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METRIZATION OF CONNECTIONS
WITH REGULAR CURVATURE

Alena Vanžurová

Abstract. We discuss Riemannian metrics compatible with a linear connec-
tion that has regular curvature. Combining (mostly algebraic) methods and
results of [4] and [5] we give an algorithm which allows to decide effectively
existence of positive definite metrics compatible with a real analytic connection
with regular curvature tensor on an analytic connected and simply connected
manifold, and to construct the family of compatible metrics (determined up
to a scalar multiple) in the affirmative case. We also breafly touch related
problems concerning geodesic mappings and projective structures.

1. Introduction

According to the fundamental theorem of (pseudo-)Riemannian geometry, given
a metric g on a manifold, there is a unique symmetric connection ∇ (its Levi-Civita,
or Riemann connection) which preserves the scalar product, ∇g = 0. We contribute
to its reciprocal. Metrization Problem, MP, for linear connections means: given a
manifold M with a symmetric linear connection ∇, decide whether the connection
arises from some metric tensor g as the Levi-Civita connection of the corresponding
(pseudo-)Riemannian manifold (M, g). If ∇g = 0 holds we say that the metric and
the connection are compatible.

The MP problem was discussed - in various spaces (in manifolds endowed with
a connection, in vector bundles), eventually under various constraint conditions -
by various authors, both by mathematicians and mathematical physicists (L. P. Ei-
senhart and O. Veblen, S. Gołab, A. Jakubowicz, B. G. Schmidt, S. B. Edgar,
O. Kowalski, L. Tamássy, M. Anastasiei, G. Thompson, K. S. Cheng and W. T. Ni,
M. Cocos etc.). In [8], a possibility to use holonomy groups and holonomy algebras
is pointed out, and difficulties arising in C∞-class are discussed; in [4], among
others, positive definite metrics for a symmetric connection with regular curvature
are constructed in the favourable case; in [5], positive definite metrics for analytic
connections on analytic manifolds are determined by means of an algorithm based
on the de Rham decomposition and holonomy algebras; cf. [9] (the case of indefinite
metrics, particularly Lorentzian, is different).
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We will keep the following notation. If M is a smooth n-dimensional mani-
fold, p : TM → M denotes its tangent bundle, X (M) is the F(M)-module of
smooth vector fields on M where F(M) denotes the ring of smooth functions on M .
Consider the vector bundles Λ2(TM), Λ2(T ∗M), Hom(TM, TM), the vector space
L(TxM) of all homomorphisms Λ2(TxM)→ End(TxM), and the space L(TM) of
all smooth bundle morphisms Λ2(TM)→ Hom(TM, TM).

If (M, g) is a (pseudo-)Riemannian manifold (i.e. g is a metric on M of ar-
bitrary signature) then its curvature tensor1 R of type (1, 3) gives rise to the
(0, 4) curvature tensor Rg, Rg(X,Y, Z,W ) = g(R(X,Y )Z,W ), which is usually
denoted by the same symbol R. It is a well known fact that among others, R = Rg
satisfies R(X,Y, Z,W ) = −R(Y,X,Z,W ), R(X,Y, Z,W ) = −R(X,Y,W,Z), and
R(X,Y, Z,W ) = R(Z,W,X, Y ). Moreover it can be verified that at any point
x ∈ M , R induces a homomorphism2 R̂x : Λ2(TxM) → End(TxM), σ 7→ R̂x(σ),
such that if σ =

∑
i ciXi ∧ Yi ∈ Λ2(TxM) then

(1) R̂x(σ)(Z) =
∑
i

ciR(Xi, Yi)Z for any Z ∈ TxM .

Consequently, a bundle morphism R̂ : Λ2(TM)→ Hom(TM, TM) is induced.
Let us pay attention to some related algebraic structures with similar charac-

teristic algebraic features or behaviour.

2. Curvature structures for inner product

Let us keep the following notation: if V is an n-dimensional real vector space, V ∗
denotes its dual, End(V ) = Hom(V, V ) is the vector space of all endomorphisms
of V . The second exterior power3 of V , Λ2(V ), consists of antisymmetric type
(0, 2) tensors on V . The space Λ2(V ∗) of antisymmetric (0, 2) tensors on the
dual V ∗ will be identified with the dual of Λ2(V ), i.e. we use the identification
(Λ2(V ))∗ ≈ Λ2(V ∗). S2(V ∗) denotes the space of all symmetric bilinear forms on
V . L(V ) denotes the space of all homomorphisms % : Λ2(V )→ End(V ).

