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MINIMAL AND MAXIMAL SOLUTIONS OF FOURTH ORDER
ITERATED DIFFERENTIAL EQUATIONS

WITH SINGULAR NONLINEARITY

Kristína Rostás

Abstract. In this paper we are concerned with sufficient conditions for the
existence of minimal and maximal solutions of differential equations of the
form

L4y + f(t, y) = 0 ,
where L4y is the iterated linear differential operator of order 4 and f : [a,∞)×
(0,∞)→ (0,∞) is a continuous function.

1. Introduction

The purpose of this paper is to study the existence of positive solutions with
specific asymptotic behavior for differential equations of the form

L4y + f(t, y) = 0 ,

where L4y is the iterated linear differential operator of fourth order defined below
and f : [a,∞) × (0,∞) → (0,∞) is a continuous function, nonincreasing in the
second variable.

A prototype of such equations is the equation with singular nonlinearity f(t, y) =
Q(t)y−λ, where λ > 0 and Q : [a,∞) → (0,∞) is continuous. Such equations of
the second order were studied in [3], [4].

Differential equations with iterated linear differential operator were studied, for
instance, in [5].

2. Iterated differential equations of the fourth order

If u and v are linearly independent solutions of

(A2) y′′ + P (t)y = 0 ,

where P ∈ C2[a,∞), then u, v ∈ C4[a,∞) and the linearly independent functions

y1(t) = u3(t) , y2(t) = u2(t)v(t) , y3(t) = u(t)v2(t) , y4(t) = v3(t)
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satisfy the fourth order linear differential equation

(A4) yIV + 10P (t)y′′ + 10P ′(t)y′ + [3P ′′(t) + 9P 2(t)]y = 0 ,

(see [1]). Differential equation (A4) is called iterated linear differential equation of

the fourth order.
We may suppose without loss of generality that

W [u, v](t) ≡ 1 for t ≥ a ,

where W [u, v](t) denotes Wronskian of functions u and v. An elementary calculation
shows that Wronskian of functions

y1(t) = u3(t) , y2(t) = u2(t)v(t) , y3(t) = u(t)v2(t) , y4(t) = v3(t)

satisfies
W (u3, u2v, uv2, v3)(t) ≡ 12 for t ≥ a .

We suppose that the equation (A2) is nonoscillatory and the u(t) (resp. v(t))
denote a principal (resp. nonprincipal) solution of (A2) such that

lim
t→∞

u(t)
v(t) = 0

and ∫ ∞ dt

u2(t) =∞ (resp.
∫ ∞ dt

v2(t) <∞) .

We may assume that both u(t) and v(t) are eventually positive. Second, nonprincipal
v(t) of (A2) is given by

v(t) = u(t)
∫ t

t0

ds

u2(s) , t ≥ t0 .

In this paper we are concerned with the behavior of solutions of differential
equations of the form

L4y + f(t, y) = 0 ,

where L4y is the iterated linear differential operator of order 4 and f : [a,∞) ×
(0,∞)→ (0,∞) is a continuous function.

From Pólya’s factorization theory it follows that the operator L4y can be written
in the form

L4y = a4(t)
(
a3(t)

(
a2(t)

(
a1(t)

(
a0(t)y

)′)′)′)′
,

where

a0(t) = 1
u3(t) , a1(t) = u2(t) , a2(t) = u2(t)

2 , a3(t) = u2(t)
3 , a4(t) = 6

u3(t) ,

see [6].
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3. Classification of positive solutions

Consider the fourth order differential equation
(A) L4y(t) + f

(
t, y(t)

)
= 0

where L4y is the iterated linear differential operator of order 4 and f : [a,∞) ×
(0,∞)→ (0,∞) is continuous, and nonincreasing in the second variable.

