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TRANSVERSAL BIWAVE MAPS

Yuan-Jen Chiang and Robert A. Wolak

Abstract. In this paper, we prove that the composition of a transversal
biwave map and a transversally totally geodesic map is a transversal biwave
map. We show that there are biwave maps which are not transversal biwave
maps, and there are transversal biwave maps which are not biwave maps either.
We prove that if f is a transversal biwave map satisfying certain condition,
then f is a transversal wave map. We finally study the transversal conservation
laws of transversal biwave maps.

1. Introduction

Following the theory of harmonic maps of Riemannian manifolds established by
Eells, Sampson and Lemaire [9, 10, 11], biharmonic maps were introduced by Jiang
[15, 16] in 1986. In this decade, there has been progress in biharmonic maps made
by Caddeo, Montaldo, Loubeau, Oniciuc, Piu [1, 2, 24, 26], Chiang, Wolak, Sun
[5, 6, 7], Chang, L. Wang and Yang [3], C. Wang [36], etc. Wave maps are harmonic
maps on Minkowski spaces. In recent years, there have been new developments in
wave maps achieved by Klainerman and Macghedon [19, 20], Shatah and Struwe
[29, 30], Tao [31, 32], Tataru [33, 34], Nahmod, Stefanov, Uhlenbeck [27], etc.
Moreover, Chiang and Yang have studied exponential wave maps in [8].

Transversal harmonic maps between foliated Riemannian manifolds were intro-
duced by Konderak and Wolak [21, 22] in 2003. Transversal harmonic maps between
foliated manifolds with one manifold foliated by points were first studied by Eells
and Verjovsky [12], and Kacimi and Gomez [18]. Biwave maps are biharmonic
maps on Minkowski spaces, which generalize wave maps, have been first studied
by Chiang [4] recently. In this paper, we investigate transversal biwave maps from
foliated Minkowski spaces into foliated Riemannian manifolds. Transversal biwave
maps whose equations are the fourth order hyperbolic systems of PDEs on trans-
verse manifolds, which are different than transversal biharmonic maps [7] whose
equations are the fourth order elliptic systems of PDEs on transverse manifolds.

In Section 2, we introduce semi-Riemannian (resp. Minkowskian, Lorentzian)
foliations following Riemannian foliations, and recall transversal tension fields
and transversal biharmonic maps. In Section 3, we prove in Theorem 3.3 that if
f : Rm,1 → (M1,F1) is a transversal biwave map and f1 : (M1,F1)→ (M2,F2) is
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a transversally totally geodesic map, then f1 ◦ f : Rm,1 → (M2,F2) is a transversal
biwave map. Thus for any target foliated manifold (M2,F2), we can provide many
transversal biwave maps associated to the transversal geodesics of (M2,F2). We
show that there are biwave maps which are not transversal biwave maps in Example
3, and there are transversal biwave maps which are not biwave maps in Example
4 either. Afterwards, we prove in Theorem 3.4 that if f is a transversal biwave
map from a compact foliated domain in a foliated Minkowski space into a foliated
manifold such that

−|τ�f̄ |2t +
q∑
i=1
|τ�f̄ |2xi −R

′α
βγµ

(
− f̄βt f̄

γ
t +

q∑
i=1

f̄βi f̄
γ
i

)
τ�(f̄)µ ≥ 0 ,

then f is a transversal wave map. This theorem is different than the theorem
obtained in [7]: If f is a transversal biharmonic map from a compact foliated Rie-
mannian manifold into a foliated manifold with non-positive transversal Riemannian
curvature, then f is a transversal harmonic map.

In Section 4, we study the transversal conservation laws of transversal biwave
maps associated to stress bi-energy tensors in Theorem 4.3 and Corollary 4.4. We
finally investigate stable transversal biwave maps in Theorem 4.5.

2. Preliminaries

2.1. Foliations. Let F be a foliation on a Riemannian n-manifold (M, g). Then
F is defined by a cocycle U = {Ui, fi, gij}i∈I modeled on a q-manifold N0, where

(1) {Ui}i∈I is an open covering of M ,
(2) fi : Ui → N0 are submersions with connected fibres,
(3) gij : N0 → N0 are local diffeomorphisms of N0 such that fi = gijfj on

Ui ∩ Uj .
The connected components of the trace of any leaf of F on Ui consist of the fibres
of fi. The open subsets Ni = fi(Ui) ⊂ N0 form a q-manifold NU = qNi, which can
be considered as a transverse manifold of the foliation F . The pseudogroup HU of
local diffeomorphisms of NU generated by gij is called the holonomy pseudogroup
of the foliated manifold (M,F) defined by the cocycle U . If the foliation F is
Riemannian for the Riemannian metric g, then it induces a Riemannian metric
ḡ on NU such that the submersions fi are Riemannian submersions and the
elements of the holonomy group are isometries. The foliation F is transversally
semi-Riemannian (resp. Minkowskian, Lorentzian) if its normal bundle admits
a semi-Riemannian (resp. Minkowskian, Lorentzian) metric h such that for any
vector field X tangent to the leaves of F we have LXh = 0 (where LXh(X,Y ) =
X · h(Y,Z) − h([X,Y ], Z) − h(Y, [X,Z]) for vector fields Y , Z tangent to the
leaves of F). This condition is equivalent to the existence of an HU -invariant
semi-Riemannian (resp. Minkowskian, Lorentzian) metric h̄ on the transverse
manifold NU , cf. [37].

Let φ : U → Rp×Rq, φ = (φ1, φ2) = (x1, . . . , xp, y1, . . . , yq) be an adapted chart
on the foliated manifold (M,F). Then on U the vector fields ∂

∂x1
, . . . ∂

∂xp
span the

bundle TF tangent to the leaves of the foliation F , the equivalence classes denoted
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by ∂̄
∂y1

, . . . ∂̄
∂yq

of ∂
∂y1

, . . . ∂
∂yq

span the normal bundle N(M,F) = TM/TF , which
is isomorphic to the subbundle TF⊥. This bundle and the others considered in
the paper are naturally foliated by foliations whose leaves are covering spaces of
leaves of F and whose defining cocycles can be derived in the obvious way from
the cocycle U , cf. [37]. In the non-Riemannian case we can take any subbundle Q
supplementary to TF and for simplicity we shall denote it by the same symbol.

