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APPROXIMATE MAPS, FILTER MONAD,
AND A REPRESENTATION OF LOCALIC MAPS

Bernhard Banaschewski and Aleš Pultr

Abstract. A covariant representation of the category of locales by approxi-
mate maps (mimicking a natural representation of continuous maps between
spaces in which one approximates points by small open sets) is constructed.
It is shown that it can be given a Kleisli shape, as a part of a more general
Kleisli representation of meet preserving maps. Also, we present the spectrum
adjunction in this approximation setting.

Introduction

In the point-free topology one represents a classsical topological spaceX, as a rule,
as the lattice (frame) O(X) of its open sets, and a continuous map f : X → Y as the
frame homomorphism O(f) = (U 7→ f−1[U ]) : O(Y )→ O(X). This (contravariant)
representation is satisfactory in the sense that for a broad class of spaces (the sober
ones, including e.g. all the Hausdorff spaces, or most of the Scott spaces) f 7→ O(f)
is a one-one correspondence between all the continuous maps f : X → Y and all
the frame homomorphisms h : O(Y )→ O(X). The drawback is the contravariance,
which is often faced formally by simply taking the opposite category of the category
of frames (the category of locales). If one wishes to have the localic morphisms
represented as maps, one can do so by taking the right Galois adjoints of frame
homomorphisms. This has turned out to be useful in particular in gaining insight
into the structure of sublocales, but not only in that (see [12, 13]). But still we
may wish to have a representation mimicking what is actually happening with
(approximated) points in spaces. Such has been presented in [2], albeit heavily
dependent on a uniform enrichment of the structure. Here we approach this point
of view in the context of mere frames.

The lattice O(X) can be viewed as the system of feasible places; points, entities
with position but no extent, may be seen as approximated by their open neigh-
bourhoods, preferably very small (one can pinpoint a point by the system of all of
its open neighbourhoods; this idea is very old, going back at least as far as Cara-
theodory [3] - note that this paper even preceded Hausdorff [6] initiating modern
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topology). Now if such a representation U 3 x is very small and if f : X → Y is
continuous then f [U ] is a very small set containing f(x). Typically it is not open,
but it can be represented in O(Y ) by small V ⊇ f [U ]; these possible representations
constitute a filter f◦(U) in the frame O(Y ). Thus we obtain a covariant represen-
tation of continuous maps f : X → Y by specific mappings f◦ : O(X)→ FltO(Y )
which can be then viewed as approximate maps O(X) .−→ O(Y ) (see Section 3) or
special Kleisli morphisms O(X)( O(Y ).

Note that the relation of the frame homomorphism O(f) : O(Y )→ O(X) with
the original f : X → Y , and with the approximate extension f◦ : O(X)→ FltO(Y )
is basically the same, namely taking preimages: the natural preimage of V under
f◦ is

(PREIM)

(f◦)−1〈V 〉 =
⋃
{U | ∃W ∈ f◦(U), W ⊆ V }

=
⋃
{U | V ∈ f◦(U)} =

⋃
{U | f [U ] ⊆ V }

=
⋃
{U | U ⊆ f−1[V ]} = f−1[V ] .

In this article we extend such representation to the general context of frames;
thus we also obtain an intuitively satisfactory representation of localic morphisms
as approximate maps resp. Kleisli morphisms.

1. Preliminaries

1.1. Posets. In a partially ordered set (X,≤) the standard notation such as ↑M
for the subset {x | x ≥ m, m ∈ M} and ↑a =↑{a} will be used. Similarly, the
standard concepts like that of a filter (proper or not) will be used without further
explaination.

Our posets will be mostly complete lattices, more often then not distributive.
1.1.1. Recall that a filter F in a lattice L is prime if a ∨ b ∈ F ⇒ (a ∈ F or
b ∈ F ). It is completely prime resp. α-prime if∨

i∈J
ai ∈ F (resp. “. . .and |J | < α”) ⇒ ∃j, aj ∈ F .

1.2. A frame is a complete lattice L satisfying the distributivity law

a ∧
∨
B =

∨
{a ∧ b | b ∈ B}

for all a ∈ L and B ⊆ L. A frame homomorphism h : L→M preserves arbitrary
joins (including the bottom 0) and all finitary meets (including the top 1). As
usual, the resulting category will be denoted by

Frm .

