MINIMAL AND MAXIMAL SOLUTIONS OF FOURTH ORDER ITERATED DIFFERENTIAL EQUATIONS WITH SINGULAR NONLINEARITY

Kristína Rostás

Abstract

In this paper we are concerned with sufficient conditions for the existence of minimal and maximal solutions of differential equations of the form $$
L_{4} y+f(t, y)=0,
$$ where $L_{4} y$ is the iterated linear differential operator of order 4 and $f:[a, \infty) \times$ $(0, \infty) \rightarrow(0, \infty)$ is a continuous function.

1. Introduction

The purpose of this paper is to study the existence of positive solutions with specific asymptotic behavior for differential equations of the form

$$
L_{4} y+f(t, y)=0,
$$

where $L_{4} y$ is the iterated linear differential operator of fourth order defined below and $f:[a, \infty) \times(0, \infty) \rightarrow(0, \infty)$ is a continuous function, nonincreasing in the second variable.

A prototype of such equations is the equation with singular nonlinearity $f(t, y)=$ $Q(t) y^{-\lambda}$, where $\lambda>0$ and $Q:[a, \infty) \rightarrow(0, \infty)$ is continuous. Such equations of the second order were studied in [3], 4].

Differential equations with iterated linear differential operator were studied, for instance, in [5].

2. Iterated differential equations of the fourth order

If u and v are linearly independent solutions of

$$
\begin{equation*}
y^{\prime \prime}+P(t) y=0 \tag{2}
\end{equation*}
$$

where $P \in C^{2}[a, \infty)$, then $u, v \in C^{4}[a, \infty)$ and the linearly independent functions

$$
y_{1}(t)=u^{3}(t), \quad y_{2}(t)=u^{2}(t) v(t), \quad y_{3}(t)=u(t) v^{2}(t), \quad y_{4}(t)=v^{3}(t)
$$

[^0]satisfy the fourth order linear differential equation
\[

$$
\begin{equation*}
y^{I V}+10 P(t) y^{\prime \prime}+10 P^{\prime}(t) y^{\prime}+\left[3 P^{\prime \prime}(t)+9 P^{2}(t)\right] y=0 \tag{4}
\end{equation*}
$$

\]

(see [1]). Differential equation $\left(\mathrm{A}_{4}\right)$ is called iterated linear differential equation of the fourth order.
We may suppose without loss of generality that

$$
W[u, v](t) \equiv 1 \quad \text { for } \quad t \geq a
$$

where $W[u, v](t)$ denotes Wronskian of functions u and v. An elementary calculation shows that Wronskian of functions

$$
y_{1}(t)=u^{3}(t), \quad y_{2}(t)=u^{2}(t) v(t), \quad y_{3}(t)=u(t) v^{2}(t), \quad y_{4}(t)=v^{3}(t)
$$

satisfies

$$
W\left(u^{3}, u^{2} v, u v^{2}, v^{3}\right)(t) \equiv 12 \quad \text { for } \quad t \geq a
$$

We suppose that the equation $\left(\mathrm{A}_{2}\right)$ is nonoscillatory and the $u(t)$ (resp. $v(t)$) denote a principal (resp. nonprincipal) solution of $\left(\mathrm{A}_{2}\right)$ such that

$$
\lim _{t \rightarrow \infty} \frac{u(t)}{v(t)}=0
$$

and

$$
\int^{\infty} \frac{d t}{u^{2}(t)}=\infty \quad\left(\text { resp. } \quad \int^{\infty} \frac{d t}{v^{2}(t)}<\infty\right)
$$

We may assume that both $u(t)$ and $v(t)$ are eventually positive. Second, nonprincipal $v(t)$ of A_{2} is given by

$$
v(t)=u(t) \int_{t_{0}}^{t} \frac{d s}{u^{2}(s)}, \quad t \geq t_{0}
$$

In this paper we are concerned with the behavior of solutions of differential equations of the form

$$
L_{4} y+f(t, y)=0,
$$

where $L_{4} y$ is the iterated linear differential operator of order 4 and $f:[a, \infty) \times$ $(0, \infty) \rightarrow(0, \infty)$ is a continuous function.