The sheaf Γb(TF⊥) of foliated sections of the vector bundle TF⊥ →M may be
described as follows: Let U be an open subset of M . Then X ∈ Γb(U, TF⊥) if and
only if for each local Riemannian submersion φ : U → Ū defining F , the restriction
of X to U is projectable via the map φ on a vector field X̄ on Ū .

Definition 2.1 ([25]). A basic partial connection on (M,F , g) is a sheaf operator
D such that for each open subset U of M

D : Γb(U, TF⊥)× Γb(U, TF⊥)→ Γb(U, TF⊥)
and for any X, Y , Z ∈ Γb(U, TF⊥) and any f , h ∈ C∞b (U):

1. DfX+hY Z = fDXY + hDXZ,
2. DX is R-linear,
3. DXfY = X(f)Z + fDXY (the transversal Leibniz rule).
Let ∇ be the Levi-Civita connection of g. Then for any open subset U of M and

X,Y ∈ Γb(U, TF⊥) we define D as

(2.1) DXY = (∇XY )⊥ ,

where (∇XY )⊥ is a local foliated section of TF⊥. It is easy to check that D is a
basic partial connection on (M, g, F). Let φ : U → Ū be a Riemannian submersion
defining the foliation F on an open set U . Let us assume that X,Y ∈ Γb(U, TF⊥),
and X̄, Ȳ be the push forward vector fields via the map φ. Then there is a
well-known property of Riemannian foliations from [35] that

(2.2) dφ(DXY ) = ∇ḡ
X̄
Ȳ ,

where ∇ḡ is the Levi-Civita connection of the metric ḡ.
The operator D can be defined using the induced metric on the normal bundle

via the well-known formula for the Levi-Civita connection restricted to normal
vectors. Foliated semi-Riemannian (resp. Minkowskian, Lorentzian) metrics in the
normal bundle define basic partial connections in the standard way.

2.2. Transversal tension fields. Let (M1,F1, g1) and (M2,F2, g2) be two Rie-
mannian manifolds with Riemannian foliations. Let ∇i be the Levi-Civita connec-
tions of the respective metrics andDi be the induced basic partial connections on the
orthogonal complement bundles TF⊥i →Mi, i = 1, 2. Suppose that f : (M1,F1)→
(M2,F2) is a smooth foliated leaf-preserving map, i.e., df(TF1) ⊂ TF2. Then there
are given natural bundle maps

Ii : TF⊥i → TMi , Pi : TMi → TF⊥i for i = 1, 2 ,
where Ii is the inclusion of TF⊥i in TMi and Pi is the orthogonal projection of TMi

onto TF⊥i . Let X be a local foliated section of TF⊥1 →M1, and then P2df(X) is
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a foliated section of the bundle f−1TF⊥2 . Thus P2dfI1 is a foliated section of the
bundle (TF⊥1 )∗ ⊗ f−1TF⊥2 . We define transversal second fundamental form Sb(f)
of f as the covariant derivative D(P2dfI1), which is a global section of the bundle

(TF⊥1 )∗ ⊗ (TF⊥1 )∗ ⊗ f−1TF⊥2 →M1 ,

where the connection D on the bundle (TF⊥1 )∗ ⊗ f−1TF⊥2 → M1 is induced by
D1 and D2.

Let (M1, g1,F1) and (M2, g2,F2) be two foliated Riemannian manifolds defined
by cocycles U = {Ui, φi, gij} and V = {Vα, ψα, hαβ}, respectively. Suppose that
f : (M1,F1)→ (M2,F2) is a smooth leaf-preserving map. Let U ⊂M1 and V ⊂M2
be open subsets. Let φ : (U, g1)→ (Ū , ḡ1) be a Riemannian submersion on U and
let ψ : (V, g2) → (V̄ , ḡ2) be a Riemannian submersion on V , which define locally
the Riemannian foliations Fi for i = 1, 2. Suppose that f(U) ⊂ V . Then there
exists the unique map f̄ : Ū → V̄ such that the diagram

U
f //

φ

��

V

ψ

��
Ū

f̄

// V̄

Diagram 1
commutes. If the cocycles U and V are such that for any Ui there exists Vα for
which f(Ui) ⊂ Vα, we say that these cocycles are f -related. Then f induces a map
f̄ : NU → NV such that f and f̄ commute locally in Diagram 1.

Lemma 2.2 ([21]). Let Z1, Z2 be two local foliated vector fields on U which project,
via the map φ, onto vector fields Z̄1, Z̄2 on Ū . Then

dψ(D(P2dfI1)(Z1, Z2)) = (∇df̄)(Z̄1, Z̄2) ,

where f̄ is the induced map between Ū and V̄ .

The trace of the transversal second fundamental form is called transversal tension
field of f , and it is denoted by τb(f). If X1x, . . . , Xq1x is an orthonormal basis of
the space TxF⊥1 , then

(2.3) τb(f)x = traceTF⊥1 D(Π2dxfI1) =
q1∑
α=1

D(Π2dxfI1)(Xαx, Xαx)

is a section of the bundle f−1TF⊥2 →M1. Please see more details in [21].
We shall also study one parameter families of foliated maps fs : (M1,F1) →

(M2,F2), s ∈ R. In order to use variational arguments, we need to refine the
cocycles defining foliations. Let U = {Ui, φi, gij}i∈I and Û = {Ûi, φ̂i, ĝij}i∈I be two
cocycles defining the foliation F1 such that Ui is a relatively compact subset of Ûi,
φi = φ̂i|Ui and gij is also the suitable restriction of ĝij . Let V = {Vα, ψα, hαβ}α∈A
and V̂ = {V̂α, ψ̂α, ˆhαβ}α∈A be two cocycles defining the foliation F2 such that Vα
is a relatively compact subset of V̂α, ψα = ψ̂α|Vα and hαβ is also the suitable
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restriction of ˆhαβ . If the cocycles Û and V are f -related, f = f0, then the cocycles
U and V are fs-related for any sufficiently small s.