IfX is a topological space we have the frame OX of its open sets, and if f : L→M is
a continuous map then Of = (U 7→ f−1[U ]) : OY → OX is a frame homomorphism.

The dual category of Frm is called the category of locales and denoted by Loc.
Thus, the correspondence O can be viewed as a (covariant) functor O : Top→ Loc.
The morphisms of Loc are referred to as localic morphisms or localic maps.
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For more about frames see, e.g., [7] or [15].
1.2.1. Convention. By abuse of language we will sometimes speak of frame
homomorphisms h : L→M , preserving arbitrary joins and finite meets, if L and
M are general complete lattices.
1.3. We will use standard concepts of general topology (such as in, e.g., [9]));
since we will deal with phenomena relevant in point-free topology, we will consider
T0-spaces only.
1.3.1. For a point x of a topological space we will set

U(x) = {U ∈ O(X) | x ∈ U} .
Note that U(x) is a completely prime filter in O(X).
1.3.2. A space X is sober (see, e.g., [5],[7]) if (it is T0 and) each meet irreducible
U ∈ O(X) (that is, such U in O(X) that if U = U1 ∩ U2 then U = Ui for some i)
is of the form X r {x}.

Equivalently, X is sober if there are no completely prime filters in O(X) but
the U(x).
1.4. For standard images and preimages of subsets under mappings we will consis-
tently use square brackets, as in f [A] or f−1[B], to avoid confusion with values
f(x), but in particular with the formal preimage f−1〈B〉 (Introduction, 4.2).
1.5. From category theory we will use the standard facts as e.g. in the opening
chapters of [10], and the basic facts on monads (see 2.2 below).

2. Approximate maps.
Monads and Kleisli morphisms

2.1. A set with aproximate equality (briefly, apeset) is a pair A = (XA,
A=) consisting

of a set XA and a reflective symmetric relation A= on XA. If there is no danger of
confusion we will write .= for A=.
Note. Think of a metric space, a fixed ε > 0 and a precision given by x

.= y if
ρ(x, y) < ε. Or (and this will be the case in which we are particularly interested)
take a set of approximations of some entities and x

.= y if x, y have a common
refinement (if they are able to approximate the same entity): e.g. (small) open
intervals representing real numbers with x

.= y amounting to x ∩ y 6= ∅.
2.2. An approximate map (briefly, a-map) f : A .−→ B is a relation f ⊆ XA ×XB

such that
(A1) for each x ∈ XA there is a y ∈ XB such that (x, y) ∈ f , and
(A2) if x1

A= x2 and (xi, yi) ∈ f then y1
B= y2.

2.2.1. Notes. 1. This definition is obtained from the standard definition of a
mapping by replacing the equality by approximate equalities.

2. The reader may wonder about the following aspect of the definition. The
condition (A2) suggests a sort of continuity: if x1 is very close to x2 then the
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respective values y1, y2 (defined up to he given precision) are very close as well.
The point is that in this perspective a standard discontinuous map appears as a
multivalued one (take for instance the f(x) defined as 0 for x ≤ 0 and as 1 for
x > 0 then in the argument “approximately 0” the values are both 0 and 1, not
even approximately equal).
2.2.2. Obviously the identical map XA → XA is an approximate map A

.−→ A,
and a composition of a-maps (as relations) is an a-map again. Thus, apesets and
a-maps constitute a category.
2.2.3. Although we do not wish to think of an a-map as a multivalued map we
will write for f : A .−→ B

f(x) = {y | (x, y) ∈ f} .
Thus represented, the approximate map appears as a mapping f : XA → P(XB);
in the sequel such maps will be naturally structured.
2.3. Kleisli maps. A monad T = (T, η, µ) in a category C consists of a functor
T : C → C and natural transformations η : Id → T and µ : TT → T such that
µ · ηT = µ · Tη = id and µ · µT = µ · Tµ (see e.g. [10]). In the equivalent Manes
representation ([11]) one has a mapping T : objC→ objC, a system of morphisms
ηA : A→ TA and a lifting

f : A→ TB 7→ f̃ : TA→ TB

satisfying
(1) η̃A = idTA,
(2) f̃ηa = f , and

(3) ˜̃gf = g̃f̃ .