From Pólya's factorization theory it follows that the operator $L_{4} y$ can be written in the form

$$
L_{4} y=a_{4}(t)\left(a_{3}(t)\left(a_{2}(t)\left(a_{1}(t)\left(a_{0}(t) y\right)^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}
$$

where
$a_{0}(t)=\frac{1}{u^{3}(t)}, \quad a_{1}(t)=u^{2}(t), \quad a_{2}(t)=\frac{u^{2}(t)}{2}, \quad a_{3}(t)=\frac{u^{2}(t)}{3}, \quad a_{4}(t)=\frac{6}{u^{3}(t)}$,
see [6].

3. Classification of positive solutions

Consider the fourth order differential equation

$$
\begin{equation*}
L_{4} y(t)+f(t, y(t))=0 \tag{A}
\end{equation*}
$$

where $L_{4} y$ is the iterated linear differential operator of order 4 and $f:[a, \infty) \times$ $(0, \infty) \rightarrow(0, \infty)$ is continuous, and nonincreasing in the second variable.

We assume that the equation $\left(\mathrm{A}_{2}\right)$ is nonoscillatory and put

$$
\begin{gathered}
L_{0} y(t)=\frac{y(t)}{u^{3}(t)} \\
L_{i} y(t)=\frac{u^{2}(t)}{i} \frac{d}{d t}\left(L_{i-1} y(t)\right), \quad 1 \leq i \leq 3,
\end{gathered}
$$

and

$$
L_{4} y=\frac{6}{u^{3}(t)}\left(\frac{u^{2}(t)}{3}\left(\frac{u^{2}(t)}{2}\left(u^{2}(t)\left(\frac{1}{u^{3}(t)} y\right)^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}
$$

The domain $\mathcal{D}\left(L_{4}\right)$ of the operator L_{4} is defined to be the set of all continuous functions $y:\left[T_{y}, \infty\right) \rightarrow(0, \infty), T_{y} \geq a$ such that $L_{i} y(t)$ for $0 \leq i \leq 3$ exist and are continuously differentiable on $\left[T_{y}, \infty\right)$.

Those functions which vanish in a neighborhood of infinity will be excluded from our consideration.

Our purpose here is to make a detailed analysis of the structure of the set of all possible positive solutions of the equation (A). We use the following lemma which is the special case of generalized Kiguradze's lemma (see [2]).

Lemma 1. If $y(t)$ is a positive solution of (A), then either

$$
\begin{equation*}
L_{0} y(t)>0, \quad L_{1} y(t)>0, \quad L_{2} y(t)<0, \quad L_{3} y(t)>0, \quad L_{4} y(t)<0, \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
L_{0} y(t)>0, \quad L_{1} y(t)>0, \quad L_{2} y(t)>0, \quad L_{3} y(t)>0, \quad L_{4} y(t)<0, \tag{2}
\end{equation*}
$$

for all sufficiently large t.
Solutions satisfying (1) and (2) are called solutions of Kiguradze's degree 1 and 3 , respectively. If we denote by P the set of all positive solution of (A) and by P_{l} the set of all solution of degree l, then we have:

$$
P=P_{1} \cup P_{3} .
$$

Consider P_{l} for $l=\{1,3\}$. For any $y \in P_{l}$ the limits

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty} L_{l} y(t)=c_{l} & \text { (finite) } \\
\lim _{t \rightarrow \infty} L_{l-1} y(t)=c_{l-1} & \text { (finite or infinite but not zero) }
\end{array}
$$

both exist.
Solution $y \in P_{l}$ is called a maximal in P_{l}, if c_{l} is nonzero and a minimal in P_{l}, if c_{l-1} is finite. The set of all maximal solutions in P_{l} denote $P_{l}[\max]$ and the set of all minimal solutions in P_{l} denote $P_{l}[\mathrm{~min}]$.

If $c_{l}=0$ for a solutions $y \in P_{l}$ for $l \in\{1,3\}$, then y is called intermediate in P_{l}. The set of all intermediate solutions in P_{l} denote P_{l} [int].
Then

$$
P=P_{1}[\min] \cup P_{1}[\text { int }] \cup P_{1}[\max] \cup P_{3}[\min] \cup P_{3}[\text { int }] \cup P_{3}[\max] .
$$

Our objective is to give sufficient conditions for the existence of maximal and minimal solutions in P_{i} for $i=1,3$.