A linear map % ∈ L(V ) will be called regular if any non-vanishing4 decomposable
bivector is mapped onto a non-zero endomorphism5,

X,Y ∈ V , X ∧ Y 6= 0 =⇒ %(X ∧ Y ) 6= 0 .
Let G ∈ S2(V ∗) be a fixed positive definite symmetric bilinear form on V .
Definition 1. Under a curvature structure with respect to G we mean a linear
map % ∈ L(V ) such that the following two conditions hold (X1, X2, Y1, Y2 ∈ V ):

1In terms of the Riemannian (Levi-Civita) connection ∇ of (M, g), the curvature (Riemannian)
tensor is defined by R(X,Y )(Z) = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z for X,Y, Z ∈ X (M).

2Given X1, X2, Z ∈ TxM , X′i = ajiXj then X′1 ∧X
′
2 = det(aji )X1 ∧X2, and we find easily

that R(X′1, X′2)Z = det(aji )R(X1, X2)Z.
3Its elements, called bi-vectors, are of the form

∑
i,j
cijZi ∧ Zj , Zi ∈ V , cij ∈ R; elements of

the form X ∧ Y are called decomposable.
4Recall that X ∧ Y = 0 if and only if either Y = 0 or X = kY for some k ∈ R.
5Of course, we can characterize regularity by the equivalent condition that any non-zero

bi-vector is mapped onto a non-zero endomorphism but the above condition is easier to check.
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(i) the map G(%(X1 ∧X2)−,−) : V 2 → R is antisymmetric, i.e. it satisfies

G(%(X1 ∧X2)(Y1), Y2) = −G(%(X1 ∧X2)(Y2), Y1) ;

(ii) the pairs (X1, X2), (Y1, Y2) are interchangeable,

G(%(Y1 ∧ Y2)(X1), X2) = G(%(X1 ∧X2)(Y1), Y2) .

All curvature structures belonging to a fixed G ∈ S2(V ∗) form a linear subspace
L(V,G) ⊂ L(V ). The property (i) can be equivalently written as

(i’) : G(%(X1 ∧X2)(Y1), Y2) +G(Y1, %(X1 ∧X2)(Y2)) = 0 .
Remark that for any % ∈ L(V ) and G ∈ S2(V ∗), the assignment

(%,G) 7→ %G , %G(w,X ⊗ Y ) = G(%(w)(X), Y ) , w ∈ Λ2(V ) , X, Y ∈ V

gives rise to a map S2(V ∗) × L(V ) → Λ2(V ∗) ⊗ (V ⊗ V )∗. There is a canonical
injection ι : Λ2(V ∗) ⊗ Λ2(V ∗) → Λ2(V ∗) ⊗ (V ⊗ V )∗. If we denote by C(V ) the
linear subspace of all symmetric tensors from Λ2(V ∗)⊗ Λ2(V ∗), we can check:

% is a curvature structure w.r.t. G if and only if %G ∈ C(V ).

Lemma 1. Let % ∈ L(V,G) be a regular curvature structure with respect to
a positive definite symmetric bilinear form G ∈ S2(V ∗). Then for any vectors
X ∈ V \{0}, Y ∈ V satisfying G(X,Y ) = 0 (i.e. forming a G-orthogonal pair)
there exists a bivector w ∈ Λ2(V ) such that %(w)(X) = Y .