We assume that the equation (A2) is nonoscillatory and put

L0y(t) = y(t)
u3(t) ,

Liy(t) = u2(t)
i

d

dt

(
Li−1y(t)

)
, 1 ≤ i ≤ 3 ,

and

L4y = 6
u3(t)

(u2(t)
3

(u2(t)
2

(
u2(t)

( 1
u3(t)y

)′)′)′)′
.

The domain D(L4) of the operator L4 is defined to be the set of all continuous
functions y : [Ty,∞)→ (0,∞), Ty ≥ a such that Liy(t) for 0 ≤ i ≤ 3 exist and are
continuously differentiable on [Ty,∞).

Those functions which vanish in a neighborhood of infinity will be excluded
from our consideration.

Our purpose here is to make a detailed analysis of the structure of the set of all
possible positive solutions of the equation (A). We use the following lemma which
is the special case of generalized Kiguradze’s lemma (see [2]).

Lemma 1. If y(t) is a positive solution of (A), then either
L0y(t) > 0 , L1y(t) > 0 , L2y(t) < 0 , L3y(t) > 0 , L4y(t) < 0 ,(1)

or

L0y(t) > 0 , L1y(t) > 0 , L2y(t) > 0 , L3y(t) > 0 , L4y(t) < 0 ,(2)
for all sufficiently large t.

Solutions satisfying (1) and (2) are called solutions of Kiguradze’s degree 1 and
3, respectively. If we denote by P the set of all positive solution of (A) and by Pl
the set of all solution of degree l, then we have:

P = P1 ∪ P3 .

Consider Pl for l = {1, 3}. For any y ∈ Pl the limits
lim
t→∞

Lly(t) = cl (finite),

lim
t→∞

Ll−1y(t) = cl−1 (finite or infinite but not zero)

both exist.
Solution y ∈ Pl is called a maximal in Pl, if cl is nonzero and a minimal in Pl,

if cl−1 is finite. The set of all maximal solutions in Pl denote Pl[max] and the set
of all minimal solutions in Pl denote Pl[min].
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If cl = 0 for a solutions y ∈ Pl for l ∈ {1, 3}, then y is called intermediate in Pl.
The set of all intermediate solutions in Pl denote Pl[int].
Then

P = P1[min] ∪ P1[int] ∪ P1[max] ∪ P3[min] ∪ P3[int] ∪ P3[max] .

Our objective is to give sufficient conditions for the existence of maximal and
minimal solutions in Pi for i = 1, 3.

Crucial role will be played by integral representations for those fourth types of
solutions of (A) as derived below.
First we define: I0 = 1 and

Ii(t, s;u) =
∫ t

s

1
u2(r)Ii−1(r, s;u) dr , 1 ≤ i ≤ 3 .

If the second, linearly independent solution v(t) of (A2) is given by

v(t) = u(t)
∫ t

t0

ds

u2(s) for t ≥ t0 , then the set of positive functions

x0(t) = u3(t) ,

x1(t) = u3(t)
∫ t

t0

1
u2(s) ds = u2(t) v(t) ,

x2(t) = u3(t)
∫ t

t0

1
u2(s)

∫ s

t0

2
u2(r) dr ds = u(t) v2(t) ,

x3(t) = u3(t)
∫ t

t0

1
u2(s)

∫ s

t0

2
u2(r)

∫ r

t0

3
u2(ξ) dξ dr ds = v3(t)

defined on [t0,∞) form fundamental set of positive solutions for L4x = 0 (i.e. (A4),
which are asymptotically ordered in the sense that

lim
t→∞

xi(t)
xj(t)

= 0

for 0 ≤ i < j ≤ 3, see [2]. It is useful to note that

Ii(t, a;u) = 1
i!

( v(t)
u(t)

)i
for i = 1, 2, 3 .