Crucial role will be played by integral representations for those fourth types of solutions of (A) as derived below.
First we define: $I_{0}=1$ and

$$
I_{i}(t, s ; u)=\int_{s}^{t} \frac{1}{u^{2}(r)} I_{i-1}(r, s ; u) d r, \quad 1 \leq i \leq 3
$$

If the second, linearly independent solution $v(t)$ of $\left(\mathrm{A}_{2}\right)$ is given by

$$
\begin{aligned}
& v(t)=u(t) \int_{t_{0}}^{t} \frac{d s}{u^{2}(s)} \text { for } t \geq t_{0}, \quad \text { then the set of positive functions } \\
& x_{0}(t)=u^{3}(t) \\
& x_{1}(t)=u^{3}(t) \int_{t_{0}}^{t} \frac{1}{u^{2}(s)} d s=u^{2}(t) v(t), \\
& x_{2}(t)=u^{3}(t) \int_{t_{0}}^{t} \frac{1}{u^{2}(s)} \int_{t_{0}}^{s} \frac{2}{u^{2}(r)} d r d s=u(t) v^{2}(t), \\
& x_{3}(t)=u^{3}(t) \int_{t_{0}}^{t} \frac{1}{u^{2}(s)} \int_{t_{0}}^{s} \frac{2}{u^{2}(r)} \int_{t_{0}}^{r} \frac{3}{u^{2}(\xi)} d \xi d r d s=v^{3}(t)
\end{aligned}
$$

defined on $\left[t_{0}, \infty\right)$ form fundamental set of positive solutions for $L_{4} x=0$ (i.e. (A), which are asymptotically ordered in the sense that

$$
\lim _{t \rightarrow \infty} \frac{x_{i}(t)}{x_{j}(t)}=0
$$

for $0 \leq i<j \leq 3$, see [2]. It is useful to note that

$$
I_{i}(t, a ; u)=\frac{1}{i!}\left(\frac{v(t)}{u(t)}\right)^{i} \quad \text { for } \quad i=1,2,3
$$

The solutions from the classes $P_{3}[\max], P_{3}[\min], P_{1}[\max]$ and $P_{1}[\min]$ satisfy the properties

$$
\lim _{t \rightarrow \infty} \frac{y(t)}{v^{3}(t)}=\lambda_{3}, \quad \lim _{t \rightarrow \infty} \frac{y(t)}{u(t) v^{2}(t)}=\lambda_{2}, \quad \lim _{t \rightarrow \infty} \frac{y(t)}{u^{2}(t) v(t)}=\lambda_{1}
$$

and $\quad \lim _{t \rightarrow \infty} \frac{y(t)}{u^{3}(t)}=\lambda_{0}, \quad$ respectively, where $0<\lambda_{i}<\infty, i=1,2,3$.

4. Integral representations for solutions

Now we can derive integral representations for types $P_{3}[\max], P_{3}[\min], P_{1}[\max]$ and $P_{1}[\min]$.

Let y be a solution of (A) such that $y(t)>0$ for $t \geq T \geq a$. Integrating (A) from t to ∞ gives

$$
\begin{equation*}
L_{3} y(t)=c_{3}+\int_{t}^{\infty} \frac{u^{3}(s)}{6} f(s, y(s)) d s, \quad t \geq T \tag{3}
\end{equation*}
$$

where $c_{3}=\lim _{t \rightarrow \infty} L_{3} y(t) \geq 0$.
If $y \in P_{3}[\max]$, then we integrate (3) three times over $[T, t]$ to obtain

$$
\begin{aligned}
y(t)= & k_{0} u^{3}(t)+k_{1} u^{3}(t) \int_{T}^{t} \frac{1}{u^{2}(s)} d s+2 k_{2} u^{3}(t) \int_{T}^{t} \frac{1}{u^{2}\left(s_{1}\right)} \int_{T}^{s_{1}} \frac{1}{u^{2}\left(s_{2}\right)} d s_{2} d s_{1} \\
& +6 c_{3} u^{3}(t) \int_{T}^{t} \frac{1}{u^{2}\left(s_{1}\right)} \int_{T}^{s_{1}} \frac{1}{u^{2}\left(s_{2}\right)} \int_{T}^{s_{2}} \frac{1}{u^{2}\left(s_{3}\right)} d s_{3} d s_{2} d s_{1} \\
& +u^{3}(t) \int_{T}^{t} I_{2}(t, s ; u) \frac{1}{u^{2}(s)} \int_{s}^{\infty} u^{3}(r) f(r, y(r)) d r d s
\end{aligned}
$$