2.3. Transversal biharmonic maps. Let X, Y , ξ be the foliated sections of
TF⊥2 , and D′ = D2 be the basic partial connection on TF⊥2 . Then the Riemannian
curvature

R′(X,Y )ξ = D′XD
′
Y ξ −D′YD′Xξ −D′[X,Y ]ξ

is a section of the bundle TF⊥2 →M2. Following the notion of transversal tension
field in Section 2.2, we define transversal bi-tension field as
(2.4) (τ2)b(f) = 4τb(f) +R′(df, df)τb(f) ,
where 4ξ = D∗D(ξ) is an operator from a section of f−1TF⊥2 to a section of
f−1TF⊥2 , D is the connection on TF⊥1

∗⊗f−1TF⊥2 . Therefore, (τ2)b(f) is a section
of the bundle f−1TF⊥2 →M1.

We consider a one-parameter family of maps {ft} ∈ C∞((M1,F1), (M2,F2)), t ∈
Iε = (−ε, ε) from a compact foliated Riemannian manifold (M1,F1) into a foliated
Riemannian manifold (M2,F2) such that ft(x) is the endpoint of the segment
starting at f(x) determined in length and direction by the vector field ḟ along f . If
we choose the defining cocycles U and V as at the end of Section 2.2, these foliated
maps induce a one-parameter family of maps {f̄t} ∈ C∞(NU , NV) such that f̄t(x)
is the end point of the segment starting at f̄(x) determined in length and direction
by the vector field ˙̄f along f̄ . The transversal bi-energy of f is

(2.5) E2(f̄) = 1
2

∫
NU

‖(d+ d∗)2f̄‖2 dv = 1
2

∫
qŪi
‖d∗df̄‖2 dv = 1

2

∫
qŪi
‖τ f̄‖2 dv ,

Then by [7] we have

(2.6) d

dt
E2(f̄t)|t=0 =

∫
qŪi

(
J(τ f̄), τ(f̄)

)
dv ,

where
(2.7) τ2(f̄) = J(τ f̄) = 4τ(f̄) + R̄′(df̄ , df̄)τ(f̄)

4 = ∇∗∇ is an operator between local sections of f̄−1TNV → NU , ∇ is the
connection on T ∗NU⊗ f̄−1TNV , and the Riemannian curvature R̄′ is the transverse
Riemannian curvature of (M2,F2).

Following the notions of transversal harmonic maps [21], there is a close rela-
tionship between the transversal bi-tension field of f and the bi-tension fields of
the induced maps f̄ , obtained by using the local submersions defining the foliations
F1 and F2. Then by Diagram 1
(2.8) dψ(τ2)b(f)x = τ2(f̄)φ(x)

holds for each of the foliation defining local submersions φ : U → Ū , ψ : V → V̄ .

Theorem 2.3 ([7]). Let f : (M1,F1)→ (M2,F2) be a smooth foliated map between
two foliated Riemannian manifolds. Then f is transversal biharmonic if and only
if the induced map f̄ is biharmonic.
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Remarks: (1) The notion of "transversal biharmonic map" is independent of cocycles
defining the foliations. It is a transverse property, cf. [21, 7]. (2) The variational
description is also independent of cocycles chosen. However, we have to be care-
ful, for the state-of-art definitions, properties, and discussion of equivalences of
pseudogroups (see [23]).

3. Transversal biwave maps

Let Rm,1 be an m+ 1-dimensional Minkowski space R × Rm with the metric
(ηab) = diag(−1, 1, 1, . . . , 1) and the coordinates x0 = t, x1, x2, . . . , xm foliated by
planes parallel to {0}×Rp ⊂ R×Rm, (p+q = m). Then (Rm,1,Hp) is a transversal
Minkowski foliation defined by the global submersion ι× ψ : R ×Rm → R ×Rq;
R×Rq can be considered as its complete transverse manifold. Let (M, g,F) be a
Riemannian foliated manifold of dimension n defined by a cocycle U = {Ui, φi, gij},
which induces a Riemannian metric ḡ on a q1(p1 + q1 = n) dimensional transverse
manifold NU = qiŪi. Let f : (Rm,1,H)→ (M,F) be a smooth foliated map from
a foliated Minkowski space into the foliated Riemannian manifold. Form Wi =
f−1(Ui) ⊂ Rm,1 for each i. Let W̄i be the quotient of Wi for each i, which is an open
subset of Rq,1. Refining the covering Wi, if necessary, we get a cocycle W defining
the foliation H. Then f induces a map f̄ = qif̄i : NW = qiW̄i → NU = qiŪi with
f̄i : W̄i → Ūi such that the diagram (for the sake of convenience, we drop ”i” from
f̄i if there is no confusion)

Wi ⊂ Rm,1 f
//

ι×ψi
��

Ui

φi

��
W̄i ⊂ Rq,1 f

// Ūi

Diagram 2
commutes, i.e. f̄ ◦ (ι×ψi) = φi ◦ f , where ι×ψi : Wi → W̄i is a submersion defined
by the foliation H on an open subset Wi, ψi : Ui → Ūi is a Riemannian submersion
defining the foliation F on an open set Ui, and ι(t) = t. By taking a smaller Wi,
we can assume that Wi = Ti ×W ′i ⊂ R×Rm and W̄i = Ti × W̄ ′i ⊂ R×Rq, where
Ti is an open interval of R, W ′i is an open subset of Rm, and W̄ ′i is an open subset
of Rq. We assume that two such cocycles are f -related.