(The monad in the previous sense is then obtained by setting Tf = η̃Bf for
f : A→ B, and µA = ĩdTA.)

With a monad one has associated two canonical categories: the category CT

of Eilenberg-Moore algebras, and the Kleisli category CT (see, e.g., [10]). In the
sequel we will use the latter. It is as follows.
• The objects are those of C,
• the morphisms f : A( B in CT are the morphisms f : A→ TB from C,
• and one has the composition of f : A( B and g : B( C defined by

g ◦ f = µc · Tg · f (= g̃ · f) .
Note that the ηA : A→ TA, as ηA : A( A, play the role of the units.

We will speak of the f : A( B as the Kleisli morphisms, or Kleisli maps.

3. Approximate maps in frames.
The filter monads

3.1. For a frame L (more generally, for a complete lattice) set
L. = Lr {0}
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and on L. define an approximate equality by

a
L= b iff a ∧ b 6= 0 .

3.1.1. Notes. 1. Thus 1 L= a for any a ∈ L which is counterintuitive. But consider
open sets in a topological space as approximations of points, the smaller they
are (whatever sense one gives to the “smallness”) the better. If two such U, V
can approximate the same point they meet, and if they are (small enough to be)
satisfactory this make them close indeed; if at least one of the approximations is
bad then their approximate equality is unsatisfactory as well.

2. More generally, suppose one has approximations of some entities modelled
as a poset (X,≤) with x ≤ y interpreted as “x is a finer approximation then y”
(of whatever one approximates). Then one has x .= y defined by the existence of a
common refinement z ≤ x, y (“x and y are able to approximate the same entity”).
3.2. For a frame homomorphism h : M → L define

h. : L. .−→M.
by setting

(a, b) ∈ h. iff a ≤ h(b) .

(h. is indeed an approximate map: (a, 1) ∈ h. for any a, and if a1
L= a2 and

(ai, bi) ∈ h. then ai ≤ h(bi) and hence 0 6= a1 ∧ a2 ≤ h(b1 ∧ b2), and b1 ∧ b2 6= 0,
that is, b1

M= b2. – Note that this holds, more generally for any h preserving ∧
and 0.)

Obviously the correspondence h 7→ h. is (contravariantly) functorial, and if h 6= g
then h. 6= g. (if a = g(b) � h(b) we have a 6= 0 and (a, b) ∈ g. while (a, b) /∈ h.).
Thus, the approximate maps h. : L. .−→M. can be viewed as representatives of
the localic morphisms L→M .
3.3. In the convention of 2.2.3 we have

h.(a) = {b | a ≤ h(b)} .
Obviously h.(a) is a proper filter in M .

To avoid repeated clumsy exclusions of zero we will work with the entire frames,
using the obvious extension

h.(0) = M (= 0FltM ) .

We have
3.3.1. Observation. For a ∧-homomorphism we have h.(

∨
i∈J ai) =

⋂
i∈J h

.(ai).
(Indeed, b ∈ h.(ai) for all i ∈ J iff ∀i ∈ J , ai ≤ h(b) iff

∨
ai ≤ h(b).)

3.4. The categories we will use, and the filter monads. The basic category
will be the category

A
of complete distributive lattices with suprema preserving mappings. Then we will
consider

A◦
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the subcategory of A given by the morpisms that preserve all suprema and,
furthermore, reflect zero, that is,

f(a) = 0 implies a = 0 .
Finally define categories

B resp. B(α) (α a regular cardinal)
as follows:
• the objects are pairs (L,A) with L an object of A and A a subset of L, and
• the morphisms f : (L,A)→ (M,B) are morphisms f : L→M from A reflec-

ting joins resp. joins smaller than α, in the sense that
whenever f(x) ≤

∨
i∈J bi for bi ∈ B, in the latter case with |J | < α, we

have x ≤
∨
i∈J ai with ai ∈ A and f(ai) ≤ bi for all i.