for $t \geq T$, where $k_{i}=L_{i} y(T)$ for $i=0,1,2$ and we used Fubini theorem.
If y is a solution of type $P_{3}[\mathrm{~min}]$, then integrating (3) with $c_{3}=0$ from t to ∞ and then integrating the resulting equation twice from T to t, we have

$$
\begin{aligned}
y(t)= & k_{0} u^{3}(t)+k_{1} u^{3}(t) \int_{T}^{t} \frac{1}{u^{2}\left(s_{1}\right)} d s_{1}+2 c_{2} u^{3}(t) \int_{T}^{t} \frac{1}{u^{2}\left(s_{1}\right)} \int_{T}^{s_{1}} \frac{1}{u^{2}\left(s_{2}\right)} d s_{2} d s_{1} \\
& -u^{3}(t) \int_{T}^{t} I_{1}(t, s ; u) \frac{1}{u^{2}(s)} \int_{s}^{\infty} I_{1}(r, s ; u) u^{3}(r) f(r, y(r)) d r d s
\end{aligned}
$$

for $t \geq T$, where $c_{2}=\lim _{t \rightarrow \infty} L_{2} y(t)$.
An integral representation for a solution y of type $P_{1}[\max]$ is derived by integrating (3) with $c_{3}=c_{2}=0$ twice from t to ∞ and once on $[T, t]$

$$
\begin{aligned}
y(t)= & k_{0} u^{3}(t)+c_{1} u^{3}(t) \int_{T}^{t} \frac{1}{u^{2}\left(s_{1}\right)} d s_{1} \\
& +u^{3}(t) \int_{T}^{t} \frac{1}{u^{2}(s)} \int_{s}^{\infty} I_{2}(r, s ; u) u^{3}(r) f(r, y(r)) d r d s
\end{aligned}
$$

for $t \geq T$, where $c_{1}=\lim _{t \rightarrow \infty} L_{1} y(t)$ and we used Fubini theorem.
If $y \in P_{1}[\min]$, then integrations of (3) with $c_{3}=c_{2}=c_{1}=0$ three times on (t, ∞) yield

$$
y(t)=c_{0} u^{3}(t)-u^{3}(t) \int_{t}^{\infty} I_{3}(s, t ; u) u^{3}(s) f(s, y(s)) d s
$$

for $t \geq T$, where $c_{0}=\lim _{t \rightarrow \infty} L_{0} y(t)$.

5. Existence theorems

We are now prepared to discuss the existence of maximal and minimal solutions of equation (A) of type P_{1} and P_{3}.

Theorem 1. The equation (A) has a positive solution of types $P_{3}[\max]$ if

$$
\begin{equation*}
\int^{\infty} u^{3}(t) f\left(t, c v^{3}(t)\right) d t<\infty \tag{4}
\end{equation*}
$$

for some $c>0$.
Proof. We assume that (4) holds. Then there is $T \geq a$ such that

$$
\int_{T}^{\infty} u^{3}(t) f\left(t, c v^{3}(t)\right) d t<c
$$

Let C denote locally convex space of all continuous functions $y:[T, \infty) \rightarrow R$ with the topology of uniform convergence on compact subintervals of $[T, \infty)$.

Define the subset Y_{3} of $C[T, \infty)$ and mapping $\Phi_{3}: Y_{3} \rightarrow C[T, \infty)$ by

$$
Y_{3}=\left\{y \in C[T, \infty): c v^{3}(t) \leq y(t) \leq 2 c v^{3}(t), t \geq T\right\}
$$

and

$$
\Phi_{3} y(t)=c v^{3}(t)+u^{3}(t) \int_{T}^{t} I_{2}(t, s ; u) \frac{1}{u^{2}(s)} \int_{s}^{\infty} u^{3}(r) f(r, y(r)) d r d s
$$

