
& \hat{l}_{1}\left(\theta_{i}\right)=x_{i}, \quad \hat{l}_{2}\left(\theta_{i} \otimes \theta_{j}\right)=0, \quad \hat{l}_{2}\left(\theta_{i} \otimes x_{j}\right)=x_{i}+x_{j} \\
& \hat{l}_{n}\left(\theta_{i} \otimes \theta_{j} \otimes x \text {-terms }\right)=0 \\
& \hat{l}_{n}\left(\theta_{i} \otimes x \text {-terms }\right)=(-1)^{\frac{n(n-1)}{2}}(-1)^{n-1} C_{n} x_{i} \quad \text { for } \quad n \geq 3 \tag{5.16}
\end{align*}
$$

and all other sectors are zero. The last equation may be rewritten as

$$
\begin{equation*}
\hat{l}_{n}\left(\theta_{i} \otimes x \text {-terms }\right)=(2-n)^{n-2} x_{i} \quad \text { for } \quad n \geq 3 \tag{5.17}
\end{equation*}
$$

5.3. Δ operator approach.

In the following we let $\operatorname{dim}\left(W_{-1}\right)=2$, to conform with the theory developed in Section 3. Moreover, it is practical to let W_{0} have infinitely many Bosonic generators
x_{i}. (It will be consistent to truncate the tail $0=x_{N+1}=x_{N+2}=\ldots$ to reduce to only finitely many generators x_{1}, \ldots, x_{N}.) Then the second example is of the form

$$
\begin{align*}
\Phi^{1}\left(\theta_{\alpha}\right) & =B_{0} x_{\alpha} \\
\Phi^{2}\left(\theta_{\alpha} \otimes x_{i}\right) & =B_{1} x_{\alpha}+x_{i} \\
\Phi^{|m|+1}\left(\theta_{\alpha} \otimes x^{\otimes m}\right) & =B_{|m|} x_{\alpha} \text { for }|m| \geq 2 \tag{5.18}
\end{align*}
$$

and all other sectors are zero, and where $B_{0}, B_{1}, B_{2}, \ldots$ are complex numbers with $B_{0} \neq 0$. By scaling

$$
\begin{gather*}
x_{i}^{\prime}=B_{0} x_{i}, \quad \theta_{\alpha}^{\prime}=\theta_{\alpha}, \quad \Phi^{\prime}=\Phi \\
B_{M}^{\prime}=\left(B_{0}\right)^{M-1} B_{M} \quad \text { for } \quad M=0,1,2, \ldots, \tag{5.19}
\end{gather*}
$$

(and by dropping the primes again afterwards) we will from now on always assume the initial condition

$$
\begin{equation*}
B_{0}=1 \tag{5.20}
\end{equation*}
$$

We will below prove the following Proposition 3
Proposition 3. The Φ^{\bullet} bracket hierarchy (5.18) with initial condition 5.20 is a homotopy Lie algebra if and only if

$$
\begin{equation*}
B_{M}=(1-M)^{M-1} \quad \text { for } \quad M=0,1,2, \ldots \tag{5.21}
\end{equation*}
$$

(with the convention that $0^{0}:=1$).
Proof. The bracket coefficients are in this example

$$
\begin{align*}
a_{m}^{\alpha} & =0 \\
b_{\alpha m}^{i} & =\delta_{\alpha}^{i} B_{|m|}+\delta_{m_{1}}^{0} \delta_{m_{2}}^{0} \ldots \delta_{m_{i-1}}^{0} \delta_{m_{i}}^{1} \delta_{m_{i+1}}^{0} \ldots \tag{5.22}
\end{align*}
$$

The generating functions become

$$
\begin{align*}
f^{\alpha}(p) & =0 \\
g_{\alpha}^{i}(p) & =\delta_{\alpha}^{i} G(P)+p^{i} \tag{5.23}
\end{align*}
$$

where

$$
\begin{equation*}
G(P)=\sum_{m} B_{|m|} \frac{p^{m}}{m!}=\sum_{M=0}^{\infty} B_{M} \frac{P^{M}}{M!}, \tag{5.24}
\end{equation*}
$$

and

$$
\begin{equation*}
P:=\sum_{i=1}^{\infty} p^{i} \tag{5.25}
\end{equation*}
$$

The initial condition 5.20 becomes

$$
\begin{equation*}
G(P=0)=1 \tag{5.26}
\end{equation*}
$$

The nilpotency condition (3.28) reads

$$
\begin{align*}
(\alpha \leftrightarrow \beta) & =g_{\alpha, j}^{i} g_{\beta}^{j}=\left(\delta_{\alpha}^{i} G^{\prime}(P)+\delta_{j}^{i}\right)\left(\delta_{\beta}^{j} G(P)+p^{j}\right) \\
& =\delta_{\alpha}^{i} G^{\prime}(P)(G(P)+P)+\delta_{\beta}^{i} G(P)+p^{i} . \tag{5.27}
\end{align*}
$$

This is equivalent to the ODE

$$
\begin{gather*}
G^{\prime}(P)(G(P)+P)=G(P) \tag{5.28}\\
\Leftrightarrow \frac{d P}{d G}=1+\frac{P}{G} \Leftrightarrow \frac{d}{d G}\left[\frac{P}{G}\right]=\frac{1}{G} \Leftrightarrow \frac{P}{G}=\operatorname{Ln}(G)+\text { constant } \tag{5.29}
\end{gather*}
$$