Note that because of the void J one has in particular that each morphism in B(α)
is in A◦.

For L ∈ A set
Flt(L) =

(
{F ⊆ L | F a filter},⊇

)
(note that it is ordered by the inverse inclusion, and that it is a complete lattice
since intersections of filter are filters) and consider

ηL : (a→↑a) : L→ FltL .

For a morphism f : L→ FltM in A define

f̃ : FltL→ FltM by f̃(F ) =
⋃
{f(a) | a ∈ F} .

The same formulas can be used in A◦ (η(a) = L =↑0 yields a = 0 and if f̃(F ) 3 0
there is an a ∈ F such that 0 ∈ f(a), and hence a = 0).

Furthermore, in the context of B(α) we will set
Flt(L,A) =

(
FltL, ηL[A]

)
=
(
FltL, {↑a | a ∈ A}

)
and take the same formulas for η and f̃ as before. This is correct:

if η(a) =↑a ≤
∨
i ↑ai, ai ∈ A, we have ↑a ⊇

⋂
↑ai =↑(

∨
ai) and hence a ≤

∨
ai;

if f̃(F ) ≤
∨
i ↑bi, bi ∈ B, that is, f̃(F )⊇

⋂
↑bi =↑(

∨
ai) we have

∨
bi ∈ f(a)

for some a ∈ F ; then f(a) ≤
∨
↑bi and since f is a morphism in B(α) we have

a ≤
∨
ai with ai ∈ A and f(ai) ≤↑bi; since a ∈ F we can conclude that F ⊇↑a,

that is, F ≤↑a ≤
∨
↑ai.

Finally set
F =

(
Flt, η,(̃−)

)
(it will be always obvious in which of the categories we are).
3.4.1. Note. Our category A is a full subcategory of the well-known category of
sup-lattices ([8]). One might wish to use just the full subcategory generated by
the frames, but that would not work. We need a category inhabited also by the
filter lattices, and FltL (with the inverse inclusion order, but this is necessary
because of the η) is a co-frame but not a frame. In fact FltL is typically not
even pseudocomplemented. Take L = O(X) with X a regular T1-space that is not
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discrete, an x ∈ X that is not isolated, and the filter U(x) = {U | x ∈ U}. For
any neighbourhood U of x the meet of U(x) and ↑{X r U} in (FltL,⊇), that is,
U(x) ∨ ↑{X r U}, is the zero of (FltL,⊇) (≡ L, since it contains ∅). Then U(x)
has no pseudocomplement: if F were such we had F ⊆↑{X rU} for all U 3 x. For
V ∈ F , V ⊇ X r U for any U 3 x and hence V ⊇ X r {x} while V ∩ U 6= ∅ for
any U ∈ U(x) since x is not isolated.

3.4.2. Proposition. F is a monad in any of the categories A, A◦, B or B(α).
Proof. Obviously any f̃(F ) is a filter. We have to prove that for any system of
filters Fi, i ∈ J ,

(∗) f̃
(

sup{Fi | i ∈ J}
)

= f̃

(⋂
i∈J

Fi

)
=
⋂
i∈J

f̃(Fi) = sup{f̃(Fi) | i ∈ J} .

Since obviously F ⊆ G implies f̃(F ) ⊆ f̃(G) we have f̃(
⋂
i∈J Fi) ⊆

⋂
i∈J f̃(Fi).

On the other hand, if x ∈
⋂
i∈J f̃(Fi) we have x ∈ f̃(Fi) for all i and there exist

ai ∈ Fi with x ∈ f(ai). Thus, x ∈
⋂
i∈J f(ai) = f(

∨
i∈J ai). Now

∨
ai ∈ Fi, and

consequently x ∈
⋂
Fi, and (∗) is proved.

Further, η(
∨
ai) =↑(

∨
ai) =

⋂
(↑ai) =

∨
η(ai), η̃L(F ) =

⋃
{↑a | a ∈ F} = F

and f̃ηL(a) =
⋃
{f(b) | b ≥ a} = f(a) (as b ≥ a ⇒ f(b) ≤ f(a)).