We will show that (i): Φ_{3} maps Y_{3} into Y_{3}, (ii): Φ_{3} is continuous on Y_{3}, (iii): $\Phi_{3}\left(Y_{3}\right)$ is relatively compact.
(i) Since

$$
\begin{aligned}
0 & \leq u^{3}(t) \int_{T}^{t} I_{2}(t, s ; u) \frac{1}{u^{2}(s)} \int_{s}^{\infty} u^{3}(r) f(r, y(r)) d r d s \\
& \leq u^{3}(t) \int_{T}^{t} I_{2}(t, s ; u) \frac{1}{u^{2}(s)} \int_{s}^{\infty} u^{3}(r) f\left(r, c v^{3}(r)\right) d r d s
\end{aligned}
$$

then

$$
\Phi_{3} y(t) \geq c v^{3}(t)
$$

and

$$
\begin{aligned}
\Phi_{3} y(t) & \leq c v^{3}(t)+u^{3}(t) \int_{T}^{t} I_{2}(t, s ; u) \frac{1}{u^{2}(s)} \int_{s}^{\infty} u^{3}(r) f\left(r, c v^{3}(r)\right) d r d s \\
& \leq c v^{3}(t)+c u^{3}(t) \int_{T}^{t} I_{2}(t, s ; u) \frac{1}{u^{2}(s)} d s \\
& \leq c v^{3}(t)+c v^{3}(t)=2 c v^{3}(t) .
\end{aligned}
$$

And so $\Phi_{3} y \in Y_{3}$.
(ii) Suppose that $\left\{y_{n}\right\} \subset Y_{3}$ and $y \in Y_{3}$, and that $\lim _{n \rightarrow \infty} y_{n}=y$ in the topology of $C[T, \infty)$. We have

$$
\begin{aligned}
\left|\Phi_{3} y_{n}(t)-\Phi_{3} y(t)\right| \leq & u^{3}(t) \int_{T}^{t} I_{2}(t, s ; u) \frac{1}{u^{2}(s)} \\
& \times \int_{s}^{\infty} u^{3}(r)\left|f\left(r, y_{n}(r)\right)-f(r, y(r))\right| d r d s \\
\leq & 6 v^{3}(t) \int_{T}^{\infty} u^{3}(s)\left|f\left(s, y_{n}(s)\right)-f(s, y(s))\right| d s
\end{aligned}
$$

Because

$$
\left|f\left(s, y_{n}(s)\right)-f(s, y(s))\right| \leq 2 f\left(s, c v^{3}(s)\right)
$$

and $\lim _{t \rightarrow \infty}\left|f\left(s, y_{n}(s)\right)-f(s, y(s))\right|=0$ for $s \geq T$, then applying the Lebesgue convergence theorem, we have $\left|\Phi_{3} y_{n}(t)-\Phi_{3} y(t)\right| \rightarrow 0$ for $n \rightarrow \infty$ on every compact subinterval of $[T, \infty]$, which implies that $\Phi_{3} y$ is continuous on Y_{3}.
(iii) If $y \in Y_{3}$, then we have for $t \in(T, \infty)$

$$
\left|\frac{d}{d t}\left(\frac{1}{u^{3}(t)} \Phi_{3} y(t)\right)\right| \leq 2 c \frac{1}{u^{2}(t)} I_{2}(t, a ; u) .
$$

This shows that the function $\frac{d}{d t}\left(\frac{1}{u^{3}(t)} \Phi_{3} y(t)\right)$ is uniformly bounded on any compact subinterval of $[T, \infty)$, and so function $\frac{1}{u^{3}(t)} \Phi_{3} y(t)$ is equicontinuous on (T, ∞).

Now for $t_{1}, t_{2} \in[T, \infty)$ we see that

$$
\begin{aligned}
\left|\Phi_{3} y\left(t_{2}\right)-\Phi_{3} y\left(t_{1}\right)\right| \leq & \left|u^{3}\left(t_{2}\right)-u^{3}\left(t_{1}\right)\right|\left|\frac{1}{u^{3}\left(t_{2}\right)} \Phi_{3} y\left(t_{2}\right)\right| \\
& +u^{3}\left(t_{1}\right)\left|\frac{1}{u^{3}\left(t_{2}\right)} \Phi_{3} y\left(t_{2}\right)-\frac{1}{u^{3}\left(t_{1}\right)} \Phi_{3} y\left(t_{1}\right)\right| \\
\leq & 2 c \frac{1}{u^{3}\left(t_{2}\right)} v^{3}\left(t_{2}\right)\left|u^{3}\left(t_{2}\right)-u^{3}\left(t_{1}\right)\right| \\
& +u^{3}\left(t_{1}\right)\left|\frac{1}{u^{3}\left(t_{2}\right)} \Phi_{3} y\left(t_{2}\right)-\frac{1}{u^{3}\left(t_{1}\right)} \Phi_{3} y\left(t_{1}\right)\right|
\end{aligned}
$$

and hence $\Phi_{3}\left(Y_{3}\right)$ is equicontinuous at every point of $[T, \infty)$. Since $\Phi_{3}\left(Y_{3}\right)$ is clearly uniformly bounded on $[T, \infty)$, it follow from Ascoli-Arzèl theorem that $\Phi_{3}\left(Y_{3}\right)$ is relatively compact.