A transversal biwave map f : (Rm,1,H)→ (M,F) is a transversal biharmonic
map on the Minkowski space Rm,1 with the transversal bi-energy functional,
following from (2.5),

(3.1) E(f̄) = 1
2

∫
NW

τ�(f̄) dt dx = 1
2

∫
qW̄i

�f̄k + Γ̄krs
(
− f̄rt f̄st +

q∑
a=1

f̄ra f̄
s
a

)
dt dx ,

where � = − ∂2

∂t2 +
∑q
a=1

∂2

∂x2
a

is the wave operator and Γ̄krs are the Christoffel
symbols of Ūi for each i.
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Similar to (2.8) there is a close relationship between the transversal bi-wave
field of f and the bi-wave fields of the induced maps f̄ , and by Diagram 2 we have

dφ(τ2)�b(f)x = (τ2)�(f̄)ι×ψ(x) .

Definition 3.1. The map f : (Rm,1,H)→ (M,F) is a transversal biwave map iff

(τ2)�(f̄) = Jf̄ (τ�f̄) = 4τ�(f̄) + R̄′(df̄ , df̄)τ�(f̄)

= �τ�(f̄)k + Γ′krs(−τ�(f̄)rt τ�(f̄)s +
q∑
a=1

τ�(f̄)µaτ�(f̄)γa)

+ R̄′
k

rsl(−f̄rt f̄st +
q∑
a=1

f̄ra f̄
s
a)τ�(f̄)l = 0 ,(3.2)

where R̄′ is the Riemannian curvature of the transverse manifold NU .

Since Diagram 2 commutes, the definition of a transversal biwave map does not
depend on the choices of local Riemannian submersions defining the Riemannian
foliations, and thus the choices of cocycles defining the foliations.

Example 1. Let u : (Rm,1,Hp) → R be a transversal biwave function, i.e., a
transversal biwave map into R foliated by points, which satisfies �2u(t, x) =
�(�u) = 0 with initial data u0 = u, u1 = ∂u

∂t . We have �u0 = �u and ∂
∂t�u =

�∂u
∂t = �u1. The transversal biwave function u induces ū : V̄ ⊂ Rq,1 → R locally

satisfying
�2ū(t, x) = ūtttt − 2ūttxx + ūxxxx = 0, (t, x) ∈ (0,∞)×Rq ,

ū0 = ū, ū1 = ∂ū

∂t
,�ū0 = �ū,

∂

∂t
�ū = �ū1, (t, x) ∈ {t = 0} ×Rq ,

where the initial data ū0, ū1 are given. This is a fourth order homogeneous linear
equation with constant coefficients. It is well-known that ū(t, x) can be solved by
[13, 29] in each W̄ ⊂ Rq,1.

Let (M1,F1, g1) and (M2,F2, g2) be two foliated Riemannian manifolds defined
by cocycles U and V, respectively. Suppose that f1 : (M1,F1) → (M2,F2) is a
smooth foliated leaf-preserving map, i.e., df1(TF1) ⊂ TF2, and f1(Ui) ⊂ Vα for
some α such that the cocycles are f1-related. Based on the notion of [21], there is
a closed relationship between the transversal second fundamental form of f1 and
the second fundamental forms of the induced maps f̄1 of the transverse manifolds.
It follows from Section 2, Diagram 1 and Lemma 2.2 that for any i
(3.3) dψαSb(f1)x = S(f̄1)φi(x) .

Definition 3.2. f1 : (M1,F1)→ (M2,F2) is a transversally totally geodesic map
if S(f̄1)x̄ = ∇d(f̄1)x̄ = 0 for any x̄ ∈ NU , where ∇ is the connection on T ∗NU ⊗
f̄−1

1 TNV .

Let f : (Rm,1,H)→ (M1,F1) be a smooth map from a foliated Minkowski space
to a foliated Riemannian manifold such that the foliations are defined by f -related
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cocycles W and U , respectively. Let f1 : (M1,F1) → (M2,F2) be a smooth map
between two foliated Riemannian manifolds such that the foliation F2 is defined
by an f1-related cocycle V. Since Rm,1 is a semi-Riemannian manifold, by O’Neill
[28] we can define a Levi-Civita connection on Rm,1, and then we can define a
Levi-Civita connection on each W̄i ⊂ Rq,1, and thus on NW . Let ∇, ∇′, ∇̄, ∇̄′, ∇̄′′,
∇̂ , ∇̂′, ∇̂′′ be the connections on TNW , TNU , f̄−1TNU , f̄−1

1 TNV , (f̄1 ◦ f̄)−1TNV ,
T ∗NW ⊗ f̄−1TNU , T ∗NU ⊗ f̄−1

1 TNV , T ∗NW ⊗ (f̄1 ◦ f̄)−1
TNV , respectively. We

have

(3.4) ∇̄′′Xd(f̄1 ◦ f̄)Y = ∇̂′
df̄(X)df̄1(Y ) + df̄1 ◦ ∇̄Xdf̄(Y ) ,

for X, Y ∈ TNV .

Theorem 3.3. If f : (Rm,1,H) → (M1,F1) is a transversal biwave map and
f1 : (M1,F1) → (M2,F2) is a transversally totally geodesic between two folia-
ted Riemannian manifolds (M1,F1) and (M2,F2), then the composition f1 ◦
f : (Rm,1,H)→ (M2,F2) is a transversal biwave map.