The solutions from the classes P3[max], P3[min], P1[max] and P1[min] satisfy
the properties

lim
t→∞

y(t)
v3(t) = λ3 , lim

t→∞

y(t)
u(t)v2(t) = λ2 , lim

t→∞

y(t)
u2(t)v(t) = λ1

and lim
t→∞

y(t)
u3(t) = λ0 , respectively, where 0 < λi <∞, i = 1, 2, 3.
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4. Integral representations for solutions

Now we can derive integral representations for types P3[max], P3[min], P1[max]
and P1[min].

Let y be a solution of (A) such that y(t) > 0 for t ≥ T ≥ a. Integrating (A)
from t to ∞ gives

(3) L3y(t) = c3 +
∫ ∞
t

u3(s)
6 f

(
s, y(s)

)
ds, t ≥ T ,

where c3 = lim
t→∞

L3y(t) ≥ 0.
If y ∈ P3[max], then we integrate (3) three times over [T, t] to obtain

y(t) = k0u
3(t) + k1u

3(t)
∫ t

T

1
u2(s) ds+ 2k2u

3(t)
∫ t

T

1
u2(s1)

∫ s1

T

1
u2(s2)ds2 ds1

+ 6c3u
3(t)

∫ t

T

1
u2(s1)

∫ s1

T

1
u2(s2)

∫ s2

T

1
u2(s3) ds3 ds2 ds1

+ u3(t)
∫ t

T

I2(t, s;u) 1
u2(s)

∫ ∞
s

u3(r) f
(
r, y(r)

)
dr ds ,

for t ≥ T , where ki = Liy(T ) for i = 0, 1, 2 and we used Fubini theorem.
If y is a solution of type P3[min], then integrating (3) with c3 = 0 from t to ∞

and then integrating the resulting equation twice from T to t, we have

y(t) = k0u
3(t) + k1u

3(t)
∫ t

T

1
u2(s1) ds1 + 2c2u

3(t)
∫ t

T

1
u2(s1)

∫ s1

T

1
u2(s2) ds2 ds1

− u3(t)
∫ t

T

I1(t, s;u) 1
u2(s)

∫ ∞
s

I1(r, s;u)u3(r) f
(
r, y(r)

)
dr ds ,

for t ≥ T , where c2 = lim
t→∞

L2y(t).
An integral representation for a solution y of type P1[max] is derived by inte-

grating (3) with c3 = c2 = 0 twice from t to ∞ and once on [T, t]

y(t) = k0u
3(t) + c1u

3(t)
∫ t

T

1
u2(s1) ds1

+ u3(t)
∫ t

T

1
u2(s)

∫ ∞
s

I2(r, s;u)u3(r) f
(
r, y(r)

)
dr ds ,

for t ≥ T , where c1 = lim
t→∞

L1y(t) and we used Fubini theorem.
If y ∈ P1[min], then integrations of (3) with c3 = c2 = c1 = 0 three times on

(t,∞) yield

y(t) = c0u
3(t)− u3(t)

∫ ∞
t

I3(s, t;u)u3(s) f
(
s, y(s)

)
ds ,

for t ≥ T , where c0 = lim
t→∞

L0y(t).
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5. Existence theorems

We are now prepared to discuss the existence of maximal and minimal solutions
of equation (A) of type P1 and P3.

Theorem 1. The equation (A) has a positive solution of types P3[max] if

(4)
∫ ∞

u3(t) f
(
t, cv3(t)

)
dt <∞ ,

for some c > 0.

Proof. We assume that (4) holds. Then there is T ≥ a such that∫ ∞
T

u3(t) f
(
t, cv3(t)

)
dt < c .

Let C denote locally convex space of all continuous functions y : [T,∞)→ R with
the topology of uniform convergence on compact subintervals of [T,∞).

Define the subset Y3 of C[T,∞) and mapping Φ3 : Y3 → C[T,∞) by

Y3 = {y ∈ C[T,∞) : cv3(t) ≤ y(t) ≤ 2cv3(t), t ≥ T}

and

Φ3y(t) = cv3(t) + u3(t)
∫ t

T

I2(t, s;u) 1
u2(s)

∫ ∞
s

u3(r) f
(
r, y(r)

)
dr ds .