Therefore, by the Schauder-Tychonoff fixed point theorem, there exists a fixed element $y \in Y_{3}$ of Φ_{3}, i.e. $\Phi_{3} y=y$, which satisfies the integral equation

$$
y(t)=c v^{3}(t)+u^{3}(t) \int_{T}^{t} I_{2}(t, s ; u) \frac{1}{u^{2}(s)} \int_{s}^{\infty} u^{3}(r) f(r, y(r)) d r d s
$$

A simple computation shows that this fixed point is a solution of A of type P_{3} [max]. The proof of Theorem 1 is complete.
Theorem 2. The equation Aas a positive solution of type $P_{3}[\mathrm{~min}]$ if

$$
\begin{equation*}
\int_{a}^{\infty} u^{2}(t) v(t) f\left(t, c u(t) v^{2}(t)\right) d t<\infty \tag{5}
\end{equation*}
$$

for some $c>0$.
Proof. Suppose that (5) holds. Choose $T \geq a$ so that

$$
\begin{equation*}
\int_{T}^{\infty} u^{2}(t) v(t) f\left(t, c u(t) v^{2}(t)\right) d t<c \tag{6}
\end{equation*}
$$

Consider the set Y_{2} functions $y \in C[T, \infty)$ and mapping $\Psi_{3}: Y_{3} \rightarrow C[T, \infty)$ defined by

$$
Y_{2}=\left\{y \in C[T, \infty): c u(t) v^{2}(t) \leq y(t) \leq 2 c u(t) v^{2}(t), t \geq T\right\}
$$

and

$$
\begin{aligned}
\Psi_{3} y(t)= & 2 c u(t) v^{2}(t)-u^{3}(t) e \int_{T}^{t} I_{1}(t, s ; u) \frac{1}{u^{2}(s)} \\
& \times \int_{s}^{\infty} I_{1}(r, s ; u) u^{3}(r) f(r, y(r)) d r d s
\end{aligned}
$$

That $\Psi_{3}\left(Y_{2}\right) \subset Y_{2}$ is an immediate consequence of (6). Since the continuity of Ψ_{3} and the relative compactness of $\Psi_{3}\left(Y_{2}\right)$ can be proved as in the proof of Theorem 1 there exists an element $y \in Y_{2}$ such that $\Psi_{3} y=y$, which satisfies

$$
\begin{aligned}
y(t)= & 2 c u(t) v^{2}(t)-u^{3}(t) \int_{T}^{t} I_{1}(t, s ; u) \frac{1}{u^{2}(s)} \\
& \times \int_{s}^{\infty} I_{1}(r, s ; u) u^{3}(r) f(r, y(r)) d r d s
\end{aligned}
$$

for $t \geq T$. It is easy to verify that this fixed point is a solution of degree 3 of (A) such that $\lim _{t \rightarrow \infty} L_{2} y(t)=c_{2}$ exists and is finite and nonzero. This completes the proof.

Theorem 3. The equation (A) has a positive solution of type $P_{1}[\max]$ if

$$
\begin{equation*}
\int_{a}^{\infty} u(t) v^{2}(t) f\left(t, c u^{2}(t) v(t)\right) d t<\infty \tag{7}
\end{equation*}
$$

for some $c>0$.
Proof. Suppose that (7) holds. Take $T \geq a$ so large that

$$
\int_{T}^{\infty} u(t) v^{2}(t) f\left(t, c u^{2}(t) v(t)\right) d t<c
$$

Consider a closed convex subset Y_{1} of $C[T, \infty)$ defined by a

$$
Y_{1}=\left\{y \in C[T, \infty): c u^{2}(t) v(t) \leq y(t) \leq 2 c u^{2}(t) v(t), t \geq T\right\} .
$$

Define the operator $\Phi_{1}: Y_{1} \rightarrow C[T, \infty)$ by the following formula

$$
\Phi_{1} y(t)=c u^{2}(t) v(t)+u^{3}(t) \int_{T}^{t} \frac{1}{u^{2}(s)} \int_{s}^{\infty} I_{2}(r, s ; u) u^{3}(r) f(r, y(r)) d r d s
$$

Again we can show that (i) $\Phi_{1}\left(Y_{1}\right) \subset Y_{1}$, (ii) Φ_{1} is a continuous operator and (iii) $\Phi_{1}\left(Y_{1}\right)$ is relatively compact.

