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YANG-MILLS BAR CONNECTIONS
OVER COMPACT KÄHLER MANIFOLDS

Hông Vân Lê

Abstract. In this note we introduce a Yang-Mills bar equation on complex
vector bundles E provided with a Hermitian metric over compact Hermitian
manifolds. According to the Koszul-Malgrange criterion any holomorphic
structure on E can be seen as a solution to this equation. We show the
existence of a non-trivial solution to this equation over compact Kähler
manifolds as well as a short time existence of a related negative Yang-Mills
bar gradient flow. We also show a rigidity of holomorphic connections among
a class of Yang-Mills bar connections over compact Käahler manifolds of
positive Ricci curvature.

1. Introduction

Let M2n be a compact Hermitian manifold of real dimension 2n and E be a
complex vector bundle over M2n. The following Koszul-Malgrange criterion [6],
see also [2, 2.1.53, 2.1.54], establishes the equivalence between the existence of a
holomorphic structure on E and a partial flatness of E.
Koszul-Malgrange criterion. A complex vector bundle E over a complex mani-
fold M2n carries a holomorphic structure, if and only if there is a connection A on
E such that the (0, 2)-component F 0,2

A of the curvature FA of A vanishes.
Thus we call a connection A satisfying the Koszul-Malgrange criterion a holomor-

phic connection. It is well-known (see e.g. [2]) that we can replace the connection A
in the Kozsul-Malgrange criterion by a unitary connection A for any given choice
of a compatible (Hermitian) metric h on E.

We introduce in Section 2 (see (2.5.1) and (2.5.2)) a Yang-Mills bar equation as
the Euler-Lagrange equation for the Yang-Mills bar functional which is the square
of the L2-norm of the (0, 2)-component F 0,2

A of a unitary connection A on (E, h).
Solutions of a Yang-Mills bar equation are called Yang-Mills bar connections. The
Yang-Mills bar equation has an advantage over the equation for a holomorphic
connection, because the later one is overdetermined if the complex dimension of
the bundle is greater or equal to 2 and n ≥ 4, and the first one is elliptic modulo a
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degeneracy which is formally generated by an action of the complex gauge group of
the complex vector bundle E (the degeneracy is formal generated since the action
of this group on the “small” space does not preserve the Yang-Mills bar functional,
see 2.7.b and Remark 5.13). Thus we hope that by using this equation we will
be able to find useful sufficient conditions under which a complex vector bundle
carries a holomorphic structure. Appropriate sufficient conditions for the existence
of a holomorphic structure on complex vector bundles over projective algebraic
manifolds could be a key step in solving the Hodge conjecture, if the conjecture
is correct. A particular result in this direction is our Theorem 4.25 which states
that an almost holomorphic connection over a compact Kähler manifold of positive
Ricci curvature is holomorphic, in particular any Yang-Mills bar connection on a
4-dimensional compact Kähler manifold of positive Ricci curvature is holomorphic.

In Section 2 after introducing the Yang-Mills equation we also discuss the sym-
metry of this equation in 2.7. In Section 3 we give a proof of the Hodge-Kähler
identities for general unitary connections over Kähler manifolds and show the
existence of non-trivial Yang-Mills bar connections. In Section 4 we derive a
Bochner-Weitzenböck type identity on compact Kähler manifolds and prove Theo-
rem 4.25. In Section 5 we introduce the notion of affine integrability condition, a
negative Yang-Mills bar gradient flow and find an affine integrability condition
for this flow (Theorem 5.9). Unlike previously known cases for weakly parabolic
equations (Ricci flow, Yang-Mills flow), our affine integrability is not derived from
an action of a group, which preserves the Lagrangian on the space, where our flow is
considered (see 2.7.b and Remark 5.13i). The automorphism group of the Yang-Mill
bar equation gives us only "half" of the integrability condition. In particular, the
DeTurck approach to weakly parabolic equations seems inapplicable to our flow. In
the last Section 6 we prove the short time existence, uniqueness and smoothness
of a solution of an evolution equation with affine integrability condition, slightly
extending a Hamilton’s result.

Let (V, 〈, 〉) be a Euclidean space. Denote by VC its complexification. Then
〈, 〉 extends uniquely to a complex bilinear form 〈, 〉C : VC × VC → C. Denote by
(v, w) := 〈v, w̄〉C the associated Hermitian form on VC and by 〈v, w〉 = Re(v, w)
the Euclidean metric on the space (VC)⊗ R. We note that the restriction of this
metric to V coincides with the original metric 〈, 〉. Conversely any Hermitian
metric (J-invariant Euclidean metric) on a complex space (V, J) considered as a
complexification of a real vector space V0 is obtained in this way.

In this note we define by the same (, ) (and resp. 〈, 〉) the Hermitian form (resp.
the Euclidean metric) extended in the above way from any vector bundle (E, 〈, 〉)
provided with a fiber-wise Euclidean metric 〈, 〉 to its complexification EC (resp.
considered as a real space). If A is a connection on (E, 〈, 〉) then A can be extended
to a unitary connection also denoted by A on the complexification EC with that
extended metric by setting dA(

√
−1φ) :=

√
−1dA(φ).



YANG-MILLS BAR CONNECTIONS OVER COMPACT KÄHLER MANIFOLDS 49

2. Yang-Mills bar equation

Now let A be a connection on a complex vector bundle (E, J) over a Her-
mitian manifold M2n. Denote by Ωp,q(E) the space of E-valued (p, q)-forms on
M2n : Ωp,q(E) = Ωp,q(M)⊗C E. We have the decomposition

dA = ∂A ⊕ ∂̄A : Ω(E)→ Ω1,0(E)⊕ Ω0,1(E) .

In general we have the inclusion

dA(Ωp,q(E)) ⊂ Ωp+1,q(E)⊕ Ωp,q+1(E) ,

since for ψ ∈ Ω0(E) and φ ∈ Ωp,q(M2n) we have

dA(ψ ⊗ φ) = dA(ψ)⊗ φ+ ψ ⊗ dφ ∈ Ωp+1,q(E)⊕ Ωp,q+1(E) .

(The operator dA is well defined on Ωp,q(E), since dA(Jψ) = JdA(ψ).) For φ ∈
Ωp,q(E) we denote by ∂A(φ) the projection of dA(φ) on the first factor and by
∂̄A(φ) the projection on the second factor w.r.t. the above decomposition.

We note that the curvature FA ∈ Ω2(EndJ E) of A can be considered as an
element in Ω2

C(EndJ(E)).
Let (E, h) be a Hermitian vector bundle, i.e. a complex vector bundle (E, J)

provided with a Hermitian metric h but E need not to be holomorphic. There is a
natural (Killing) metric on the space uE of skew-Hermitian endomorphisms of E,
defined by 〈θ1, θ2〉 = −Re Tr(θ1 · θ2). We can also write EndJ E = uE ⊕

√
−1uE .

Thus the metric h extends to a positive definite bilinear form on EndJ E (defined
by 〈θ1, θ2〉 = Re Tr(θ1 · θ∗2)). Here θ∗ is the conjugate transpose of θ, the adjoint
of θ w.r.t. the unitary metric h. We note that this metric is invariant under the
original complex structure on EndJ(E) induced by J which we denoted above by
multiplication with

√
−1. Hence by the remark at the beginning of the section,

this metric extends to a metric on the space ΩkC(EndJ E) by combining the Killing
metric with the Hermitian metric on M2n. The decomposition Ωk

C(EndJ E) =∑
p+q=k Ωp,q(EndJ E) is an orthogonal decomposition w.r.t. this metric.
If A is a unitary connection on (E, h), then FA ∈ Ω2(uE) ⊂ Ω2(EndJ E). We

also note that in the decomposition for the curvature of unitary connection A:

FA = (FA)2,0 + (FA)1,1 + (FA)0,2

we have (FA)0,2 = −((FA)2,0)∗. The Kozsul-Malgrange criterion suggests us to
consider the following Yang-Mills bar functional on the space of all unitary connec-
tions A on (E, h) over M2n

YMb(A) = (1/2)
∫
M2n
‖(FA)0,2‖ .