Proof. For arbitrary X ∈ V , X 6= 0, the subset of images of the above shape
forms a linear subspace WX = {%(w)(X) |w ∈ Λ2(V )} in V . Since G is positive
definite, G(X,X) 6= 0 holds, and V = WX ⊕W⊥X . Let us check that WX is just
the orthogonal complement of span{X}, or equivalently, span{X}⊥ = WX . Due to
symmetry and (i’), G(%(w)(X), X) = 0, therefore %(w)(X) ⊥ X. Assume Y 6= 0
with Y ⊥ X. Consider the orthogonal decomposition Y = Y1 + Y2, Y1 ∈ WX ,
Y2 ∈ WX⊥. Obviously, Y2 ⊥ %(w)(X) for any w ∈ Λ2(V ). Consequently, for any
Z1, Z2 ∈ V , G(%(X∧Y2)(Z1), Z2) = G(%(Z1∧Z2)(X), Y2) = 0. Hence %(X∧Y2) = 0.
Due to X 6= 0 and regularity, the zero morphism can arise only if Y2 = kX for
certain k ∈ R. But 0 = G(X,Y1 + Y2) = G(X,Y2) = kG(X,X), that is, k = 0, and
Y = Y1 ∈WX . Hence WX⊥ = span{X}, and Y = %(w)(X) for some w whenever
Y and X are G-orthogonal. �

For any % ∈ L(V ), let us introduce a linear subspace H% in S2(V ∗) by

(2) H% = {F ∈ S2(V ∗) | F (%(X1 ∧X2)(Y1), Y2) + F (Y1, %(X1 ∧X2)(Y2) = 0} .

That is, endomorphisms %(w), w ∈ Λ2(V ) are skew-adjoint relative to any sym-
metric form F ∈ H% ⊂ S2(V ∗). Obviously, G ∈ H% whenever % is a curvature
structure relative G.

Theorem 1. Let G ∈ S2(V ∗) be positive definite. If % is a regular curvature
structure w.r.t. G then the space H% is 1-dimensional, H% = span{G}.
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Proof. Let F ∈ H%. We find k ∈ R such that F = kG. In (V,G), choose a
G-orthonormal basis 〈e1, . . . en〉 of V . For any pair X ⊥ Y (orthogonal w.r.t. G),
X 6= 0, we get orthogonality w.r.t. F . Indeed, by Lemma 1, Y = %(w)(X)
for some w ∈ Λ2(V ). Due to symmetry and (2), F (X,Y ) = F (X, %(w)(X)) =
−F (%(w)(X), X)=−F (Y,X) = 0. Consequently, F (ei, ej) = 0 for i 6= j, 1 ≤
i, j ≤ n, and, since ei + ej ⊥ ei − ej , we get 0 = F (ei + ej , ei − ej) = F (ei, ei)−
F (ej , ej). That is, k = F (ei, ei) = F (ej , ej) must be a fixed constant. Hence
F (X,Y ) =

∑
i,j X

iY jF (ei, ej) =
∑n
i=1 X

iY iF (ei, ei) = kG(X,Y ), and F = kG

with k = F (e1, e1). �

3. Riemannian metrics

Let (M,∇) be an n-dimensional manifold endowed with a linear connection, and
let R be its curvature. Let us use the above algebraic results on any fibre TxM of
TM , x ∈M . We say that x ∈M is a regular point of % ∈ L(TM) if %x is regular
on TxM , and that % is regular on M if all points of M are regular.

If Gx ∈ S2(T ∗xM) is a positive definite scalar product on the tangent space
TxM , x ∈M , then R̂x ∈ L(TxM), derived from R by the formula (1), is surely a
curvature structure6 for Gx. If g is a Riemannian metric on M we define a curvature
structure with respect to g pointwise, and introduce the subspace L(M, g) ⊂ L(M);
the curvature tensor R of (M, g) satisfies R ∈ L(M, g). Similarly as in (2), for every
x ∈ M we introduce a subspace HR̂x =: H0(x) consisting of all Gx ∈ S2(T ∗xM)
relative to which all elements R̂x(X1∧X2) are skew-adjoint, i.e. the following holds
for any X1, X2, Y1, Y2 ∈ TxM :

Gx(R̂x(X1 ∧X2)Y1, Y2) +Gx(Y1, R̂x(X1 ∧X2)Y2 = 0 .

Their collection forms the bundle

(3) H0(M)→M, H0(M) =
⋃
x∈M

HR̂x .

As a consequence of Lemma 1 and Theorem 1 we get

Corollary 1. Let (M, g) be a Riemannian manifold such that each point of M
is regular w.r.t. the curvature tensor R. Then at each point x ∈ M , the space
H0(x) = HR̂x is 1-dimensional, that is, H0(M) is a line-bundle.