Therefore, Φ_{1} has a fixed point $y \in Y_{1}$, which gives rise to a type $P_{1}[\max]$ solution of (A) since it satisfies

$$
y(t)=c u^{2}(t) v(t)+u^{3}(t) \int_{T}^{t} \frac{1}{u^{2}(s)} \int_{s}^{\infty} I_{2}(r, s ; u) u^{3}(r) f(r, y(r)) d r d s
$$

for $t \geq T$. Note that $\lim _{t \rightarrow \infty} L_{1} y(t)=c$. The proof is thus complete.
Theorem 4. The equation (A) has positive solution of type $P_{1}[\mathrm{~min}]$ if

$$
\begin{equation*}
\int_{a}^{\infty} v^{3}(t) f\left(t, c u^{3}(t)\right) d t<\infty \tag{8}
\end{equation*}
$$

for some $c>0$.
Proof. Suppose now that (8) holds. There exists a constant $T \geq a$ such that

$$
\int_{T}^{\infty} v^{3}(t) f\left(t, c u^{3}(t)\right) d t<c
$$

Define the mapping Ψ_{1} by

$$
\Psi_{1} y(t)=2 c u^{3}(t)-u^{3}(t) \int_{t}^{\infty} I_{3}(s, t ; u) u^{3}(s) f(s, y(s)) d s
$$

Then, it can be verified without difficulty that Ψ_{1} has a fixed element y in the set

$$
Y_{0}=\left\{y \in C[T, \infty): c u^{3}(t) \leq y(t) \leq 2 c u^{3}(t), t \geq T\right\} .
$$

This fixed point gives rise to a required positive solution of A, since it satisfies

$$
y(t)=2 c u^{3}(t)-u^{3}(t) \int_{t}^{\infty} I_{3}(s, t ; u) u^{3}(s) f(s, y(s)) d s
$$

Note that $\lim _{t \rightarrow \infty} L_{0} y(t)=2 c$. This completes the proof.

6. Special case and example

We consider equation (A) with special function $f(t, y)=Q(t) y^{-\lambda}$

$$
\begin{equation*}
L_{4} y(t)+Q(t) y^{-\lambda}=0 \tag{B}
\end{equation*}
$$

where $\lambda>0$ and $Q:[a, \infty) \rightarrow(0, \infty)$ is continuous. The objective of this section is to use above theorems to establish sufficient conditions for equation (B) to have solutions $x_{i}(t), i=1,2,3,4$ defined in some neighborhood of infinity with the same asymptotic behavior as

$$
x_{i}(t)=u^{4-i}(t) v^{i-1}(t), \quad 1 \leq i \leq 4
$$

respectively, as $t \rightarrow \infty$. We write they as corollaries, where the symbol \sim is used to denote the asymptotic equivalence

$$
f(t) \sim g(t) \quad \text { as } \quad t \rightarrow \infty \quad \Leftrightarrow \quad \lim _{t \rightarrow \infty} \frac{f(t)}{g(t)}=1
$$

Corollary 1. A sufficient condition for (B) to have a positive solution $y_{4}(t)$ which satisfies

$$
y_{4}(t) \sim m v^{3}(t)
$$

for some $m>0$ is that

$$
\int_{a}^{\infty} u^{3}(t) v^{-3 \lambda}(t) Q(t) d t<\infty
$$

Corollary 2. A sufficient condition for (B) to have a positive solution $y_{3}(t)$ which satisfies

$$
y_{3}(t) \sim m u(t) v^{2}(t)
$$

for some $m>0$ is that

$$
\int_{a}^{\infty} u^{2-\lambda}(t) v^{1-2 \lambda}(t) Q(t) d t<\infty
$$

Corollary 3. A sufficient condition for (B) to have a positive solution $y_{2}(t)$ which satisfies

$$
y_{2}(t) \sim m u^{2}(t) v(t)
$$

for some $m>0$ is that

$$
\int_{a}^{\infty} u^{1-2 \lambda}(t) v^{2-\lambda}(t) Q(t) d t<\infty
$$

Corollary 4. A sufficient condition for (B) to have a positive solution $y_{1}(t)$ which satisfies

$$
y_{1}(t) \sim 2 m u^{3}(t)
$$

for some $m>0$ is that

$$
\int_{a}^{\infty} u^{-3 \lambda}(t) v^{3}(t) Q(t) d t<\infty
$$

We present here an example which illustrates theorems proved above and the corollaries.