We will show that (i): Φ3 maps Y3 into Y3, (ii): Φ3 is continuous on Y3, (iii): Φ3(Y3)
is relatively compact.

(i) Since

0 ≤ u3(t)
∫ t

T

I2(t, s;u) 1
u2(s)

∫ ∞
s

u3(r) f
(
r, y(r)

)
dr ds

≤ u3(t)
∫ t

T

I2(t, s;u) 1
u2(s)

∫ ∞
s

u3(r) f
(
r, cv3(r)

)
dr ds ,

then

Φ3y(t) ≥ cv3(t)

and

Φ3y(t) ≤ cv3(t) + u3(t)
∫ t

T

I2(t, s;u) 1
u2(s)

∫ ∞
s

u3(r) f
(
r, cv3(r)

)
dr ds

≤ cv3(t) + cu3(t)
∫ t

T

I2(t, s;u) 1
u2(s) ds

≤ cv3(t) + cv3(t) = 2cv3(t) .

And so Φ3y ∈ Y3.
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(ii) Suppose that {yn} ⊂ Y3 and y ∈ Y3, and that lim
n→∞

yn = y in the topology
of C[T,∞). We have∣∣Φ3yn(t)− Φ3y(t)

∣∣ ≤ u3(t)
∫ t

T

I2(t, s;u) 1
u2(s)

×
∫ ∞
s

u3(r)
∣∣f(r, yn(r)

)
− f

(
r, y(r)

)∣∣ dr ds
≤ 6v3(t)

∫ ∞
T

u3(s)
∣∣f(s, yn(s)

)
− f

(
s, y(s)

)∣∣ ds
Because ∣∣f(s, yn(s)

)
− f

(
s, y(s)

)∣∣ ≤ 2f
(
s, cv3(s)

)
and lim

t→∞
|f(s, yn(s)) − f(s, y(s))| = 0 for s ≥ T , then applying the Lebesgue

convergence theorem, we have |Φ3yn(t)−Φ3y(t)| → 0 for n→∞ on every compact
subinterval of [T,∞], which implies that Φ3y is continuous on Y3.

(iii) If y ∈ Y3, then we have for t ∈ (T,∞)∣∣∣ d
dt

( 1
u3(t)Φ3y(t))

∣∣∣ ≤ 2c 1
u2(t)I2(t, a;u) .

This shows that the function d
dt

( 1
u3(t) Φ3y(t)

)
is uniformly bounded on any compact

subinterval of [T,∞), and so function 1
u3(t) Φ3y(t) is equicontinuous on (T,∞).

Now for t1, t2 ∈ [T,∞) we see that∣∣Φ3y(t2)− Φ3y(t1)
∣∣ ≤ ∣∣u3(t2)− u3(t1)

∣∣∣∣∣ 1
u3(t2)Φ3y(t2)

∣∣∣
+ u3(t1)

∣∣∣ 1
u3(t2)Φ3y(t2)− 1

u3(t1)Φ3y(t1)
∣∣∣

≤ 2c 1
u3(t2)v

3(t2)
∣∣u3(t2)− u3(t1)

∣∣
+ u3(t1)

∣∣∣ 1
u3(t2)Φ3y(t2)− 1

u3(t1)Φ3y(t1)
∣∣∣ ,

and hence Φ3(Y3) is equicontinuous at every point of [T,∞). Since Φ3(Y3) is clearly
uniformly bounded on [T,∞), it follow from Ascoli-Arzèl theorem that Φ3(Y3) is
relatively compact.

Therefore, by the Schauder-Tychonoff fixed point theorem, there exists a fixed
element y ∈ Y3 of Φ3, i.e. Φ3y = y, which satisfies the integral equation

y(t) = cv3(t) + u3(t)
∫ t

T

I2(t, s;u) 1
u2(s)

∫ ∞
s

u3(r) f
(
r, y(r)

)
dr ds .