Proof. The transversal biwave map f : (Rm,1,H)→ (M1,F1) induces f̄ : NW →
NU such that Diagram 2 commutes locally. The transversally totally geodesic map
f1 : (M1,F1) → (M2,F2) induces f̄1 : NU → NV such that Diagram 1 commutes
locally. Let x0 = t, x1, . . . , xq be the coordinate of a point p in V̄ ⊂ Rq,1, e0 = ∂

∂t ,
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , eq = (0, . . . , 0, 1) be the frame at p and
∇̄∗∇̄ = ∇̄′′ek∇̄

′′
ek
− ∇̄∇ekek by [15]. Because f1 is transversally totally geodesic, i.e.,

∇̂′df̄1 = 0, it follows from [11] that τ�(f̄1 ◦ f̄) = df̄1 ◦ τ�(f̄). Thus we have

∇̄∗∇̄τ�(f̄1 ◦ f̄) = ∇̄∗∇̄
(
df̄1 ◦ τ�(f̄)

)
= ∇̄′′ek∇̄

′′
ek

(
df̄1 ◦ τ�(f̄)

)
− ∇̄′′∇ekek

(
df̄1 ◦ τ�(f̄)

)
.(3.5)

Since f1 is transversally totally geodesic, we derive from (3.4) that

∇̄′′ek(df1 ◦ τ�(f̄)) = ∇̄′′ek
(
df̄1 ◦ ∇̂ejdf̄(ej)

)
= (∇̂′∇̂ej df̄(ek)df̄1)

(
∇̂ejdf̄(ej)

)
+ df̄1 ◦ ∇̄ek

(
∇̂ejdf̄(ej)

)
= df̄1 ◦ ∇̄ekτ�(f̄) ,

where τ�(f̄) = ∇̂ejdf̄(ej). Therefore, we get

∇̄′′ek∇̄
′′
ek

(
df̄1 ◦ τ�(f̄)

)
= ∇̄′′ek

(
df̄1 ◦ ∇̄ekτ(f̄)

)
= df̄1 ◦ ∇̄ek∇̄ekτ�(f̄) ,(3.6)

∇̄′′∇ekek
(
df̄1 ◦ τ(f̄)

)
= df̄1 ◦ ∇̄∇ekekτ�(f̄) .(3.7)

Substituting (3.6), (3.7) into (3.5), we arrive at

(3.8) ∇̄∇̄∗τ�(f̄1 ◦ f̄) = df̄1 ◦ ∇̄∗∇̄τ�(f̄) .

Let RV( , ), Rf̄−1
1 V( , ) be the curvatures on TNV , f̄

−1
1 TNV , respectively. We

have
RV̄
(
df1(X ′), df1(Y ′)

)
df1(Z ′) = Rf

−1
1 T V̄(X ′, Y ′) df1(Z ′) .
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for X ′, Y ′, Z ′ ∈ TNU . By the above formula we derive
R̄V
(
d(f̄1 ◦ f̄)(ei), τ�(f̄1 ◦ f̄)

)
d(f̄1 ◦ f̄)(ei)

= Rf̄
−1
1 V

(
df̄(ei), τ�(f̄)

)
df̄1
(
df̄(ei)

)
= df̄1 ◦ R̄U

(
df̄(ei), τ�(f̄)

)
df̄(ei) .(3.9)

By (3.8) and (3.9) we obtain
∇̄∗∇̄(f̄1 ◦ f̄) + R̄V

(
d(f̄1 ◦ f̄)(ei), τ�(f̄1 ◦ f̄)

)
d(f̄1 ◦ f̄)(ei)

= df̄1 ◦
[
∇̄∗∇̄τ�(f̄) + R̄U (df̄(ei), τ�(f̄)df̄(ei)

]
,(3.10)

i.e., (τ2)�(f̄1 ◦ f̄) = df̄1 ◦ (τ2)�(f̄). Hence, if f is a transversal biwave map and f1
is transversally totally geodesic, then f1 ◦ f is a transversal biwave map. �

Example 2. Let (M1,F1) be a foliated submanifold of (M2,F2) such that the
traces of leaves of F2 on M1 are leaves of F1. This condition implies that for
suitable choices of foliation cocycles the transverse manifold NU is a submanifold
of the transverse manifold NV . Are the transversal biwave maps into (M1,F1) also
transversal biwave maps into (M2,F2)? By Theorem 3.3 the answer is affirmative if
(M1,F1) is a transversally totally geodesic foliated submanifold of (M2,F2), i.e., NU
is a totally geodesic submanifold of NV , that is, NU geodesics are also NV geodesics.
Locally, if γ is a transversal geodesic of (M1,F1), i.e., γ̄ = φi ◦ γ : R → Ui → Ūi
is a NU geodesic, then γ̄ is also a NV geodesic. For a map v : Rm,1 → R, let
u = γ ◦ v : Rm,1 → R → Ui, which induces ū = γ̄ ◦ v̄ : NW → R → Ūi. By (3.10)
we have
(3.11) (τ2)�(f̄) = dγ ◦ (τ2)�(v̄) = dγ ◦�2v̄ ,

since γ̄ is a geodesic. Therefore, u is a transversal biwave map iff v̄ solves the
fourth order homogeneous linear biwave equation �2v̄ = 0. Hence, with respect
to the arc length parameterization, the transversal biwave map equation into γ̄
is equivalent to linear biwave equation by (3.11). Then for any target foliated
manifold (M2,F2) we can provide many transversal biwave maps associated to the
transversal geodesics of (M2,F2).

We can construct an example of a biwave map, which is not a transversal biwave
map using a warped product of two manifolds in Example 3 based on (A). We
also show that there are transversal biwave maps, which are not biwave maps in
Example 4 based on (B).

(A) By O’Neill [28] a warped product can be defined on semi-Riemannian mani-
folds or Riemannian manifolds. Let (B, g), (F, h) be semi-Riemannian manifolds or
Riemannian manifolds and α : B → R be a smooth map. On the product manifold
B × F , we define a metric tensor k = g ⊕ e2αh. Let ∇g, ∇h be the Levi-Civita
connections on (B, g) and (F, h), respectively. The Levi-Civita connection ∇k on
B × F can be related to those of B and F as follows:

∇kXY = ∇gXY , where X and Y are vector fields on B.
∇kXV = ∇kVX = X(α)V , where V is a vector field on F .
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∇kVW = −h(V,W ) grad gα+∇hV (W ), where V , W are vector fields on F .