Example. Consider the nonoscillatory linear differential equation of the second order

$$
x^{\prime \prime}+\frac{1}{4 t^{2}} x=0, \quad t \geq 1
$$

We know, that this equation has principal solution

$$
u(t)=t^{\frac{1}{2}}
$$

and nonprincipal solution

$$
v(t)=t^{\frac{1}{2}} \ln t
$$

and that the iterated equation

$$
x^{I V}+\frac{5}{2 t^{2}} x^{\prime \prime}-\frac{5}{t^{3}} x^{\prime}+\frac{81}{16 t^{4}} x=0
$$

has independent solutions in the form

$$
x_{1}(t)=t^{\frac{3}{2}}, \quad x_{2}(t)=t^{\frac{3}{2}} \ln t, \quad x_{3}(t)=t^{\frac{3}{2}} \ln ^{2} t, \quad x_{4}(t)=t^{\frac{3}{2}} \ln ^{3} t
$$

Then equation

$$
y^{I V}+\frac{5}{2 t^{2}} y^{\prime \prime}-\frac{5}{t^{3}} y^{\prime}+\frac{81}{16 t^{4}} y+Q(t) y^{-\lambda}=0, \quad t \geq 1
$$

where $\lambda>0$ and $Q:[1, \infty) \rightarrow(0, \infty)$ is continuous, has positive regular solution
a) $y_{1}(t)$ satisfying $y_{1}(t) \sim m t^{\frac{3}{2}} \quad$ if $\quad \int_{a}^{\infty} t^{-\frac{3}{2}(\lambda-1)}(\ln t)^{3} Q(t) d t<\infty$,
b) $y_{2}(t)$ satisfying $y_{2}(t) \sim m t^{\frac{3}{2}} \ln t \quad$ if $\quad \int_{a}^{\infty} t^{-\frac{3}{2}(\lambda-1)}(\ln t)^{2-\lambda} Q(t) d t<\infty$,
c) $y_{3}(t)$ satisfying $y_{3}(t) \sim m t^{\frac{3}{2}} \ln ^{2} t \quad$ if $\quad \int_{a}^{\infty} t^{-\frac{3}{2}(\lambda-1)}(\ln t)^{1-2 \lambda} Q(t) d t<\infty$,
d) $y_{4}(t)$ satisfying $\quad y_{4}(t) \sim m t^{\frac{3}{2}} \ln ^{3} t \quad$ if $\quad \int_{a}^{\infty} t^{-\frac{3}{2}(\lambda-1)}(\ln t)^{-3 \lambda} Q(t) d t<\infty$ for some $m>0$.

Acknowledgement. The author is grateful to the referee for his useful suggestions.

References

[1] Barret, J. H., Oscillation theory of ordinary linear differential equations, Adv. Math. 3 (1969), 415-509.
[2] Fink, A. M., Kusano, T., Nonoscillation theorems for differential equations with general deviating arguments, Lecture Notes in Math. 1032 (1983), 224-239.
[3] Kusano, T., Swanson, C. A., Asymptotic properties of semilinear elliptic equations, Funkcial. Ekvac. 26 (1983), 115-129.
[4] Kusano, T., Swanson, C. A., Asymptotic theory of singular semilinear elliptic equations, Canad. Math. Bull. 27 (1984), 223-232.
[5] Neuman, F., Oscillatory behavior of iterative linear ordinary differential equations depends on their order, Arch. Math. (Brno) 22 (4) (1986), 187-192.
[6] Pólya, G., On the mean-value theorem corresponding to a given linear homogeneous differential equations, Trans. Amer. Math. Soc. 24 (1922), 312-324.

Department of Mathematics, Comenius University, Mlynská dolina, Bratislava, Slovakia
E-mail: kristina.rostas@fmph.uniba.sk

[^0]: 2010 Mathematics Subject Classification: primary 34C10.
 Key words and phrases: iterated differential equations, maximal and minimal solutions.
 Supported by the VEGA Grant Agency of the Slovak Republic No. 1/0481/08
 Received April 15, 2008, revised August 2010. Editor O. Došlý.