It is easy to see that the functional YMb is invariant under the gauge trans-
formation of the Hermitian vector bundle (E, h). Let us derive the first varia-
tion formula for the Yang-Mills bar equation. First we extend the usual Hodge
operator ∗ : Ωp(M2n) → Ω2n−p(M2n) to ∗̄ : Ωp(EndJ E) → Ω2n−p(EndJ E) de-
fined as follows. We extend ∗̄ : Ωp(EndJ E) → Ω2n−p(EndJ E) so that for each
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α ∈ ΩpC(EndJ E) and β ∈ ΩpC(EndJ E) we have

(2.1) 〈α(x), β(x)〉 =
〈

volxM2n, α(x) ∧(,) (∗̄β(x))
〉
.

Here ∧(,) denotes the composition of the wedge product with the contraction of
the coefficients in EndJ E via the natural Hermitian form (, ) on EndJ E.

Next we note that A induces naturally a connection, also denoted by A, on
the Hermitian vector bundle EndJ E provided with the metric described above.
It is known that the curvature FA of this induced connection acts on the space
Ω0(EndJ E) as follows
(2.2) FA(φ) = FA ∧ φ := [FA, φ] ,
see e.g. [1, (2.7)]. (The wedge product of differential forms with coefficients in a
Lie algebra bundle is the composition of the wedge product and the Lie bracket).

Now we define the operator ∂̄∗A : Ωp,q(EndJ E) → Ωp,q−1(EndJ E) as follows
(see also [5, Chapter III, (2.19)], or [3, Chapter 1, §2], for the case that E is absent)

(2.3) (∂̄∗A)βp,q := (−1)∗̄∂̄A∗̄βp,q .
Using the following identity for the formal adjoint d∗A of dA on an even dimensional
manifold M2n (see e.g. [1, (2.27)], for the real case, the complex case can be proved
by the same way by using the Stocks formula locally):

(d∗A)β = (−1)∗̄dA∗̄β

and taking into account (2.3) which implies that ∂̄∗A is the component with correct
bi-degree of d∗A, we conclude that ∂̄∗A is the formal adjoint of ∂̄A. Now using the
formula (FA+ta)0,2 = (FA)0,2 + t∂̄Aa

0,1 + t2a0,1 ∧ a0,1 and taking into account (2.2)
we get immediately

Lemma 2.4. Let M2n be a compact Hermitian manifold with (possibly empty)
boundary. The first variation of the Yang-Mills bar functional is given by the
formula

d

dt |t=0
YMb(A+ ta) =

∫
M2n
〈(∂̄A)∗F 0,2

A , a〉+
∫
∂M2n

〈volx, a ∧(,) ∗̄F 0,2
A 〉 .

We call a smooth unitary connection A a Yang-Mills bar connection, if it satisfies
the following two conditions

(∂̄A)∗F 0,2
A = 0 ,(2.5.1)

(∗̄F 0,2
A )|∂M2n = 0 .(2.5.2)

Let 4∂̄A := ∂̄A(∂̄A)∗ + (∂̄A)∗∂̄A. Using the Bianchi identity ∂̄AF 0,2
A = 0, which

follows from the usual Bianchi identity, and using the equality 〈volx, a ∧(,) ∗̄b〉 =
〈volx, b ∧(,) ∗̄a〉, we conclude that we can replace (2.5.1) in the system of two
equations (2.5.1) and (2.5.2) by the following condition

(2.6.1) 4∂̄A(FA)0,2 = 0 ,
to get an equivalent system of equations.
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2.7. Symmetries of the Yang-Mills bar equation. a) We can vary the
Yang-Mills bar functional among all compatible Hermitian metrics h′ on (E, J)
in order to get an invariant of the complex vector bundle E. Let At be a family
of unitary connections w.r.t. a compatible metric ht. We note that we can write
ht = gt(h), where gt is a (complex) gauge transformation of (E, J). Clearly (gt)−1At
is a unitary connection w.r.t. h ( i.e. d(gt)−1Ath = 0). Now we have F 0,2

At
=

Adgt F
0,2
(gt)−1At

. Moreover

(2.7.1) ‖F 0,2
At
‖ht = ‖Ad−1

gt F
0,2
At
‖h = ‖F 0,2

(gt)−1(At)‖h .

(We can get (2.7.1) easily by noticing that the inner products on EndJ E induced
by h and g(h) satisfy the following relation

〈A,B〉g(h) =
∑
i

〈A(g(ei)), B(g(ei))〉g(h) =
∑
i

〈Adg−1A(ei), Adg−1B(ei)〉h

where ei is an orthonormal basis in E w.r.t. h.)
Hence the infimum of the Yang-Mills bar functional is a constant which does

not depend on the unitary metric h.
b) The linearization of the Yang-Mills bar equation is not elliptic because the

equation is invariant under the gauge group G(E, h) of (E, h), see (2.7.1). The
complexification of this group is the gauge group G(E). This complexified group
acts also on the space A(E, h) of all unitary connections w.r.t. a fixed compatible
metric h [2, (6.1.4)]. For g ∈ G(E) we denote by ĝ the new (non-canonical) action
of g on A(E, h) defined as follows

∂̄ĝ(A) = g∂̄Ag
−1 = ∂̄A − (∂̄Ag)g−1 ,

∂ĝ(A) = ∂A + [(∂̄Ag)g−1]∗ .

Though this action of Ĝ(E) does not preserve the Yang-Mills bar functional,
infinitesimally it fails to do it at a connection A only by a quadratic term in F 0,2

A

(see (5.3)).

3. Yang-Mills bar connections over compact Kähler manifolds

Suppose that A is a unitary connection on a Hermitian vector bundle E over a
Kähler manifold M2n with a Kähler form ω. As before denote by ∂̄∗A the formal
adjoint of ∂̄A : Ωp,q(E)→ Ωp,q+1(E) defined by (2.3), and by ∂∗A the formal adjoint
of ∂A : Ωp,q(E)→ Ωp+1,q(E) defined in the same way.

Denote by Λ: Ωp,q(E)→ Ωp−1,q−1(E) the adjoint of the wedge multiplication
by ω, an algebraic operator. The following Hodge-Kähler identities

∂̄∗A =
√
−1[∂A,Λ] ,(3.1)

∂∗A = −
√
−1[∂̄A,Λ] ,(3.2)

are well-known for the case of a holomorphic bundle E and A being a unitary
holomorphic connection [5, Chapter III, (2.39)], or [3, Chapter 0, §7, Chapter 1,
§2], where they are called the Hodge identities. These identities have been called
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Kähler identities in [2, §6.1]. We give a proof of the general case here, assuming
the validity of (3.1) and (3.2) for unitary holomorphic connections A.

Note that it suffices to prove these identities locally, so we can assume that the
bundle is U(n)-trivial and ∂A = ∂+A1,0, where A1,0 =

∑n
i=1Aidzi, Ai ∈ EndJ (E).

Similarly ∂̄A = ∂̄ + A0,1 with A1,0 =
∑n
i=1−(Ai)∗dz̄i. Here we define ∂̄ and ∂

to be the (1, 0) and (0, 1) components of the unique unitary connection which is
compatible with the trivial holomorphic structure.