A simple computation shows that this fixed point is a solution of (A) of type
P3[max]. The proof of Theorem 1 is complete. �

Theorem 2. The equation (A) has a positive solution of type P3[min] if

(5)
∫ ∞
a

u2(t)v(t) f
(
t, cu(t)v2(t)

)
dt <∞,
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for some c > 0.

Proof. Suppose that (5) holds. Choose T ≥ a so that

(6)
∫ ∞
T

u2(t)v(t) f
(
t, cu(t)v2(t)

)
dt < c .

Consider the set Y2 functions y ∈ C[T,∞) and mapping Ψ3 : Y3 → C[T,∞) defined
by

Y2 = {y ∈ C[T,∞) : cu(t)v2(t) ≤ y(t) ≤ 2cu(t)v2(t), t ≥ T}
and

Ψ3y(t) = 2cu(t)v2(t)− u3(t)e
∫ t

T

I1(t, s;u) 1
u2(s)

×
∫ ∞
s

I1(r, s;u)u3(r) f
(
r, y(r)

)
dr ds .

That Ψ3(Y2) ⊂ Y2 is an immediate consequence of (6). Since the continuity of Ψ3
and the relative compactness of Ψ3(Y2) can be proved as in the proof of Theorem 1,
there exists an element y ∈ Y2 such that Ψ3y = y, which satisfies

y(t) = 2cu(t)v2(t)− u3(t)
∫ t

T

I1(t, s;u) 1
u2(s)

×
∫ ∞
s

I1(r, s;u)u3(r) f
(
r, y(r)

)
dr ds

for t ≥ T . It is easy to verify that this fixed point is a solution of degree 3 of (A)
such that lim

t→∞
L2y(t) = c2 exists and is finite and nonzero. This completes the

proof. �

Theorem 3. The equation (A) has a positive solution of type P1[max] if

(7)
∫ ∞
a

u(t)v2(t) f
(
t, cu2(t)v(t)

)
dt <∞ ,

for some c > 0.

Proof. Suppose that (7) holds. Take T ≥ a so large that∫ ∞
T

u(t)v2(t) f
(
t, cu2(t)v(t)

)
dt < c .

Consider a closed convex subset Y1 of C[T,∞) defined by a

Y1 = {y ∈ C[T,∞) : cu2(t)v(t) ≤ y(t) ≤ 2cu2(t)v(t), t ≥ T} .

Define the operator Φ1 : Y1 → C[T,∞)by the following formula

Φ1y(t) = cu2(t) v(t) + u3(t)
∫ t

T

1
u2(s)

∫ ∞
s

I2(r, s;u)u3(r) f
(
r, y(r)

)
dr ds .

Again we can show that (i) Φ1(Y1) ⊂ Y1, (ii) Φ1 is a continuous operator and (iii)
Φ1(Y1) is relatively compact.
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Therefore, Φ1 has a fixed point y ∈ Y1, which gives rise to a type P1[max] solution
of (A) since it satisfies

y(t) = cu2(t) v(t) + u3(t)
∫ t

T

1
u2(s)

∫ ∞
s

I2(r, s;u)u3(r) f
(
r, y(r)

)
dr ds

for t ≥ T . Note that lim
t→∞

L1y(t) = c. The proof is thus complete. �

Theorem 4. The equation (A) has positive solution of type P1[min] if

(8)
∫ ∞
a

v3(t) f
(
t, cu3(t)

)
dt <∞ ,

for some c > 0.

Proof. Suppose now that (8) holds. There exists a constant T ≥ a such that∫ ∞
T

v3(t) f
(
t, cu3(t)

)
dt < c .

Define the mapping Ψ1 by

Ψ1y(t) = 2cu3(t)− u3(t)
∫ ∞
t

I3(s, t;u)u3(s) f
(
s, y(s)

)
ds .