(B) Let (B1, g1), (B2, g2), (F1, h1) and (F2, h2) be Riemannian manifolds.
Consider the foliations on the Riemannian manifolds B1 × F1 and B2 × F2 given
by the projections on the first component π1 : B1 × F1 → B1, π2 : B2 × F2 → B2,
respectively. The projections π1 and π2 are Riemannian submersions, and the
foliations defined by them are Riemannian. Let h : B1×F1 → B2×F2 be a smooth
map which preserves the leaves of the foliations. Then h must be of the form
h(x, y) = (h1(x), h2(x, y)), x ∈ B1, y ∈ F1, where h1 : B1 → B2, h2 : B1×F1 → F2
are smooth. For the product Riemannian metrics on B1 × F1 and B2 × F2, the
connection of dh is equal to

(3.12) ∇d(h) =
(
∇d(h1),∇d(h2|B1) +∇d(h2|F1)

)
,

where ∇d(h1) is the connection derivative of dh1 at x of h1 : B1 → B2, ∇d(h2|B1)
is the connection derivative of dh2 at x of the map x→ h2(x, y) while y is fixed,
and ∇d(h2|F1) is the connection derivative of dh2 at y of the map y → h2(x, y)
while x is fixed.

Example 3. Let f : B1 × F1 → B2 × F2 be a smooth map preserving the leaves
such that f(t, x, y) = (f1(t, x), f2(t, x, y)), i.e. f̄ = f1, where B1 = R × R = R1,1,
F1 = R, B2 = F2 = R, f1 : B1 → B2, f2 : B1 × F1 → F2. Based on (A), let
α1(x) = 0, α2(x) = x, f1(t, x) = t+ 4

3x
4, f2(t, x, y) = 2x2 By [21] we have

τ�(f) = τ�(f1) + τ�(f2|B1) + τ�(f2|F1)− ‖df2‖2(gradg2 α2) ◦ f1

= 16x2 + 4− 16x2 = 4 6= 0 ,

where the third term vanishes. It follows that (τ2)�(f) = 0. However, (τ2)�(f1) =
32 6= 0. Note that f is a transversal biwave map iff f1 is a biwave map. Therefore,
f is a biwave map, but it is not a transversal biwave map.

Example 4. Based on (B), on one hand, by (3.12) the property “totally geodesic” of
h = (h1, h2) is equivalent to h1 being totally geodesic and ∇d(h2|B1)+∇d(h2|F1) =
0, i.e., the vertical and horizontal contributions to the totally geodesic annihilate
each other. On the other hand, if h1 is totally geodesic and h2|B1

, h2|F1
are totally

geodesic for x ∈ B1, y ∈ F1, then h is totally geodesic. Therefore, it follows that
there are maps h which are transversally totally geodesic, but not totally geodesic.
Hence, by Theorem 3.3 there are transversal biwave maps which are not biwave
maps.

Let Ω be a compact domain in Rm,1. We can consider (Ω,H|Ω) as a compact
foliated domain in (Rm,1,H). Let f : (Ω,H|Ω) ⊂ (Rm,1,H) → (M,F) is a trans-
versal biwave map from a compact foliated space-time domain into a foliated
Riemannian manifold which induces f̄ : NW → NU , where for simplicity we still
denote NW = qW̄i the transverse manifold of the restricted foliation to Ω and W̄i

is an open subset of Rq,1 for each i.
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Theorem 3.4. If f : (Ω,H|Ω) → (M,F) is a transversal biwave map from a
compact foliated space-time domain into a foliated Riemannian manifold such that

(3.13) − |τ�f̄ |2t +
q∑
i=1
|τ�f |2xi −R

′α
βγµ

(
− f̄βt f

γ
t +

q∑
i=1

fβi f̄
γ
i

)
τ�(f̄)µ ≥ 0 ,

then f is a transversal wave map.

Proof. Since f : (Ω,H|Ω) ⊂ (Rm,1,H)→ (M,F) is a transversal biwave map, it
induces f̄ : NW → NU with f̄ : W̄ → Ū such that Diagram 2 commutes locally. We
have

(τ2)�(f̄) = 4τ�(f̄) +R′(df̄ , df̄)τ�(f̄) = 0 ,
where4 = ∇∗∇, ∇ is the connection on T ∗NU⊗f̄−1TNV . Let x0 = t, x1, . . . , xq be
the coordinate of a point p in W̄ and e0 = ∂

∂t , e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
. . . eq = (0, . . . , 0, 1) be the frame at the point. We compute

1
24‖τ�(f̄)‖2 =

(
∇eiτ�(f̄),∇eiτ�(f̄)

)
+
(
∇∗∇τ�(f̄), τ�(f̄)

)
=

q∑
i=0

(
∇eiτ�(f̄),∇eiτ�(f̄)

)
−
(
R′
α
βγµ

(
− f̄βt f̄

γ
t +

q∑
i=1

fβi f̄
γ
i

)
τ�(f̄)µ, τ�(f̄)

)
= −|τ�f̄ |2t +

q∑
i=1
|τ�f̄ |2xi

−
(
R′
α
βγµ

(
− f̄βt f̄

γ
t +

q∑
i=1

f̄βi f̄
γ
i

)
τ�(f̄)µ, τ�(f̄)

)
.(3.14)

By applying the Bochner’s techniques from (3.13) and the assumption that two
defining cocycles are f -related, we know that ‖τ�(f̄)‖2 is constant, i.e., dτ�(f̄) = 0.
If we use the identity∫

qW̄i
div
(
df̄ , τ�(f̄)

)
dz =

∫
qW̄i

(
|τ�(f̄)|2 + (df̄ , dτ�(f̄))

)
dz, z = (t, x) ,

and the fact dτ�(f̄) = 0, then by the divergence theorem we can conclude that
τ�(f̄) = 0 for each i. Hence, f is a transversal wave map. �

4. Transversal conservation law

In Hilbert’s paper [14], the stress-energy tensor associated to a variational
problem is a symmetric 2-covariant tensor conserved at critical points, i.e., div S = 0.
Let f : (Rm,1,H)→ (M,F) be a smooth foliated map from a foliated Minkowski
space to a foliated Riemannian manifold (M,F), which induces f̄ : NW = qW̄i →
NU = qŪi with f -related cocycles W and U . The transversal stress-energy tensor
of f is defined by Sf̄ = e(f̄)η − f̄∗ḡ, where e(f̄) = 1

2‖df̄‖
2 is the energy density,
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η =
(
−1 0
0 I

)
, I is a q by q matrix. The map f satisfies the transversal conservation

law for S if = div Sf̄ = 0.