On a connected manifold M with dimM ≥ 3, a Riemannian metric is determined
by its curvature R, provided the subset of R-regular points is dense, uniquely up
to a scalar multiple, [4, p. 133].

6As above, we can introduce RGx,x by RGx,x(σ, Y ⊗ Z) = Gx(R̂x(σ)(Y ), Z) for Y, Z ∈ TxM ,
σ ∈ Λ2(TxM). Then we have a map (Gx, R̂x) 7→ RGx,x of S2(T ∗xM)× L(TxM) to a particular
subspace of Λ2(T ∗xM)⊗ (TxM × TxM)∗.
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4. Riemannian metrizability in regular case

Let us formulate necessary and sufficient metrizability conditions for linear
connection with regular curvature tensor.

Recall that a one-form ω : M → T ∗M on M is exact (= gradient) if ω = df for
a certain function f on M .

Theorem 2. Let (M,∇) be a manifold with torsion-free linear connection ∇, let
the curvature R be regular on M , and let H0(M) =

⋃
x∈M HR̂x be the bundle

corresponding to the curvature tensor. Then ∇ is a Riemannian connection of a
positive-definite metric g if and only if the following conditions hold:

(1) H0(M) is the line bundle,
(2) the bundle H0(M) is metric,
(3) any Riemannian metric g̃ : M → H0(M) is recurrent, ∇g̃ = ω ⊗ g̃, and the

1-form ω is exact on M .

Proof. To verify that the conditions are sufficient, let g̃ : M → H0(M) be a
Riemannian metric, and let ∇g̃ = df ⊗ g̃ for some function f . Then the tensor field
g = exp(−f) · g̃ is parallel; ∇g = 0. Therefore ∇ is the Levi-Civita connection of
(M, g). The conditions are necessary according to [4]. �

Since the condition (1) means that H0(x) is one-dimensional at any point x,
it is sufficient to suppose that the third condition (3) is satisfied for an arbitrary
fixed metric. The second condition tells that H0(x) involves a positive definite
symmetric bilinear form on each fibre TxM , x ∈M .

5. Real analytic case with regular curvature

In [4], [9], an algorithm is discussed which allows to answer the MP (even without
regularity assumption) for positive definite metrics on an analytic, connected and
simply connected manifold with an analytic linear connection. The procedure
is based on the philosophy that a manifold carries a structure invariant under
parallel transport if and only if this stucture is invariant at a single point under
the holonomy group (which can be expressed in terms of the corresponding Lie
algebra). The Lie algebra of the holonomy group is generated by the curvature
endomorphisms, arising from the curvature tensor and its covariant derivatives. All
compatible positive metrics can be described explicitely. If the curvature tensor is
regular, the process is simplified considerably.

So let M be a connected simply connected analytic n-manifold endowed with
an analytic symmetric linear connection ∇ whose curvature R is regular. Recall
that in the analytic case, the holonomy group Hol(x) is a connected Lie subgroup
of the automorphism (transformation) group GL(TxM) of the fibre, coincides with
the restricted holonomy group (component of unit), Hol(x) = Hol0(x), and is
therefore uniquely determined by its Lie algebra hol(x), i.e. its tangent space at
unit. Holonomy groups in different points are isomorphic, hence we can define the
abstract holonomy group of the connection, Hol∇, [3, I], with the Lie holonomy
algebra hol. Recall that Hol∇0 is trivial if and only if the connection is flat.
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Furthermore, in the analytic case Hol0(x) = Hol′(x) (the infinitesimal holonomy
group), the same for Lie algebras. But for smooth connections, hol′(x) is, as
a vector space, a span of endomorphisms ∇kR(X,Y ;Z1, . . . , Zk), 0 ≤ k < ∞,
X,Y, Z1, . . . , Zk ∈ TxM , [3, I]. Hence the restricted holonomy group of a real
analytic connection is fully determined by values of all ∇kR, 0 < k, in a point x.