Since the Hodge-Kähler identities are valid for A = 0, it is easy to see that (3.1)
and (3.2) are equivalent to following algebraic identities

[A0,1]∗ =
√
−1[A1,0,Λ] ,(3.3)

[A1,0]∗ = −
√
−1[A0,1,Λ] .(3.4)

In view of the Hermitian linearity of LHS of (3.3) and (3.4):

(λA+ γB)∗ = λ̄A∗ + γ̄B∗

for λ, γ ∈ C, and taking into account the unitary of A which implies A1,0 = −(A0,1)∗,
it suffices to prove these identities for a C-basic {A1,0 = eijdzk, | 1 ≤ i, j ≤
dimC E, 1 ≤ k ≤ dimC M

2n = n} of (0, 1)-forms in Ω0,1(EndJ E). Here eij is an
elementary matrix in EndJ (E). We also assume that the Kähler metric at a given
point x is

∑
i dzidz̄i. Denote by ik and īk the adjoint of the multiplication operators

dzk∧ and dz̄k∧ correspondingly. Then we have

[A1,0]∗ = (ejiik), [A0,1]∗ = −(eij īk)

Λ = −
√
−1
2

n∑
k=1

īkik .

Substituting these identities in LHS of (3.3) and (3.4) we conclude that (3.3) and
(3.4) are equivalent to the following identities for all i, j, k

−(eij īk) =
√
−1
[
eijdzk,−

√
−1
2

n∑
k=1

īkik

]
,(3.5)

(ejiik) = −
√
−1
[
− ejidz̄k,−

√
−1
2

n∑
k=1

īkik

]
,(3.6)

In their turn (3.5) and (3.6) are immediate consequences of the following identities

−īk = 1
2

[
dzk∧,

n∑
k=1

īkik

]
.(3.7)

−ik = 1
2

[
dz̄k∧,

n∑
k=1

īkik

]
,(3.8)

To prove (3.7) (and (3.8) resp.) we compare the action of LHS of (3.7) (and of
(3.8) resp.) and the action of RHS of (3.7) (and of (3.8) resp.) on φ = dzJ ∧ dz̄K .
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We use the following formulas proved in p.112–113 of [3]

ik(dzJ ∧ dz̄K) = 0, if k 6∈ J ,(3.9)

ik(dzk ∧ dzJ ∧ dz̄K) = 2dzJ ∧ dz̄K ,(3.10)

īk(dzJ ∧ dz̄K) = 0, if k 6∈ K ,(3.11)
īk(dz̄k ∧ dzJ ∧ dz̄K) = 2dzJ ∧ dz̄K .(3.12)

With help of (3.9)–(3.12) we get (3.7) immediately. It is easy to see that (3.8) can
be obtained from (3.7) by changing the complex orientation.

Set 4∂A := ∂A∂
∗
A + ∂∗A∂A, 4∂̄A := ∂̄A∂̄

∗
A + ∂̄∗A∂̄A.

Corollaries 3.13. For φ, ψ ∈ Ω0,p(E) we have the following simple expressions

∂̄∗Aφ = −
√
−1Λ∂A(φ),(3.13.1) ∫

M2n
〈
√
−1ΛF 1,1

A φ, ψ〉 =
∫
M2n
−〈∂̄∗Aφ, ∂̄∗Aψ〉

+ 〈∂Aφ, ∂Aψ〉 − 〈∂̄Aφ, ∂̄Aψ〉 .(3.13.2)

More generally, for all φ ∈ Ωp,q(E) we have

(4∂A −4∂̄A)φ = −
√
−1[F 1,1

A ∧,Λ]φ ;(3.13.3)

4∂̄Aφ = 1
2(4dA +

√
−1[−F 0,2

A + F 2,0
A + F 1,1

A ,Λ])φ .(3.13.4)

Proof. 1) The first statement follows immediately from the Hodge-Kähler identity
(3.1).

2) Substituting F 1,1
A = ∂̄A∂A + ∂A∂̄A we get∫

M2n
〈
√
−1ΛF 1,1

A φ, ψ〉 =
∫
M2n
〈
√
−1Λ(∂̄A∂A + ∂A∂̄A)φ, ψ〉 .

Now applying the Hodge-Kähler identities to this equation we get∫
M2n
〈
√
−1ΛF 1,1

A φ, ψ〉 =
∫
M2n
〈
√
−1(∂̄AΛ∂A −

√
−1∂∗A∂A)φ, ψ〉 −

∫
M2n
〈∂̄∗A∂̄Aφ, ψ〉

=
∫
M2n
〈
√
−1Λ∂Aφ, ∂̄∗Aψ〉+

∫
M2n
〈∂Aφ, ∂Aψ〉 −

∫
M2n
〈∂̄Aφ, ∂̄Aψ〉(3.14)

Using (3.13.1) we get Corollary 3.13.2 immediately from (3.14).

3) Using the Hodge-Kähler identities (3.1) and (3.2), we get

−
√
−14∂A = ∂A(Λ∂̄A − ∂̄AΛ) + (Λ∂̄A − ∂̄AΛ)∂A

= ∂AΛ∂̄A − ∂A∂̄AΛ + Λ∂̄A∂A − ∂̄AΛ∂A .(3.15)
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In the same way we have
√
−14∂̄A = ∂̄A(Λ∂A − ∂AΛ) + (Λ∂A − ∂AΛ)∂̄A

= ∂̄AΛ∂A − ∂̄A∂AΛ + Λ∂A∂̄A − ∂AΛ∂̄A .(3.16)

Using the identities
−(∂A∂̄A + ∂̄A∂A) = −F 1,1

A ∧
we get from (3.15) and (3.16)

−
√
−1(4∂A −4∂̄A) = −[F 1,1

A ∧,Λ] .

which yields (3.13.3) immediately.

4) We have

4dA = (∂A + ∂̄A)(∂∗A + ∂̄∗A) + (∂∗A + ∂̄∗A)(∂A + ∂̄A)

= 4∂A +4∂̄A + (∂A∂̄∗A + ∂̄A∂
∗
A + ∂∗A∂̄A + ∂̄∗A∂A)(3.17)

Using the Hodge-Kähler identity (3.1), and replacing ∂A∂A by F 2,0
A ∧, we get

(∂A∂̄∗A + ∂̄∗A∂A) = −
√
−1∂A(Λ∂A − ∂AΛ)−

√
−1(Λ∂A − ∂AΛ)∂A

=
√
−1[F 2,0

A ∧,Λ] .(3.18)

Similarly

(∂̄A∂∗A + ∂∗A∂̄A) = −
√
−1∂̄A(∂̄AΛ− Λ∂̄A)−

√
−1(∂̄AΛ− Λ∂̄A)∂̄A

= −
√
−1[F 0,2

A ∧,Λ] .(3.19)

Using Corollary (3.13.3), we get from (3.17), (3.18), (3.19)

4dA = 24∂̄A −
√
−1[F 1,1

A ∧,Λ] +
√
−1[F 0,2

A ∧,Λ]−
√
−1[F 0,2

A ∧,Λ]

which yields (3.13.4) immediately. �

Remark 3.20. Clearly (3.13.2) follows directly from (3.13.3). Furthermore, taking
into account (2.2), we conclude that all the formulas in Corollaries (3.15) are valid,
if we replace bundle E by bundle EndJ E.

Using Corollary (3.13.1), we observe that a connection A over a compact Kähler
manifold is Yang-Mills bar, iff Λ∂AF 0,2

A = 0. We call a connection A almost
holomorphic, if ∂AF 0,2

A = 0. Using the Bianchi identity ∂̄AF
0,2
A = 0, we get that

∂AF
0,2 = 0, iff dAF

0,2
A = 0. Since F 2,0

A = −(F 0,2
A )∗, we observe that dAF 0,2

A = 0,
iff dAF

2,0 = 0. Using the Bianchi identity dAFA = 0, we observe that A is almost
holomorphic, iff dF 1,1

A = 0. If F 1,1
A = 0 we call A almost flat holomorphic connection.