Proposition 4.1. Let f : (Rm,1,H) → (M,F) be a smooth foliated map from
a foliated Minkowski space into a foliated Riemannian manifold with transverse
manifolds NW and NU , respectively, which induces f̄ : NW → NU . Then we have

(4.1) div Sf̄ (X) = −
(
τ�(f̄), df̄(X)

)
, ∀ X ∈ TNW .

Proof. The smooth foliated map f : (Rm,1,H)→ (M,F) induces f̄ = qf̄i : NW =
qW̄i → NU = qŪi with f̄ : W̄ ⊂ Rq,1 → Ū such that Diagram 2 commutes
locally. Let x0 = t, x1 . . . xq be the coordinate in W̄ ⊂ Rq,1, and e0 = ∂

∂t , e1 =
(1, 0, . . . , 0), . . . , eq = (0, 0, . . . , 1). For each f̄ : W̄ → Ū , we compute

div Sf̄ (X) = ∇eiSf̄ (ei, X) = ∇ei
(1

2 |df̄ |
2
(
−1 0
0 I

)
− f̄∗ḡ

)
(ei, X)

= ∇ei
(1

2 |df̄ |
2
(
−1 0
0 I

)
(ei, X)

)
− (∇ei f̄∗ḡ)(ei, X)

=
(
−
(
∇∂f̄
∂t
,
∂f̄

∂t

)
(−1) +

(
∇ ∂f̄

∂xi
,
∂f̄

∂xi

)
(I)
)

(ei, X)−∇ei(f̄∗ei, f̄∗X)

=
((
∇∂f̄
∂t
,
∂f̄

∂t

)
(ei, X) +

(
∇ ∂f̄

∂xi
,
∂f̄

∂xi

)
(ei, X)

)
− (∇ei f̄∗ei, f̄∗X)− (f̄∗ei,∇ei f̄∗X)

=
(
(∇Xdf̄)ei, f̄∗ei

)
−
(
τ�(f̄), f̄∗X

)
− (f̄∗ei,∇ei f̄∗X) ,

where the first term and the third term are canceled out and ∇ei f̄∗ei = τ�(f̄). �

Recall that f : (Rm,1,H) → (M,F) is a smooth foliated map from a foliated
Minkowski space to a foliated Riemannian manifold (M,F), which induces f̄ : NW =
qW̄i → NU = qŪi with f -related cocycles W and U . Jiang [17] first investigated
the conservation law of a biharmonic map in 1987. We apply his technique to study
the stress bi-energy tensor and transversal conservation law of a transversal biwave
map.

Definition 4.2. The transversal stress bi-energy tensor of f : (Rm,1,H)→ (M,F)
is defined by

S2(X,Y ) = 1
2 |τ�(f̄)|2(X,Y ) +

(
df̄ ,∇τ�(f̄)

)
(X,Y )

−
(
df̄(X),∇Y τ�(f̄)

)
−
(
df̄ ,∇Xτ�(f̄)

)
,

for X, Y ∈ Γ(TNW).

Theorem 4.3. Let f : (Rm,1,H)→ (M,F) is a smooth foliated map from a foliated
Minkowski space to a foliated Riemannian manifold (M,F). Then

div S2(Y ) = (−)
(
(τ2)�(f̄), df̄(Y )

)
, Y ∈ Γ(TNW) .
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(Note that there is a + or − sign convention for (τ�)2(f̄) = ±4τ�(f̄) ±
RŪ (df̄ , df̄)τ�(f̄).)
Proof. The smooth foliated map f : (Rm,1,H) → (M,F) induces f̄ : NW =
qW̄i → NU = qŪi. Set S2 = Q1 + Q2, where Q1 and Q2 are (0, 2)-tensors
defined by

Q1(X,Y ) = 1
2 |τ�(f̄)|2(X,Y ) +

(
df̄ ,∇τ�(f̄)

)
(X,Y ) ,

Q2(X,Y ) =
(
df̄(X),∇Y τ�(f̄)

)
−
(
df̄ ,∇Xτ�(f̄)

)
.

Let p ∈ W̄ , x0 = t, x1, x2, . . . , xq be the coordinates at the point p, and {Xi}qi=0 =
{ei}qi=0 be the frame at p, where e0 = ∂

∂t , e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . ),. . .eq =
(0, . . . , 0, 1). Write Y = Y iei at p. We first compute

div Q1(Y ) =
∑
i

(∇eiQ1)(ei, Y ) =
∑
i

(
ei(Q1(ei, Y )

)
−Q1

(
ei,∇eiY )

)
=
∑
i

(
ei

(1
2 |τ�(f̄)|2Y i +

∑
j

(
df̄(ej ,∇ejτ�(f̄)

)
Y i
)

− 1
2 |τ�(f̄)|2Y iei −

∑
j

(
df̄(ej),∇ejτ�(f̄)

)
Y iei

))
=
(
∇Y τ�(f̄), τ�(f̄)

)
+
∑
i

(
df̄(Y, ei),∇eiτ�(f̄)

)
+
∑
i

(
df̄(ei),∇Y∇eiτ�(f̄)

)
=
(
∇Y τ�(f̄), τ�(f̄)