The restricted holonomy group of any Riemannian manifold (M, g) is a closed
connected subgroup of the orthogonal group, and in particular it is compact, [2];
Hol(x) identifies with a subgroup of O(TxM), g is Hol(x)-invariant. For connected,
simply connected M , it is sufficient to find a Hol(x)-invariant positive definite
Gx ∈ S2(T ∗xM) in one point x ∈M , and to induce a compatible metric via parallel
transport, [8], [5], [9]. The space of all Hol(x)-invariant forms is characterized as a
subspace H(x) ⊂ S2(T ∗xM) consisting just of all forms Gx satisfying

(4) G(AX,Y ) +G(X,AY ) = 0

for all A ∈ hol(x), X,Y ∈ TxM . Introduce a sequence of subalgebras in hol(x) by

h(r)(x) = span {∇kR(X,Y ;Z1, . . . , Zk) | 0 ≤ k ≤ r}.

Note that H0(x) consists just of all forms with respect to which all elements
A ∈ h(0)(x) are self-adjoint (i.e. satisfy (4)); H(x) ⊂ H0(x) for all x ∈M .

Lemma 2. Let M be connected, simply connected manifold endowed with a
torsion-free linear connection ∇, x ∈M . A symmetric bilinear form Gx on TxM
is Hol-invariant if and only if Gx ∈ H(x), [9, L. 3], [5, p. 3].

If the manifold is connected it is sufficient to know the metric form at one point,
and to enlarge it by parallel transport, hence the following holds.

Theorem 3. Let us given (M,∇), M connected, ∇ symmetric. If there is a
(non-degenerate) symmetric bilinear form Gx ∈ H(x) in one point x ∈ M then
there exists on M a metric of the same signature and compatible with ∇, [9, Th. 1],
[8].

If dim h(r)(x) attains its maximum in some nbd Ux of x ∈ M for all r, the
point is called Hol(x)-regular. If this is the case, there exists N ∈ N such that
h(N)(x) = h(N+1)(x) = . . . , and the same holds in some neighborhood Ux 3 x.
Consequently, for all y ∈ Ux, h(N)(y) = hol(y). Hence in a local chart, we are able
to decide whether the point is Hol(x)-regular and to calculate hol(y) if the answer
is affirmative; the algorithm proceeds as follows:

Step (1). Choose a local chart (U, xi). Calculate the curvature and its covariant
derivatives at a Hol(x)-regular point x up to the lowest order N for which the
sequence h(r)(x), r ∈ N, stabilizes.

Step (2). Calculate H0(x), H(x). If dimH(x) = 0 the connection is not metrizable,
[5]. In the Riemannian metrizable case, dimH0(x) = 1 must be satisfied according
to the above. Hence the only case favourable for Riemannian metrizability is
dimH(x) = dimH0(x) = 1.
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Step (3). If H(x) = H0(x) = span {G} for some positive definite form G take
g̃ = G (if not ∇ is not Riemannian).

The rest of the algorithm from [5] is trivial: the only endomorphism is identical,
S = idTxM , withNx = TxM being the null-space of the trivial commutant Cx = {0},
and g̃|Nx = G. We have the only generator S = S(1) with TxM as its eigenspace,
hence the required decomposition of the tangent bundle is trivial, L = Nx = TxM ,
g̃|L = G is positive definite. By [5], G must be recurrent, with the corresponding
1-form exact.
Step (4). We determine a function f with ∇G = df ⊗G if possible. In case there is
no such function the connection ∇ is not metrizable.
Step (5). Compatible metrics are of the form g = c · exp(−f) ·G, c > 0.

Let us give a pair of easy examples for demonstration.

Example 1 ([10]). Let us given a symmetric connection ∇ with non-zero compo-
nents

Γ1
12 = cot y , Γ1

13 = cot z , Γ2
11 = − sin y cos y ,

Γ2
23 = cot z , Γ3

11 = − sin z cos z sin2 y , Γ3
22 = − sin z cos z

on the definition domain M = R× (0, π)× (0, π), with coordinates (x, y, z) (calcu-
lations are related to the standard basis 〈e1, e2, e3〉 of TpM). Non-zero components
of the curvature R are

R1
212 = sin2 z , R2

112 = − sin2 z sin2 y , R1
313 = 1 ,

R3
113 = − sin2 y sin2 z , R2

323 = 1 , R3
223 = − sin2 z ,

and R̂(X ∧ Y ) = R(X,Y ) is regular, with matrix representation 0 R1
212(X1Y 2 −X2Y 1) R1

313(X1Y 3 −X3Y 1)
R2

112(X1Y 2 −X2Y 1) 0 R2
323(X2Y 3 −X3Y 2)

R3
113(X1Y 3 −X3Y 1) R3

223(X2Y 3 −X2Y 1) 0

 .