We deduce from the initial condition (5.26) that the inverse function $P=P(G)$ is

$$
\begin{equation*}
P(G)=G \operatorname{Ln}(G)=-(1-G)+\sum_{n=2}^{\infty} \frac{(1-G)^{n}}{n(n-1)} \tag{5.30}
\end{equation*}
$$

Let us now recall the Lambert function $W=W(P)$, whose inverse function $P=P(W)$ is

$$
\begin{equation*}
P(W)=W e^{W} \tag{5.31}
\end{equation*}
$$

(Hopefully, the reader will not be confused by the fact that we denote two different function $P=P(G)$ and $P=P(W)$ (and in fact also the "momentum" variable P itself) with the same symbol P. It should be clear from the context which is which.) Note that the Lambert function $W=W(P)$ has a zero in $P=0$

$$
\begin{equation*}
W(P=0)=0 \tag{5.32}
\end{equation*}
$$

By comparing eqs. (5.30 and (5.31) we deduce that the sought-for function $G=G(P)$ is just the exponential of the Lambert function

$$
\begin{equation*}
G(P)=e^{W(P)}=\frac{P}{W(P)} \tag{5.33}
\end{equation*}
$$

The Taylor expansion for the Lambert function $W=W(P)$ is

$$
\begin{equation*}
W(P)=\sum_{n=1}^{\infty}(-n)^{n-1} \frac{P^{n}}{n!} \tag{5.34}
\end{equation*}
$$

The Taylor coefficients with $n \geq 1$ follow from Lagrange's inversion formula, or simply by calculating

$$
\begin{align*}
W^{(n)}(P=0) & =\frac{1}{n!} \oint_{0} \frac{d P}{2 \pi i} \frac{W^{\prime}(P)}{P^{n}}=\frac{1}{n!} \oint_{0} \frac{d W}{2 \pi i} \frac{1}{P(W)^{n}} \\
& =\frac{1}{n!} \oint_{0} \frac{d W}{2 \pi i} \frac{e^{-n W}}{W^{n}}=\left.\frac{d^{n-1}}{d W^{n-1}} e^{-n W}\right|_{W=0} \\
& =(-n)^{n-1} \tag{5.35}
\end{align*}
$$

Similarly, the Taylor coefficients for the function $G=G(P)$ with $n \geq 1$ are

$$
\begin{align*}
B_{n} & =G^{(n)}(P=0)=\frac{1}{n!} \oint_{0} \frac{d P}{2 \pi i} \frac{G^{\prime}(P)}{P^{n}}=\frac{1}{n!} \oint_{0} \frac{d P}{2 \pi i} \frac{W^{\prime}(P) e^{W(P)}}{P^{n}} \\
& =\frac{1}{n!} \oint_{0} \frac{d W}{2 \pi i} \frac{e^{W}}{P(W)^{n}}=\frac{1}{n!} \oint_{0} \frac{d W}{2 \pi i} \frac{e^{(1-n) W}}{W^{n}}=\left.\frac{d^{n-1}}{d W^{n-1}} e^{(1-n) W}\right|_{W=0} \\
& =(1-n)^{n-1} \tag{5.36}
\end{align*}
$$

The Taylor expansion for the function $G=G(P)$ is

$$
\begin{equation*}
G(P)=\sum_{n=0}^{\infty}(1-n)^{n-1} \frac{P^{n}}{n!} \tag{5.37}
\end{equation*}
$$

Both Taylor series (5.34) and (5.37) have radius of convergence equal to $1 / e$, as may be seen by the ratio test. This completes the proof of Proposition 3 .
Acknowledgement. The work of K. B. is supported by the Ministry of Education of the Czech Republic under the project MSM 0021622409.

References

[1] Batalin, I. A., Vilkovisky, G. A., Gauge algebra and quantization, Phys. Lett. 102B (1981), 27-31.
[2] Bering, K., Non-commutative Batalin-Vilkovisky algebras, homotopy Lie algebras and the Courant bracket, Comm. Math. Phys. 274 (2007), 297-34.
[3] Bering, K., Damgaard, P. H., Alfaro, J., Algebra of higher antibrackets, Nuclear Phys. B 478 (1996), 459-504.
[4] Daily, M., Examples of L_{m} and L_{∞} structures on $V_{0} \oplus V_{1}$, unpublished notes.
[5] Daily, M., Lada, T., A finite dimensional L_{∞} algebra example in gauge theory, Homotopy, Homology and Applications 7 (2005), 87-93.
[6] Lada, T., Markl, M., Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), 2147-2161.
[7] Lada, T., Stasheff, J. D., Introduction to sh Lie algebras for physicists, Internat. J. Theoret. Phys. 32 (1993), 1087-1103.

Institute for Theoretical Physics \& Astrophysics
Masaryk University, Kotlářská 2
61137 Brno, Czech Republic
E-mail: bering@physics.muni.cz

Department of Mathematics
North Carolina State University
Raleigh NC 27695
E-mail: lada@math.ncsu.edu

[^0]: 2000 Mathematics Subject Classification: primary 18G55.
 Key words and phrases: homotopy Lie algebras, generalized Batalin-Vilkovisky algebras, Koszul brackets, higher antibrackets.