)
+ trace

(
∇df̄(Y, ·),∇ · τ�(f̄)

)
+ trace

(
df̄(·),∇2τ�(f̄)(Y, ·)

)
.(4.2)

We then compute

div Q2(Y ) =
∑
i

(
ei
(
Q2(ei, Y )

)
−Q2

(
ei,∇eiY

))
= −

(
∇Y τ�(f̄), τ�(f̄)

)
−
∑
i

(
∇df̄(Y, ei),∇eiτ�(f̄)

)
−
∑
i

(
df̄(ei),∇ei∇Y τ�(f̄)−∇∇eiY τ�(f̄)

)
+
(
df̄(Y ),4τ�(f̄)

)
= −

(
∇Y τ�(f̄), τ�(f̄)

)
− trace

(
∇df̄(Y, ·),∇ · τ�(f̄)

)
− trace

(
df̄(·),∇2τ�(f̄)(·, Y )

)
+
(
df̄(Y ),4τ�(f̄)

)
.(4.3)

Adding (4.2) and (4.3), we arrive at

div S2(Y ) =
(
df̄(Y ),4τ�(f̄)

)
+
∑
i

(
df̄(ei), R(Y, ei)τ�(f̄)

)
= −

(
(τ2)�(f̄), df̄(Y )

)
.

�
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Corollary 4.4. Let f : (Rm,1,H)→ (M,F) be a non-degenerate map (i.e., df 6= 0).
Then f satisfies the transversal conservation law for S2 (i.e., div S2 = 0) iff f is
a transversal biwave map.

Proof. Since f : (R1,m,H)→ (M,F) is non-degenerate, it induces f̄ : NW → NU
is non-degenerate, i.e., df̄(Y ) 6= 0 for Y ∈ Γ(TNW). Then we have div S2 = 0 iff
(τ2)�(f̄) = 0 iff f is a transversal biwave map. �

Let f : (Rm,1,H)→ (M,F) be a transversal biwave map from a foliated Min-
kowski to a foliated Riemannian manifolds, which induces f̄ : NW = qW̄i → NU =
qŪi with f -related cocycles W and U . If d2

ds2E2(f̄s)|s=0 ≥ 0, then f is a stable
transversal biwave map. If we consider a transversal wave map as a transversal
biwave map, then by (4.4) we have d2

ds2E2(f̄s)|s=0 ≥ 0 and it is automatically
stable.

Theorem 4.5. There does not exist a non-trivial stable transversal biwave map
f : (Ω,H) → (M,F) from a compact foliated domain into a foliated Riemann-
ian manifold with constant transversal sectional curvature K > 0 satisfying the
transversal conservation law for stress-energy tensor.

Proof. Let f : (Ω,H) → (M,F) be a transversal biwave map, which induces
f̄ : NW = qW̄i → NU = qŪi. By [15] and the concepts of foliated Riemannian
manifolds, we can have the following:

1
2
d2

ds2E2(f̄s)|s=0 =
∫
qW̄i
‖4ξ̄i +RŪi

(
df̄(ek), ξ̄i

)
df̄(ek)‖2 dz

+
∫
qW̄i

〈
ξ̄i,
(
∇′
df̄(ek)R

Ūi
(
f(ek), τ�(f̄)

)
ξ̄i

+
(
∇′
τ�(f̄)R

Ūi
)(
df̄(ek), ξ̄i

)
df̄(ek)

+RŪi
(
τ�(f̄), ξ̄i

)
τ(f̄) + 2RŪi

(
df̄(ek), ξ̄i

)
∇̄ekτ�(f)

+ 2RŪi
(
df̄(ek), τ�(f̄)

)
∇̄ek ξ̄i

〉
dz(4.4)

where z = (t, x) ∈ W̄i ⊂ Rq,1, ∇′ is the Riemannian connection on T Ūi, and
ξ̄i ∈ Γ(f̄−1T Ūi) is the vector field along one-family of maps {fs} with ∂f

∂s |s=0 = ξ̄i
for each i.

Since M has constant transversal sectional curvature, (4.4) becomes

d2

ds2E2(f̄s)|s=0 = 2
∫
qW̄i
‖4ξ̄ +RŪi

(
df̄(ek), ξ̄

)
df̄(ek)‖2 dz

+ 2
∫
qW̄i
〈ξ̄, RŪi

(
τ(f̄), ξ̄

)
τ(f̄) + 2RŪi

(
df̄(ek), ξ̄

)
∇ekτ(f̄)

+ 2RŪi
(
df̄(ek), τ(f̄)

)
∇ek ξ̄〉 dz .(4.5)
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In particular, let ξ̄ = τ�(f̄). Because we assume that f is transversal biwave and
(M,F) has constant transverse sectional curvature K > 0, (4.5) can be reduced to

d2

df2E2(f̄t)|t=0 = 8
∫
qW̄i
〈RŪi

(
df̄(ek), τ�(f̄)

)
∇ekτ�(f̄), τ�(f̄)〉 dz

= 8K
∫
qW̄i

[
〈df̄(ek),∇ekτ�(f̄)〉‖τ�(f̄)‖2

− 〈df̄(ek), τ�(f̄)〉 〈τ�(f̄),∇ekτ�(f̄)〉
]
dz .(4.6)

Since f satisfies the transverse conservation law for S, by Proposition 4.1 we have

(4.7)
〈df̄(ek), τ�(f̄)〉 = 0 ,

〈df̄(ek),∇ekτ�(f̄)〉 = −〈∇ekdf̄(ek), τ�(f̄)〉 = −‖τ�(f̄)‖2

for f̄ . Substituting (4.7) into (4.6) and applying the stability of f , we get
d2

ds2E2(f̄s)|s=0 = −8K
∫
qW̄i
‖τ�f̄‖

4
dz ≥ 0 .

The only possibility is that τ�(f̄) = 0 in each W̄ , which implies that f : (Ω,H)→
(M,F) is a transversal wave map. �
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