If dimension of M equals 4, it is easy to check that

Λ∂AF 0,2
A = 0⇐⇒ ∂AF

0,2
A = 0 .

Thus any Yang-Mills bar connection over M4 is an almost holomorphic connection.
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3.21. Existence of almost holomorphic connections. Let T 4 be a 2-dimensional
complex torus with coordinates z1 = x1 +

√
−1y1, z2 = x2 +

√
−1y2. Let L

be a complex line bundle whose Chern class is represented by the cohomology
class c1 of dz1 ∧ dz2 + dz̄1 ∧ dz̄2. Let A be a unitary connection of L. Then
FA =

√
−1(dz1 ∧ dz2 + dz̄1 ∧ dz̄2) +

√
−1dα, where α ∈ Ω1(T 4). The new connec-

tion A′ = A− α has the curvature
√
−1(dz1 ∧ dz2 + dz̄1 ∧ dz̄2), whose component

F 1,1
A′ vanishes. Thus A′ is an almost flat holomorphic connection. We observe that

by the Hodge theorem L carries no holomorphic structure.

The same argument provides us a differential-geometric proof of the Hodge
conjecture for Hodge classes of dimension 2.

To get an almost holomorphic connection in vector bundles of higher dimension
we can take the sum of line bundles or a tensor product of a complex line bundle
with a holomorphic vector bundles.

In the next section we show that if M2n is a Kähler manifold of positive Ricci
curvature, then any almost holomorphic connection is a holomorphic connection
(Theorem 4.25), in particular any almost flat holomorphic connection is a flat
connection.

In general, the Hodge theory implies that on any Hermitian complex line bundle
over a Kähler manifold there is a Yang-Mills bar connection which realizes the
infimum of the Yang-Mills bar functional.

4. Yang-Mills bar equation over compact Kähler manifolds
of positive Ricci curvature

Suppose that A is a unitary connection on a Hermitian vector bundle E over a
Kähler manifold M2n. Let D be the Levi-Civita connection on T ∗M2n:

D : Ω1(M2n)→ Ω1(M2n)⊗ T ∗M2n .

The connectionD extends C-linearly to a connection also denoted byD : Ω1
C(M2n)→

Ω1
C(M2n) ⊗C T ∗CM

2n =R Ω1
C(M2n) ⊗R T ∗M2n. Since M2n is Kähler, we have

Dv(φ ±
√
−1Jφ) = Dv(φ) ±

√
−1JDv(φ) for all v ∈ T ∗CM

2n and for all φ ∈
Ω0,1(M2n). It follows that D(Ω0,1(M2n)) ⊂ Ω0,1(M2n)⊗C T

∗
CM

2n, and iterating
we have D(Ω0,p(M2n)) ⊂ Ω0,p(M2n) ⊗C T

∗
CM

2n for all p. Now we denote by D̄
the composition π0,1 ◦ D : Ω0,p(M2n) → Ω0,p(M2n) ⊗C T

0,1M2n, where π0,1 is
the projection to the corresponding component with (0, 1)-forms. Clearly for all
φ ∈ Ω0,p(M) the following formula holds
(4.1) Dv0,1(φ) = D̄v0,1(φ) ,
where v0,1 denotes the (0, 1)-component of v : v0,1 = (1/2)(v +

√
−1Jv). Similarly,

we use the notation v1,0 = (1/2)(v −
√
−1Jv).

Combining D̄ with ∂̄A : Ω(E)→ Ω0,1(E), we define the following partial connec-
tion

∇̄A : Ω0,p(E)→ Γ(E ⊗C Λ0,pT ∗CM
2n ⊗C T

0,1M2n) .
In view of (4.1) we have

∇̄A = π0,1 ◦ ∇A|Ω0,p(E) ,



56 HÔNG VÂN LÊ

where ∇A is the tensor product of dA and D, which preserves the natural induced
metric on the bundle E ⊗C ΛpT ∗CM2n:

∇A : ΩpC(E)→ Γ(E ⊗C ΛpT ∗CM2n ⊗C T
∗
CM

2n) .

In view of (4.1) we also have ∇A
(
Ω0,p(E)

)
⊂ Ω0,p(E)⊗C T

∗
CM

2n.
For any element φ ∈ Ωp(E) the expression φv1,...,vp denotes the value of φ at

(v1, . . . , vp) ∈ Λp(T∗M2n).
Now we define a basic zero order operator RA : Ω1

C(EndJ E)→ Ω1
C(EndJ E) by

setting

(4.2) RA(φ)X =
2n∑
j=1

[(FA)ej ,X , φej ] ∈ EndJ E ,

where (e1, . . . , en+k = Jek, . . . , e2n) is a unitary basis of the tangent space TxM2n

at the point x in question. We also regard FA as an element in Ω2
C
(

EndJ(E)
)
.

Recall that the Ricci transformation Ric: TxM2n → TxM
2n is defined by

Ric(X) =
2n∑
j=1

RX,ejej ,

where R denotes the curvature tensor of the Levi-Civita connection on the tangent
space TM2n. We denote by the same Ric the C-linear extension of Ric from TxM

2n

to (TxM2n)C.
We modify this transformation by setting

Ric−(X) :=
2n∑
j=1

RX,eje
0,1
j ∈ (TM2n)C .

Since J ◦ R = R ◦ J , we have Ric−(X) = π0,1 ◦ Ric(X). Here π0,1 denotes the
projection on the (0, 1)-component.

Given φ ∈ Ω1(EndJ E) we define a new 1-form φ◦Ric ∈ Ω1(EndJ E) by requiring
that for all X ∈ TM we have

(φ ◦ Ric)X := φRic(X) .

We also define φ ◦ Ric− ∈ Ω1(EndJ E) by requiring that for all X ∈ TM we have

(φ ◦ Ric−)X := φRic−(X) .

If φ ∈ Ω0,1(EndJ E), it is easy to see that φ ◦ Ric− = φ ◦ Ric.

Lemma 4.3. Suppose that (E, h) is a Hermitian vector bundle provided with a
unitary connection A. We have the following simple formulas for any φ ∈ Ω0,p(E)
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and for arbitrary (0, 1)-vectors Xi

(∂̄Aφ)X0,...,Xp =
p∑
k=0

(−1)k((∇A)Xkφ)X0,...,X̂k,...Xp
,(4.3.1)

(∂̄∗Aφ)X1,...,Xp−1 = −
2n∑
j=1

((∇A)e1,0
j
φ)e0,1

j
,X1,...,Xp−1

,(4.3.2)

where (e1, . . . , en+k = Jek, . . . , e2n) is an unitary frame at a given point.

Proof. First we extend a well-known formula for real forms (see e.g. [1, (2.12),
(2.13)]) to complex forms φ ∈ ΩkC(E) and Xi ∈ T ∗CM2n:

(4.4) (dAφ)X0,...,Xp =
p∑
k=0

(−1)k
(
(∇A)Xkφ

)
X0,...,X̂k,...Xp

,

Formula (4.4) holds, since it holds for all real forms φ ∈ Ωk(E) ⊂ Ωk
C(E) and

for all Xi ∈ T∗M2n, and because both LHS and RHS of (4.4) are C-linear w.r.t. to
variables φ and Xk.

By definition the LHS of (4.3.1) equals the LHS of (4.4) and clearly the RHS of
(4.3.1) equals the RHS of (4.4). Hence we get (4.3.1).

Now let us prove (4.3.2). For φ ∈ Ω0,p(E) and for a set of a (1, 0)-vector X0 and
(0, 1)-vectors Xi, 1 ≤ i ≤ p, using (4.4) , we have

(4.5) (∂Aφ)X0,X1...,Xp =
p∑
k=0

(−1)k
(
(∇A)Xkφ

)
X0,...,X̂k,...Xp

,

since LHS of (4.5) coincides with the value (dAφ)X0,X1...,Xp . Since φ ∈ Ω0,p(E), we
get

(4.6)
p∑
k=0

(−1)k((∇A)Xkφ)X0,...,X̂k,...,Xp
=
(
(∇A)X0φ

)
(X1, . . . , Xp) .