We check ∇R = 0. Hence
h(0)(x) = hol(x) = span {R(e1, e2), R(e1, e3), R(e2, e3)} .

Let us find a generator of H(x) = H0(x): so that to calculate G, it is sufficient
to consider (4) with A = R(ei, ej), i < j. We get G = diag (sin2 y sin2 z, sin2 z, 1),
∇G = 0, f = const, hence ∇ is metrizable, with compatible positive metrics given
up to a scalar multiple, {cG, c > 0}.

Example 2 ([10]). Let us take Γ1
12 = a > 0, Γ2

11 = b > 0 as the only non-zero
Christoffels of the connection on R2 with coordinates (x, y). In any point (x, y),
the curvature is regular, R2

112 = −a2, R1
212 = ab, zero otherwise; the space H0(x, y)

is generated by a positive definite form: H0(x, y) = span {G}, G = diag (b, a),
ab > 0. If we calculate ∇R(e1, e2; e1) we check that it does not satisfy (4), hence
H(x) = {0}, and the connection is not metrizable. An alternative argumentation:
the covariant derivative of G = b dx⊗ dx+ a dy ⊗ dy cannot be writen is the form
df⊗G for a function f since ∇G = −2ab(dx⊗dx⊗dx+dx⊗dy⊗dx+dy⊗dx⊗dx).
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Recall that if Hol of (M, g) is reducible then the universal cover of M is a
Riemannian product; it is never the case if R is regular on M . The irreducible Hol0
for Riemannian manifolds are listed and discussed in [1, pp. 643–647].

6. Geodesic mappings, projective structures and metrizability

The topic can be reformulated in terms of geodesic mappings.
Recall that if M and M̄ are smooth n-manifolds endowed with smooth line-

ar connections ∇ and ∇̄, respectively, a diffeomorphism f : M → M̄ is called a
geodesic mapping if any (canonically parametrized) geodesic of (M,∇) is mapped
onto an unparametrized geodesic (= pregeodesic) of (M̄, ∇̄), [7] and the references
therein. Due to diffeomorphism, the manifolds M and M̄ can be in fact idetified
(via suitable atlases), and we can work on a common underlying manifold M ≡ M̄
(instead of using pull-backs). Introduce the type (1, 2) “difference tensor" P of the
given connections, ∇̄XY = ∇XY + P (X,Y ). There is a geodesic mapping of M
onto M̄ if and only if there is a 1-form ψ such that P (X,Y ) = ψ(X)Y +Xψ(Y );
if this is the case we calculate ψ(X) = 1

n+1 Tr (Y 7→ P (∗, Y )).
Two torsion-free connections ∇ and ∇̂ on the same manifold M are projectively

equivalent if they have the same geodesics as unparametrized curves; the corres-
ponding equivalence class [∇] is called a projective structure on M . In these terms,
a problem closely related to MP can be formulated as follows: given a projective
structure (M, [∇]), we ask whether it may be represented by a metric connection
or not. A more or less equivalent formulation: given a pair (M,∇), find all possible
geodesic mappings f : M → M of (M,∇) onto (pseudo-)Riemannian manifolds
(M, g).

Corollary 2. Let (M,∇) be a manifold with symmetric ∇ and regular curvature R
(or, let [∇] be a regular projective structure on M , respectively). If dimH0(x) = 1
in every x ∈M and there is a recurrent positive definite symmetric bilinear form
g̃ : M → H0(M), ∇g̃ = ω ⊗ g̃, with ω = df exact, then there is a geodesic mapping
of (M,∇) onto Riemannian spaces (the given projective structure is representable
by a metric connection corresponding to g = e−f g̃, respectively).

A bit more generally, we may be interested in all geodesic mappings f : M → M̄
of the given (M,∇) onto (pseudo-)Riemannian manifolds (M̄, ḡ). A system of
equations (for components ḡij(x), components ψi(x) of a 1-form and a certain
function µ(x)) that (locally) controls this question has been found by J. Mikeš, [6],
[7, Th.5.3, p. 87].
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