Finally x ∈ (g̃ · f̃)(F ) iff ∃b ∈ f̃(F ) with x ∈ g(x), that is, iff

(∗∗) ∃a ∈ F∃b ∈ f(a), x ∈ g(b) ,

and also x ∈ (̃g̃f)(F ) iff ∃a ∈ F, x ∈ g̃(f(a)) iff (∗∗). �

3.4.3. By 3.3.1 we have
Observation. The approximate maps h. : L. .−→M. are morphisms h. : L(M
in AF.

4. Dual representations

4.1. Besides the category of frames we will be interested in the categories of
complete α-frames (where the distributivity is assumed for joins of less than α
summands), in particular also in complete distributive lattices (that is, ω0-frames),
and in the categories

CLat(∧) resp. CLat(∧, 0)
of complete lattices with ∧-homomorphisms resp. with ∧ homomorphisms preser-
ving 0.

4.2. Preimage of an a-map. Recall the observation (PREM) in the Introduction.
More generally we will set for any f : L(M in AF (that is, f : L→ FltM resp.
f : L. .−→M.)

f−1〈b〉 =
∨
{a ∈ L | b ∈ f(a)} .

4.2.1. Lemma. a ≤ f−1〈b〉 iff b ∈ f(a).
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Proof. ⇐ is trivial.
⇒ : Let a ≤ f−1〈b〉 =

∨
{c | b ∈ f(c)}. Then by 3.3.1,

f(a) ⊇ f
(∨
{c | b ∈ f(c)}

)
=
⋂
{f(c) | b ∈ f(c)} 3 b .

�

4.2.2. Proposition. The mapping
f−1〈−〉 : M → L

preserves finite meets.
Proof. Set a = f−1〈b1〉 ∧ f−1〈b2〉. Then a ≤ f−1〈bi〉, i = 1, 2, and by 4.2.1,
b1, b2 ∈ f(a) Since f(a) is a filter we have b1 ∧ b2 ∈ f(a) and, again by 4.2.1,
f−1〈b1〉 ∧ f−1〈b2〉 = a ≤ f−1〈b1 ∧ b2〉. The other inequality is trivial. �

4.3. Recall the correspondence from the definition in 3.2 (and 3.4.3)
h : M → L in CLat(∧) 7→ h. : L(M (in AF) .

Theorem. The formulas h 7→ h. and f 7→ f−1〈−〉 are mutually inverse and
constitute two dual equivalences

CLat(∧) ∼=op AF and CLat(∧, 0) ∼=op A◦F .

Proof. Set f = h.. Then f−1〈b〉 =
∨
{a | b ∈ f(a)} =

∨
{a | a ≤ h(b)} = h(b).

Thus, f−1〈−〉 = h.
For f : L ( M set h = f−1〈−〉. By 4.2.1, a ≤ h(b) iff b ∈ f(a). But by the

definition of h. we also have a ≤ h(b) iff b ∈ h.(a).
Now for the latter. If f reflects 0 then

f−1〈0〉 =
∨
{a ∈ L | 0 ∈ f(a)} = 0

since 0 ∈ f(a) only if a = 0.
If h(0) = 0 and h.(a) = L then 0 ∈ h.(a) and a ≤ h(0) = 0. �

4.4. Recall from the introduction the approximate extension
ϕ◦ : O(X)→ FltO(Y ) (that is, O(X) .−→ O(Y ))

defined by
V ∈ ϕ◦(U) iff ϕ[U ] ⊆ V (iff U ⊆ ϕ−1[V ]) .

The filters ϕ◦(U) are (of course) not completely prime, but as a collection they
have a sort of “completely prime behaviour”. Namely,

If
⋃
Vi ∈ ϕ◦(U) we have U ⊆

⋃
ϕ−1[Vi] and hence, if we set Ui = U ∩ϕ−1[Vi],

we have U =
⋃
Ui and Vi ∈ ϕ◦(Ui).