Thus we get

(4.7)
p∑
k=0

(−1)k(((∂Aφ) =
n∑
i=1

dzi ∧ (∇A)e1,0
i
φ .

Now using the Kähler identity ∂̄∗A = −
√
−1Λ∂A, we get from (4.7)

(∂̄∗Aφ)X1,...,Xp−1 = −1
2

n∑
k=1

n∑
j=1

[̄
ikikdzj ∧

(
(∇A)e1,0

j
φ
)]
X1,...,Xp−1

= −
n∑
j=1

[̄
ij
(
(∇A)e1,0

j
φ
)]
X1,...,Xp

.(4.8)

Clearly, the last term of (4.8) equals the RHS of (4.3.2). This completes the proof
of Lemma 4.3. �

The following proposition is a complex analogue of Theorem 3.2 in [1].
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Proposition 4.9. For any φ ∈ Ω0,1(EndJ E) the following identity holds

(4.9.1) 4∂̄Aφ = ∇̄∗A∇̄A(φ) + φ ◦ Ric +RA(φ) .

Proof. Let X ∈ T 0,1
x (M2n). We extend X locally on M2n so that DX(x) = 0.

We also extend the unitary frame {e1, . . . , en+k := Jek, . . . , e2n} locally so that
Dei(x) = 0. Using (4.3.1) and (4.3.2), and taking into account (Jej)0,1 = −

√
−1e0,1

j ,
(Jej)1,0 =

√
−1e1,0

j , we get at the point x

(∂̄A∂̄∗Aφ)X = (∇A)X{∂̄∗Aφ} = −(∇A)X
{ 2n∑
j=1

[
(∇A)ejφ

]
e0,1
j

}

= −
2n∑
j=1

[
(∇A)X(∇A)ejφ

]
e0,1
j

.(4.10)

(∂̄∗A∂̄Aφ)X = −
2n∑
j=1
{(∇A)ej (∂̄Aφ)}e0,1

j
,X

= −
2n∑
j=1

(∇A)ej
{

[(∇A)e0,1
j
φ]X − [(∇A)Xφ]e0,1

j

}
= −

2n∑
j=1

{
[(∇A)ej (∇A)e0,1

j
φ]X − [(∇A)ej (∇A)Xφ]e0,1

j

}
.(4.11)

Summing (4.10) and (4.11), we get

(4.12) (4∂̄Aφ)X = −
2n∑
j=1

{
[(∇A)ej (∇A)e0,1

j
φ]X +

2n∑
j=1

(RAej ,Xφ)e0,1
j

}
.

Here we denote by RA the curvature of the tensor product connection on the
bundle T ∗CM2n ⊗C EndJ E = (T ∗M2n ⊗R EndJ E)C. This curvature coincides with
the one on T ∗M2n ⊗R EndJ E, if we consider Ω2(T ∗M ⊗R EndJ E) as a subspace
in Ω2

C(T ∗CM2n ⊗C EndJ E). Now we observe that for ψ ∈ Ω0,1(EndJ E) we get

(4.13)
〈
−

2n∑
j=1

[(∇A)ej (∇A)e0,1
j
φ], ψ

〉

= −
2n∑
j=1

[
(∇A)ej 〈(∇A)e0,1

j
φ, ψ〉 − 〈(∇A)e0,1

j
φ, (∇A)ejψ〉

]
.

We define a 1-form σ, depending on φ and ψ, on M by
σ(X) := 〈(∇A)X0,1φ, ψ〉 .

Then

(4.14) −
2n∑
j=1

(∇A)ej 〈(∇A)e0,1
j
φ, ψ〉(x) = (−d∗σ)(x) ,
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and 〈
(∇A)e0,1

j
φ, (∇A)ejψ〉 = 〈∇̄Aφ, ∇̄Aψ

〉
+

2n∑
i=1

〈
(∇A)e0,1

j
φ, (∇A)e1,0

j
ψ
〉
.

Since (Jej)0,1 = −
√
−1e0,1

j and (Jej)1,0 =
√
−1e1,0

j , we get〈
(∇A)e0,1

i
φ, (∇A)e1,0

j
ψ
〉

+
〈
(∇A)(Jei)0,1φ, (∇A)(Jej)1,0ψ

〉
= 0

=⇒
2n∑
i=1

〈
(∇A)e0,1

j
φ, (∇A)e1,0

j
ψ
〉

= 0

=⇒
〈
(∇A)e0,1

j
φ, (∇A)ejψ

〉
= 〈∇̄Aφ, ∇̄Aψ〉 .(4.15)

From (4.13), (4.14), (4.15) we get

(4.16)
∫
M2n
−
〈
(∇A)ej (∇A)e0,1

j
φ, ψ

〉
=
∫
M2n
−d∗σ +

∫
M2n
〈∇̄Aφ, ∇̄Aψ〉 .

Next we have

(4.17) (RAej ,Xφ)e0,1
j

= (FA)ej ,Xφe0,1
j
− φ(Rej ,Xe

0,1
j ) .

Clearly Proposition 4.9 follows from (4.12), (4.13) and (4.17). �

Denote by RA the following linear operator: Ω0,2(EndJ E)→ Ω0,2(EndJ E) such
that for all (0, 1)-vectors X,Y we have

(4.18)
(
RA(φ)

)
X,Y

=
2n∑
j=1

{
[(FA)ej ,X , φej ,Y ]− [(FA)ej ,Y , φej ,X ]

}
.

We also associate to each φ ∈ Ω0,2(EndJ E) a new (0, 2)-form φ ◦ (Ric∧I) ∈
Ω0,2(EndJ E) by setting(

φ ◦ (Ric∧I)
)
X,Y

:= φ
(

Ric(X), Y
)
− φ

(
Ric(Y ), X

)
.

Proposition 4.19. For any φ ∈ Ω0,2(EndJ E) the following identity holds

(4.19.1) 4∂̄Aφ = ∇̄∗A∇̄Aφ+ φ ◦ (Ric∧I) +RA(φ) .

Proof. (Cf. [1, Theorem 3.10]) We use the notations X,Y, e1, . . . , en as in the
proof of Proposition 4.9. Then at the point x and for (0, 1)-vectors X and Y we
have

(∂̄A∂̄∗Aφ)X,Y =
(
(∂̄A)X ∂̄∗Aφ

)
Y
−
(
(∂̄A)Y ∂̄∗Aφ)X

= −(∇A)X
{ 2n∑
j=1

(
(∇A)ejφ

)
e0,1
j
,Y

}
+ (∇A)Y

{ 2n∑
j=1

(
(∇A)ejφ

)
e0,1
j
,X

}

= −
2n∑
j=1

{
[(∇A)X(∇A)ejφ]e0,1

j
,Y − [(∇A)Y (∇A)ejφ]e0,1

j
,X

}
.(4.20)
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We also have

(∂̄∗A∂̄Aφ)X,Y = −
2n∑
j=1

((∇A)ej ∂̄Aφ)e0,1
j
,X,Y

= −
2n∑
j=1

(∇A)ej
{

((∇A)e0,1
j
φ)X,Y + ((∇A)Y φ)e0,1

j
,X + ((∇A)Xφ)Y,e0,1

j

}

= −
2n∑
j=1

{
[(∇A)ej (∇A)e0,1

j
φ]X,Y + [(∇A)ej (∇A)Y φ]e0,1

j
,X

− [(∇A)ej (∇A)Xφ]e0,1
j
,Y

}
.(4.21)

Summing (4.20) and (4.21) we get

(4∂̄Aφ)X,Y =−
2n∑
j=1

[
(∇A)ej (∇A)e0,1

j
φ
]
X,Y

+
2n∑
j=1

{
[RAej ,Xφ]e0,1

j
,Y − [RAej ,Y φ]e0,1

j
,X ]
}
.(4.22)

As in the proof of Proposition 4.9 (see (4.13)) we have for ψ ∈ Ω0,2(EndJ E)

(4.23)
∫
M2n

〈
−

2n∑
j=1

(∇A)ej (∇A)e0,1
j
φ, ψ

〉
=
∫
M2n
〈∇̄Aφ, ∇̄Aψ〉 .