Then, it can be verified without difficulty that Ψ1 has a fixed element y in the set

Y0 = {y ∈ C[T,∞) : cu3(t) ≤ y(t) ≤ 2cu3(t), t ≥ T} .

This fixed point gives rise to a required positive solution of (A), since it satisfies

y(t) = 2cu3(t)− u3(t)
∫ ∞
t

I3(s, t;u)u3(s) f
(
s, y(s)

)
ds .

Note that lim
t→∞

L0y(t) = 2c. This completes the proof. �

6. Special case and example

We consider equation (A) with special function f(t, y) = Q(t)y−λ

(B) L4y(t) +Q(t)y−λ = 0 ,

where λ > 0 and Q : [a,∞)→ (0,∞) is continuous. The objective of this section is

to use above theorems to establish sufficient conditions for equation (B) to have
solutions xi(t), i = 1, 2, 3, 4 defined in some neighborhood of infinity with the same
asymptotic behavior as

xi(t) = u4−i(t)vi−1(t) , 1 ≤ i ≤ 4 ,

respectively, as t→∞. We write they as corollaries, where the symbol ∼ is used
to denote the asymptotic equivalence

f(t) ∼ g(t) as t→∞ ⇔ lim
t→∞

f(t)
g(t) = 1 .
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Corollary 1. A sufficient condition for (B) to have a positive solution y4(t) which
satisfies

y4(t) ∼ mv3(t)
for some m > 0 is that ∫ ∞

a

u3(t) v−3λ(t)Q(t) dt <∞ .

Corollary 2. A sufficient condition for (B) to have a positive solution y3(t) which
satisfies

y3(t) ∼ mu(t) v2(t)
for some m > 0 is that ∫ ∞

a

u2−λ(t) v1−2λ(t)Q(t) dt <∞ .

Corollary 3. A sufficient condition for (B) to have a positive solution y2(t) which
satisfies

y2(t) ∼ mu2(t) v(t)
for some m > 0 is that ∫ ∞

a

u1−2λ(t) v2−λ(t)Q(t) dt <∞ .

Corollary 4. A sufficient condition for (B) to have a positive solution y1(t) which
satisfies

y1(t) ∼ 2mu3(t)
for some m > 0 is that ∫ ∞

a

u−3λ(t) v3(t)Q(t) dt <∞ .

We present here an example which illustrates theorems proved above and the
corollaries.

Example. Consider the nonoscillatory linear differential equation of the second
order

x′′ + 1
4t2x = 0 , t ≥ 1 .

We know, that this equation has principal solution
u(t) = t

1
2

and nonprincipal solution

v(t) = t
1
2 ln t

and that the iterated equation

xIV + 5
2t2x

′′ − 5
t3
x′ + 81

16t4x = 0 ,

has independent solutions in the form
x1(t) = t

3
2 , x2(t) = t

3
2 ln t , x3(t) = t

3
2 ln2 t , x4(t) = t

3
2 ln3 t .
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Then equation

yIV + 5
2t2 y

′′ − 5
t3
y′ + 81

16t4 y +Q(t)y−λ = 0 , t ≥ 1 ,

where λ > 0 and Q : [1,∞)→ (0,∞) is continuous, has positive regular solution

a) y1(t) satisfying y1(t) ∼ mt 3
2 if

∞∫
a

t−
3
2 (λ−1)(ln t)3Q(t) dt <∞,

b) y2(t) satisfying y2(t) ∼ mt 3
2 ln t if

∞∫
a

t−
3
2 (λ−1)(ln t)2−λQ(t) dt <∞,

c) y3(t) satisfying y3(t) ∼ mt 3
2 ln2 t if

∞∫
a

t−
3
2 (λ−1)(ln t)1−2λQ(t) dt <∞,

d) y4(t) satisfying y4(t) ∼ mt 3
2 ln3 t if

∞∫
a

t−
3
2 (λ−1)(ln t)−3λQ(t) dt <∞

for some m > 0.
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