This leads to the following definition. An a-map f : L(M (Kleisli map f : L→
FltM from AF resp. A◦F) is collectionwise completely prime (briefly, cc-prime) if

(ccp) whenever
∨
i∈J bi ∈ f(a) there is a decomposition a =

∨
ai such that

bi ∈ f(ai).
More generally, f : L(M is collectionwise α-prime (briefly, cα-prime) if
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(cαp) whenever
∨
i∈J bi ∈ f(a) and |J | < α there is a decomposition a =

∨
ai

such that bi ∈ f(ai).
If α = ω0 (finite index sets J) one speaks of collectionwise prime (c-prime) f , and
if α = ω1 (countable index sets J) one speaks of σ-prime f .
4.4.1. Observation. Let h : M → L preserve all joins (resp. all joins of less than
α elements). Then h. : L(M is cc-prime (resp. cα-prime).

(If
∨
bi ∈ h.(a) then a ≤ h(

∨
bi) =

∨
h(bi) and ai = a ∧ h(bi) ≤ h(bi).)

4.4.2. Theorem. In the dualities from 4.3, the frame homomorphisms (resp.
∧-homomorphisms preserving joins of less then α elements, in particular bounded
lattice homomorphisms) correspond precisely to the cc-prime (resp. cα-prime, in
particular c-prime) a-maps f : L(M .
Proof. It remains to be proved that for an f : L(M in AF the preimage f−1〈−〉
preserves joins. We have

f−1〈∨
J

bi
〉

=
∨
{a ∈ L |

∨
J

bi ∈ f(a)} .

Now, if
∨
bi ∈ f(a) then for some K ⊆ J and i ∈ K there are ai, a =

∨
K ai and

bi ∈ f(ai), hence ai ≤ f−1〈bi〉, and a ≤
∨
i f
−1〈bi〉. Thus,

f−1〈∨
J

bi
〉
≤
∨
f−1〈bi〉 .

The other inequality is trivial. �

4.5. The behaviour of the Manes extension f̃ : FltL→ FltM associated with an
a-map f : L(M from 3.4 corroborates our terminology. We have
Proposition. Let f : L(M be a cc-prime resp. cα-prime a-map and let F be a
completely prime resp. an α-prime filter in L. Then f̃(F ) is completely prime resp.
α-prime.
Proof. Let

∨
J bi ∈ f̃(F ) (in the latter case, |J | < α). Then for some a ∈ F ,∨

J bi ∈ f(a). Take a =
∨
ai as in (ccp) resp. (cαp). Since a is in F we have for

some i, ai ∈ F and hence bi ∈ f(ai) ⊆ f̃(F ). �

4.5.1. The question naturally arises whether the statement above can be reversed.
That is, suppose f : L ( M is such that f̃ sends completely prime filters to
completely prime ones; is then f cc-prime? Of course this cannot hold quite
generally: a frame may lack completely prime filters so that the condition may be
void, or simply weak in other cases. One does have, however, a positive result if
they abound.
4.5.2. First observe that for any continuous ϕ : X → Y and f = ϕ◦ as in 4.4 one
has

f̃
(
U(x)

)
= U

(
ϕ(x)

)
(indeed, V ∈ f̃(U(x)) iff there is a U 3 x such that V ∈ ϕ◦(U) iff there is a U 3 x
such that ϕ[U ] ⊆ V ; by continuity this is iff ϕ(x) ∈ V ).
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4.5.3. Lemma. For any topological spaces X and Y let f : O(X)( O(Y ) be an
a-map and let ϕ : X → Y be a mapping such that

f̃
(
U(x)

)
= U

(
ϕ(x)

)
.

Then ϕ is continuous and f = ϕ◦.
Proof. We have to prove that

V ∈ f(U) iff ϕ[U ] ⊆ V .

Let ϕ[U ] ⊆ V and x ∈ U . Then V ∈ U(ϕ(x)) and hence there is a Wx 3 x
such that V ∈ f(Wx). Now x ∈ U ∪ Wx and hence V ∈ f(U ∩ Wx). Finally,
V ∈

⋂
f(U ∩Wx) = f

(⋃
x(U ∩Wx)

)
= f(U).