Combining the following identity

(RAX,Y φ)Z,W =
[
(FA)X,Y , φZ,W

]
− φ(RX,Y Z,W )− φ(Z,RX,YW )

with (4.23) to rewrite (4.22) as follows

(4∂̄Aφ)X,Y = (∇̄∗A∇̄Aφ)X,Y +RA(φ)X,Y + φ(Ric−(X), Y )

−
2n∑
j=1

φe0,1
j
,Rej,XY

− φ
(

Ric−(Y ), X) +
2n∑
j=1

φe0,1
j
,Rej,YX

.(4.24)

Using the Bianchi identity

−Rej ,XY −RY,ejX = RX,Y ej ,

and taking into account that the following quantity vanishes for all φ ∈ Ω0,2(EndJ E)
and for all X,Y ∈ T 0,1M2n

(φ ◦R)X,Y :=
2n∑
j=1

φ(ej , RX,Y ej) ,

because (Jej)0,1 = −
√
−1e0,1

j and (Jej)1,0 =
√
−1e0,1

j , we get Proposition 4.19
from (4.24) immediately. �
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Theorem 4.25. Let M be a compact Kähler manifold with positive Ricci curvature.
If A is an almost holomorphic connection, then A is holomorphic.

Proof. First let us prove the following formula for φ ∈ Ω0,2(EndJ E).
(4.26) RA(φ) = −

√
−1{ΛF 1,1

A ∧ φ− (ΛF 1,1
A )φ} := R̄(A)φ .

Let us rewrite the expression in (4.18) as follows

(4.27) RA(φ) = ∑
1≤k<l≤n

2n∑
j=1
{[(FA)ej ,e0,1

k
, φej ,e0,1

l
]− [(FA)ej ,e0,1

l
, φej ,e0,1

k
]}dz̄kdz̄l .

For any φ ∈ Ωk,p(EndJ E) denote by
φi1...ik,j̄1...j̄p := φ(e1,0

i1
, . . . , e1,0

ik
, e0,1
j1
, . . . , e0,1

jp
) .

Since φ ∈ Ω0,2(EndJ E), we get from (4.27)

RA(φ) =
∑

1≤k<l≤n

2n∑
j=1

{
[(FA)jk̄, φj̄l̄]− [(FA)jl̄, φj̄k̄]

+ [(FA)j̄k̄, φj̄l̄]− [(FA)j̄l̄, φj̄k̄]}dz̄kdz̄l .(4.28)

Since
(
J(ej)

)0,1 = −
√
−1e0,1

j and
(
J(ej)

)1,0 =
√
−1e1,0

j , we get from (4.28)

(4.29) RA(φ) = 2
∑

1≤k<l≤n

n∑
j=1
{[(FA)jk̄, φj̄l̄]− [(FA)jl̄, φj̄k̄]} dz̄kdz̄l .

Now expanding the following expression in local coordinates
√
−1ΛF 1,1 ∧ φ = 1

2

n∑
p=1

īpip

{∑
i,j

∑
k<l

[(FA)ij̄ , φk̄l̄] dzi dz̄j dz̄k dz̄l
}

=
√
−1(ΛF 1,1

A )φ− 2
∑

1≤i≤n

∑
1≤j,l≤n

[(FA)ij̄ , φīl̄] dz̄j dz̄l ,

and comparing it with the RHS of (4.29), we get (4.26) immediately.
Now let A be a Yang-Mills bar connection. Applying (4.19.1) to F 0,2

A and using
(4.26) we get

0 =
∫
M2n
〈∇̄AF 0,2

A , ∇̄AF 0,2
A 〉+

〈
F 0,2
A ◦ (Ric∧I), F 0,2

A

〉
+
∫
M

〈
R̄(A)F 0,2

A , F 0,2
A

〉
.(4.30)

Since A is a Yang-Mills bar connection, differentiating (2.7.1), we get
(4.31)

〈
(ΛF 1,1

A )F 0,2
A , F 0,2

A

〉
= 0 .

Now let A be an almost holomorphic connection. Using (4.26), (4.30), (4.31),
(3.13.2) (see also Corollary 3.20, we get F 0,2

A = 0 immediately. �
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Remark 4.32. Theorem 4.25 implies that any Yang-Mills bar connection on a
compact 4-dimensional Kähler manifold of positive Ricci curvature is holomorphic.

5. Short time existence of a Yang-Mills bar gradient flow over a
compact Kähler manifold

5.1. Affine integrability condition. The following identity holds for any θ ∈
Ω(EndJ E) and any unitary connection A

(5.2)
∫
M2n

〈
[θ, F 0,2

A ], F 0,2
A

〉
= −

∫
M2n

〈
[F 0,2
A , θ], F 0,2

A

〉
.

We prove that at any point x ∈M2n

(5.3)
〈
[θ, F 0,2

A ], F 0,2
A

〉
= −2〈θ,ΛΛF 0,2

A ∧ F 2,0
A 〉 .

We write θ = θ+ +
√
−1θ− where θ+, θ− ∈ uE . In the same way at a fixed point

x ∈ M2n we can take coordinates such that the Kähler metric g has the form
g(x) =

∑
dzi ⊗ dz̄i. We write

F 0,2
A =

∑
1≤i<j≤n

(F+
ij +

√
−1F−ij ) dz̄i dz̄j ,

where F±ij ∈ uE . Then F 2,0
A =

∑
ij(F

+
ij −
√
−1F−ij )dzidzj . Recall that ‖dz̄idz̄j‖2 = 4.

A direct computation at a point x shows〈
[θ, F 0,2

A ], F 0,2
A

〉
=

∑
1≤i<j≤n

〈
[θ−, F+

ij ] dz̄i dz̄j , F−ij dz̄i dz̄j
〉

+
∑

1≤i<j≤n

〈
− [θ−, F−ij ] dz̄i dz̄j , F+

ij dz̄i dz̄j
〉

= 8
〈
θ−,

∑
1≤i<j≤n

[F+
ij , F

−
ij ]
〉
.(5.4)

Now we compute

〈θ,ΛΛF 0,2
A ∧ F 2,0

A 〉 = −2
∑

1≤i<j≤n

〈
θ−,ΛΛ[F+

ij , F
−
ij ] dzi dzj dz̄i dz̄j

〉
= −4

√
−1

∑
1≤i<j≤n

〈
θ−,Λ[F+

ij , F
−
ij ](dzj dz̄j + dzi dz̄i)

〉
= −16

〈
θ−,

∑
1<i<j≤n

[F+
ij , F

−
ij ]
〉
.(5.5)

Clearly (5.3) follows from (5.4) and (5.5).

Now substituting [F 0,2
A , θ] = ∂̄A∂̄Aθ in the RHS of (5.2), and taking into account

(5.3), we get

(5.6)
∫
M2n
〈θ, 2ΛΛF 0,2

A ∧ F 2,0
A 〉 =

∫
M2n
〈θ, ∂̄∗A∂̄∗AF

0,2
A 〉 .
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Thus we get the following identity

(5.7) ∂̄∗A∂̄
∗
AF

0,2
A − 2ΛΛF 0,2

A ∧ F 2,0
A = 0 .

Define the following operator PA : Ω0,1(EndJ E)× Ω0,1(EndJ E)→ Ω(EndJ E)

(5.8) PA(a)φ := ∂̄∗A+aφ− 2ΛΛF 0,2
A+a ∧ F

2,0
A+a .

Clearly PA(a)φ is a differential operator of order 1 in a and order 1 in φ. Mo-
reover PA(a)φ is an affine differential operator w.r.t. φ, i.e. PA(a)φ = LA(a)φ +
CA(a), where LA(a)φ is a linear differential operator w.r.t. φ. By (5.6) we have
PA(a)∂̄∗A+aF

0,2
A+a = 0. Thus we call PA(a) an affine integrability condition for the

differential operator ∂̄∗A+aF
0,2
A+a : Ω0,1(EndJ E)→ Ω0,1(EndJ E).

Proposition 5.9. Let ξ ∈ T ∗xM2n \ {0}. All the eigenvalues of the eigenspace of
the symbol σξD(−1)∂∗A+aF

0,2
A+a : Ω0,1(EndJ E) → Ω0,1(EndJ E) in Null σξPA(a)

are positive. Hence the evolution equation

(5.9.1) da

dt
= −∂̄∗A+aF

0,2
A+a ,

has a unique smooth solution for a short time which may depend on a.

Proof. Since F 0,2
A+a+th = F 0,2

A + t∂̄A+a ∧ h + t2h ∧ h for h ∈ Ω0,1(EndJ E), we
have the following expression for the linearization of ∂̄∗A+aF

0,2
A+a at point a ∈

Ω0,1(EndJ E)

(5.10) Da(∂̄∗A+aF
0,2
A+a)(h) = ∂̄∗A+a∂̄A+ah+ {terms of lower order} .

We may assume that ξ = dx1. Then a direct computation using the Hodge-Kähler
identity ∂̄∗A+a = −

√
−1Λ∂A+a and (5.10) shows

(5.11) − σξDa(∂̄∗A+aF
0,2
A+a)(α1 dz̄1, . . . , αn dz̄n) = (0, α2 dz̄2, . . . , αn dz̄n) .

Clearly the linearization DφPA(a)φ with respect to the variable φ is[
DφPA(a)φ

]
h = d

dt |t=0
∂̄∗A+a(φ+ th)− 2ΛΛF 0,2

A+a ∧ F
2,0
A+a = ∂̄∗A+a(h) .

We note that this linearization does not depend on φ. A short computation shows
(5.12) σξDφPA(a)(α1dz̄1, . . . , αndz̄n) =

√
−1α1 .

Now (5.11) and (5.12) imply the first statement of Proposition 5.9. The second
statement follows from Hamilton’s theory for evolution equation with integrability
condition [4, Theorem 5.1], actually from its slightly extended version in Theorem
6.6 below. �

Remarks 5.13. 1. By taking derivative of (2.7.1) in the time t we also get
(5.2) and hence (5.7). In the same way we can get (5.2) (and hence (5.7)) as an
infinitesimal consequence of the non-canonical action of the complex gauge group
on the space of unitary connections w.r.t. a fixed Hermitian metric on the bundle.

2. It is likely that ∂̄∗AF
0,2
A also satisfies an affine integrability condition analogous

to (5.8), if the ground manifold M2n is Hermitian but not necessary Kähler.
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6. Evolution equations with affine integrability condition

In his work [4] Hamilton introduced the notion of an evolution equation with
integrability condition. Let us rapidly recall the Hamilton concept from Section 5
of that paper. We try to keep most of Hamilton’s notations in that paper, which
may have quite different meanings from that ones we used in previous sections.

We consider an evolution equation
df

dt
= E(t) ,

where E(f) is a non-linear differential operator of degree 2 in f . We suppose that
the values of f belong to an open set U in a vector bundle F over a compact
manifold X, and E(f) takes its values in F also. (For the case we are dealing in
this note, we take U = F . We shall write later, following Hamilton, f ∈ U , meaning
that the values of f belong to U .) Then E is a smooth map

E : C∞(X,U) ⊂ C∞(X,F )→ C∞(X,F )
of an open set in a Fréchet space to itself.

We shall consider problems where some of the eigenvalues of the symbol σDE(f)ξ
are zero. This happens when E(f) satisfies an integrability condition.

Definition 6.1 ([4]). Let g = L(f)h : C∞(X,U) × C∞(F ) → C∞(G) be a diffe-
rential operator of degree 1 on sections f ∈ U ⊂ F , h ∈ F , and G another vector
bundle over X. We call L(f)h the integrability condition for E(f), if the operator
Q(f) = L(f)E(f) only has degree at most one in f .

Suppose that L(f)h is an integrability condition for E(f). Taking a variation in
f̃ we see that
(6.2) L(f)DE(f)f̃ +DL(f){E(f), f̃} = DQ(f)f̃ .
Since DQ(f)f̃ as well as L(f)DE(f)f̃ only have degree 1 in f the operator
L(f)DE(f)f̃ also have degree 1. hence σL(f)(ξ)σDE(f)(ξ) = 0. Therefore we get
(6.3) Im σDE(f)(ξ) ⊂ Null σL(f)(ξ) .

Theorem 6.4 ([4, Theorem 5.1]). Let df/dt = E(f) be an evolution equation with
integrability condition L(f). Suppose that all the eigenvalues of the eigenspaces of
σDE(f)(ξ) in Null σL(f)(ξ) is positive. Then the initial value problem f = f0 at
t = 0 has a unique smooth solution for a short time 0 ≤ t ≤ ε where ε may depend
on f0.

Remark 6.5. Hamilton’s notation in (6.2) indicates that L(f)h is a linear w.r.t. h.
(In fact, in section 4 of that paper Hamilton stressed that L(f)h is linear w.r.t. h.)
A closer look at Hamilton’s proof (see also our proof of Theorem 6.6 below) shows
that, the linearity of L(f)h w.r.t. h is important. We shall call such integrability
condition L(f)h linear in the argument (and f shall be considered as parameter).
Now we shall call an integrability condition L(f)h an affine integrability condition,
if L(f)h = L0(f)h + A(f), where L0(f)h is linear w.r.t. h. The linearization
(DφL(f)h)h̃ = L0(f)h̃ does not depend on h.
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Theorem 6.6. Let df/dt = E(f) be an evolution equation with affine integrability
condition L(f): L(f)h = L0(f)h + A(f). Suppose that all the eigenvalues of the
eigenspaces of σDE(f)(ξ) in Null σL0(f)(ξ) is positive. Then the initial value
problem f = f0 at t = 0 has a unique smooth solution for a short time 0 ≤ t ≤ ε
where ε may depend on f0.

Proof of Theorem 6.6. We follow Hamilton’s argument, replacing L(f)h in his
proof by L0(f)h in some places, and re-arranging parameters which do not depend
on h. To keep our notations as close as possible with those of Hamilton, we denote
by DL the derivative of L(f)h w.r.t. the parameter f . We divide the proof in
3 steps. �

STEP 1. Reduction of Theorem 6.6 to a version of the Nash-Moser inverse
function theorem.

In this step we reduce Theorem 6.6 to the following

Lemma 6.7. Suppose that f̄ is a solution of the perturbed evolution equation by a
term h̄(t, x)

df̄(t, x)
dt

= E(f̄(t, x)) + h̄(t, x),

f̄(0, x) = f̄0(x)

over the interval 0 ≤ t ≤ 1. Then for any f0 near f̄0 and h near h̄ there exists a
unique solution of the perturbed equation

df(t, x)
dt

= E
(
f(t, x)

)
+ h(t, x) ,

f(0, x) = f0(x)

over the interval 0 ≤ t ≤ 1.