Conversely, let V ∈ f(U) and x ∈ U . Then V ∈ U(ϕ(x)) and hence ϕ(x) ∈ U ;
thus, ϕ[U ] ⊆ V . �

4.5.4. Proposition. For any topological space X and any sober space Y , f : O(X)(
O(Y ) is cc-prime iff for each completely prime F ⊆ O(X), the filter f̃(F ) is com-
pletely prime.
Proof. Every completely prime filter in O(Y ) is of the form U(y), y ∈ Y . Thus,
for each x ∈ X we have a y = ϕ(x) such that f̃(U(x)) = U(ϕ(x)). By Lemma 4.5.3,
thus chosen ϕ : X → Y is continuous, and f = ϕ◦ is cc-prime by 4.4. �

4.5.5. Lemma 4.3.3 also yields a counterpart of the well known fact on representa-
tion of continuous maps into sober spaces by frame homomorphisms.
Proposition. Let X,Y be topological spaces and let Y be sober. Then the cc-prime
a-maps f : O(X)( O(Y ) are precisely the ϕ◦ with ϕ : X → Y continuous maps.
Proof. Let f : O(X) ( O(Y ) be a cc-prime a-map. For x ∈ X we have the
completely prime U(x). By 4.5, f̃(U(x)) is completely prime, and hence U(y) for
some y ∈ Y (uniquely determined since our spaces are T0). If we denote this y by
ϕ(x), we obtain f̃(U(x)) = U(ϕ(x)) and the statement follows. �

4.6. Theorem. The correspondences h 7→ h. and f 7→ f−1〈−〉 constitute a dual
equivalence between Frm resp. αFrm and the full subcategory of

BF resp. B(α)F

generated by the objects (L,L) where L is a frame resp. α-frame.
Proof. We need to prove that an f : L → FltM is cc-prime resp. cα-prime iff
f : (L,L)→ Flt(M,M) is a morphism in B resp. B(α).

We have
∨
i∈J bi ∈ f(a) iff ↑

∨
i bi =

∨
i ↑bi ⊆ f(a) iff f(a) ≤

∨
i ↑bi. Now

a ≤
∨
i ai with f(ai) ≤↑bi iff we have there bi ∈ f(ai). �
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5. Spectra in the approximate setting

In this section we will relate our description of the dual of the category of frames
to the familiar facts about the dual adjointness between frames and spaces.
5.1. By 4.4.2 we have the category of locales represented as

Loc : the subcategory of AF with frames for objects, and all the f : L( M
that are collectionwise completely prime for morphisms.

5.2. Denote by FltcpL the subset of FltL constituted by the completely prime
filters on L, and by τ(L) the set

{Σa | a ∈ L} where Σa = {F ∈ FltcpL | a ∈ F}.
Obviously

(5.2.1) Σa∧b = Σa ∩ Σb and Σ∨
J
ai

=
⋃
J

Σai ,

and hence τ(L) is a topology on FltcpL and we have a space

ΣL =
(
FltcpL, τ(L)

)
.

Furthermore, for an f : L(M in Loc define
Σf : ΣL→ ΣM

by setting Σf(F ) = f̃(F ). This is correct: by 4.5 if F is in FltcpL then f̃(F ) is in
FltcpM , and the map is continuous since we have

(5.2.2) Σf−1[Σb] = Σf−1〈b〉

(indeed: recall that f−1〈b〉 =
∨
{a ∈ L | b ∈ f(a)} and hence

{F | f̃(F ) ∈ Σb} = {F | ∃a ∈ F, b ∈ f(a)} = {F | f−1〈b〉 ∈ F}) .

From the formulas η̃ = id and f̃ ◦ g = ˜̃
f · g = f̃ · g̃ in 2.3 we immediately infer that

we have obtained a functor
Σ: Loc→ Top .

5.3. Our next aim is to obtain a functor in the opposite direction. Denote by
ΩX = O(X) the frame of open sets of a space X. For a continuous map ϕ : X → Y
we have already defined ϕ◦ : ΩX → Flt ΩY (Introduction, 4.4), and in 4.4 we have
observed that, in the notation of 5.1, Ω(ϕ) = ϕ◦ : ΩX ( ΩY is a morphism in Loc.
We see that we have Ω(id) = ηΩX , the identity ΩX ( ΩX in Loc, and we easily
check that Ω(fg) = ˜ω(f) · Ω(g) = Ω(f) ◦ Ω(g) in Loc. Thus, we have a functor

Ω: Top→ Loc .