Now we explain how to get Theorem 6.6 from Lemma 6.7. Let f̄(t, x) be any
function satisfying

df̄(t, x)
dt |t=0

= E
(
f(0, x)

)
,

f̄(0, x) = f0(x) .

Set

h̄(t, x) := df̄(t, x)
dt

− E(f̄(t, x)) .

Then h̄(0, x) = 0.
Since X is compact, for any δ > 0 there exist a number ε > 0 and a function

h(t, x) such that H(t, x) is δ-close to h̄(t, x) and moreover h(t, x) = 0 for a short
time 0 ≤ t ≤ ε. Applying Lemma 6.7 to the pair (h̄, h) we conclude that the
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equation

df(t, x)
dt

= E
(
f(t, x)

)
+ h(t, x) ,

f(0, x) = f0(x)

has solution up to time ε. This solution in the interval (0, ε) is a solution of our
original equation in that time interval. This completes the first step.

STEP 2. Reduction of Lemma 6.7 to a case of a weakly parabolic linear system
of (6.14.1) and (6.14.2). We can apply the Nash-Moser inverse function theorem
to the operator

E : C∞(X × [0, 1], F )→ C∞(X × [0, 1], F )× C∞(X,F ) ,

E(f) =
(
df/dt− E(f), f |{t = 0}

)
.

Its derivative is the operator

DE(f)f̃ =
(df̃
dt
−DE(f)f̃ , f̃ |{t = 0}

)
.

We must show that the linearized equation

(6.8) df̃/dt−DE(f)f̃ = h̃

has a unique solution for the initial value problem f̃ = f̃0 at t = 0, and verify that
the solution f̃ is a smooth tame function of h̃ and f̃0.

We make the substitution g̃ = L(f)f̃ . Then g̃ satisfies the evolution equation

(6.9) dg̃

dt
= L0(f)df̃

dt
+DL(f){f̃ , df

dt
} .

Now differentiating the integrability condition L(f)E(f) = Q(f) we get

(6.10) L0(f)DE(f)f̃ = −DL(f)
{
E(f), f̃

}
+DQ(f)f̃ .

Substituting df̃/dt = DE(f)f̃ + h̃ from (6.8) into (6.9) and taking into account
(6.10) we rewrite (6.9) as follows

(6.11) dg̃

dt
−M(f)f̃ = k̃ ,

where k̃ = L0(f)h̃ and

M(f)f̃ = DL(f)
{
f̃ ,
df

dt

}
−DL(f)

{
E(f), f̃

}
+DQ(f)f̃

(6.10)= DL(f)
{
f̃ ,
df

dt

}
+ L0(f)DE(f)f̃ .(6.12)

is a linear differential operator in f̃ of degree 1 whose coefficients depend smoothly
on f and its derivatives.
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If we choose a measure on X and inner product on the vector bundle F and G,
we can form a differential operator L∗0(f)g = h of degree 1 in f and g which is the
adjoint of L0(f). Let us write

P (f)h := DE(f)h+ L∗0(f)L(f)h .

We claim that the equation df̃/dt = P (f)f̃ is parabolic (for a given f). To see this
we examine the symbol
(6.13) σP (f)ξ = σDE(f)σ + σL∗0(f)(ξ) · σL0(f)(ξ) .
Suppose v is an eigenvector in F with eigenvalue λ. Then σP (f)(ξ)v = 0. But
σL0(f)(ξ) · σDE(f)(ξ) = 0, so applying σL0(f) to the LHS and RHS of (6.13) we
get

σL0(f)(ξ) · σL∗0(f)ξ · σL0(f)(ξ)v = λσL0(f)(ξ)v .
Taking inner product of the above equality with σL0(f)(x)v we get

|σL∗0(f)(ξ) · σL0(f)(ξ)v|2 = λ|σL0(f)(ξ)v|2 .
Now if σL∗0(f) · σL0(f)(ξ)v = 0 then σL0(f)(ξ)v = 0, and otherwise λ is real

and strictly positive. When σL0(f)(ξ)v = 0, then σDE(f)(ξ)v = λv by (6.13) and
λ has strictly positive real part by our hypothesis in Theorem 6.6. Thus P (f) is
parabolic.

We proceed to solve the system of equations
df̃

dt
− P (f)f̃ + L∗0(f)g̃ = h̃ ,(6.14.1)

dg̃

dt
−M(f)f̃ = k̃(6.14.2)

for the unknown function f̃ and g̃ for given h̃ and k̃ and given f , with initial data
f̃ = f̃0 and g̃ = g̃0 = L(f0)f̃0 at t = 0.

In Step 3 below we prove that the solution (f̃ , g̃) exists and is unique, and
is a smooth tame function of (f, h̃, k̃, f̃0, g̃0). Then putting l̃ = g̃ − L(f)f̃ and
substituting k̃ = L0(f)h̃ we get

dl̃

dt
= dg̃

dt
− L0(f)df̃

dt

= L0(f)DE(f)f̃ + k̃ − L0(f)df̃
dt

(6.14.1)= −L0(f)DE(f)f̃ − L0(f)P (f)f̃ + L0(f)L∗0(f)g̃

(6.13)= L0(f)
[
− L∗0(f)L(f)f̃ + L∗0(f)L(f)(l̃ + L(f)f̃)

]
= L0(f)L∗0(f)l̃ ,(6.15)

and l̃ = 0 at t = 0. But then (6.15) implies the obvious integral inequality
d

dt

∫
X

|l̃|2dµ+ 2
∫
X

|L∗0(f)l̃|dµ = 0 .
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Hence l̃ = 0. Then it follows that g̃ = L(f)f̃ . Using this and we get from (6.14.1)

df̃

dt
−DE(f)f̃ = h̃ .

This completes Step 2.

STEP 3. The system (6.14.1) and (6.14.2) is a weakly parabolic linear system
whose smooth solution uniquely exists.

Set P0(f)h := DE(f)h + L∗0(f)L0(f)h. Then P0(f)h is a linear differential
operator in h and P (f)h = P0(f)h+ L∗0(f)A(f). Set h = h̃− L∗0(f)A(f). Since f
in the system of (6.14.1) and (6.14.2) is given, we shall re-denote a given constant
k̃ by k, variables f̃ , g̃, by f , g and linear differential operators P0(f), L∗0(f),M(f)
by P , L, M . Then the system of (6.14.1) and (6.14.2) is equivalent to the following
system of linear evolution equations on 0 ≤ t ≤ T for sections f of F and g of G

(6.16) df

dt
= Pf + Lg + h ,

dg

dt
= Mf + k .

Clearly the existence, uniqueness and smoothness of a solution of (6.16) is a
consequence of Hamilton’s theorem [4, Theorem 6]. He considered the following
equation

(6.17) df

dt
= Pf + Lg + h,

dg

dt
= Mf +Ng + k

where P , L, M and N are linear differential operators involving only space deriva-
tives whose coefficients are smooth functions of both space and time. He assumed
that P has degree 2, L and M have degree 1 and N has degree 0.

Theorem 6.18 ([4, Theorem 6]). Suppose the equation df/dt = Pf is parabolic.
Then for any given (f0, g0, h, k) there exists a unique smooth solution (f, g) of the
system (6.17) with f = f0 and g = g0 at t = 0.

The proof of this Theorem occupies the whole Section 6 in Hamilton’s paper.

Finally we formulate a conjecture which might be solved by using the Yang-Mills
bar equation and might be helpful for understanding the Hodge conjecture. A
unitary connection A on a Hermitian bundle E over a projective algebraic manifold
M is holomorphic, if the Lpq-norm of the component F 0,2

A less than some positive
constant ε(M), where p, q are some integers depending on the dimension of M .

In a subsequent paper we shall show the long time existence of a Yang-Mills bar
gradient-like flow and discuss its consequences.
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