5.4. The spectrum adjunction. Define
λM : ΩΣL( L

by setting
λL(U) = {a | U ⊆ Σa}
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(of course, U is one of the Σx’s). We have
5.4.1. Lemma.

(1) λ−1
L 〈a〉 = Σa.

(2) (ΩΣf)−1〈Σb〉 = Σf−1〈b〉.
(3) λ = (λL)L is a natural transformation.

Proof. (1)
∨
{U | a ∈ λL(U)} =

⋃
{U | U ⊆ Σa} = Σa.

(2) By (PREIM) in Introduction, and by (5.2.2) we obtain

(ΩΣf)−1〈Σb〉 = (Σf◦)−1〈Σb〉 = Σf−1[Σb] = Σf−1〈b〉 .

(3) First, λL(
⋃
Ui) = {a |

⋃
Ui ⊆ Σa} = {a | ∀i, Ui ⊆ Σa} =

⋂
λL(Ui). If∨

bi ∈ λL(U) then U ⊆ Σ∨ bi
=
⋃

Σbi , and U =
⋃
Ui where Ui = U ∩ Σbi with

bi ∈ λ(Ui).
To prove that f ◦λL = λM ◦ΩΣf we will use the dual representations by g−1〈−〉.

We have

(λM ◦ ΩΣf)−1〈b〉 = (ΩΣf)−1〈λ−1
M 〈b〉〉 = (ΩΣf)−1〈Σb〉 = Σf−1〈b〉

by (1) and (2), and (f ◦ λL)−1〈b〉 = λ−1
L 〈f−1〈b〉〉 = Σf−1〈b〉 by (1). �

5.4.2. For a space X we have the familiar continuous map

ρX : X → ΣΩX , x 7→ U(x) ,

(recall 1.3.1.) for which

(∗) ρ−1
X (ΣU ) = {x | U(x) ∈ ΣU} = {x | U ∈ U(x)} = U .

Note that for T0-spaces ρX is one-one, and it is onto iff X is sober (recall 1.3.2) so
that (∗) makes it a homeomorphism.

See also 4.5.5.

Lemma. ρ = (ρX)X is a natural transformation.
Proof. We have

ΣΩϕ
(
ρX(x)

)
= ϕ̃◦

(
U(x)

)
=
⋃
{ϕ◦(U) | x ∈ U} =

= {V | ∃U, x ∈ U,ϕ[U ] ⊆ V } = {V | ϕ(x) ∈ V } = ρX
(
ϕ(x)

)
.

�

5.4.3. Proposition. Σ is right adjoint to Ω, with the adjunction units λ and ρ.
Proof. In the composition

ΣL ρΣL−−−−−−→ ΣΩΣL ΣλL−−−−−−→ ΣL

we have ΣλL(ρΣL(F ) = λ̃L(U(F )) =
⋃
{λL(Σa) | a ∈ F} =

⋃
{{b | Σa ⊆ Σb} | a ∈

F} = F .
To prove the identity resulting from the composition

Ω(X)
ΩρX
( ΩΣΩ(X)

λΩ(X)
( Ω(X)
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we will use the dual representation by the preimages g−1〈−〉 similarly like in
5.4.1(3). We have

(λΩX ◦ ΩρX)−1〈U〉 = (ΩρX)−1〈λ−1
ΩX〈U〉〉 = (ρ◦X)−1〈ΣU 〉 = ρ−1

X [ΣU ] = U

by 5.4.1(1) and (PREIM) in Introduction. �

5.5. Remark. All that was proved in this section can be done, more generally, for
the category of locales modified to Locα with complete distributive lattices for
objects and collectionwise α-prime f : L(M for morphisms. This is why we have
formally introduced the extra symbol τ(L) for the topology {Σa | a ∈ L} - in the
more general context the topology is just generated by {Σa | a ∈ L} – and why we
have used the symbol U working with the λ (see 5.4) – in the more general context
it is not necessarily one of the Σa.

It may be of interest that in the case of α = ω0 the construction yields a fragment
of Priestley duality ([14]) restricted to complete distributive lattices.
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