STRATONOVICH-WEYL CORRESPONDENCE FOR DISCRETE SERIES REPRESENTATIONS

Benjamin Cahen

Abstract

Let $M=G / K$ be a Hermitian symmetric space of the noncompact type and let π be a discrete series representation of G holomorphically induced from a unitary character of K. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple (G, π, M) by a suitable modification of the Berezin calculus on M. We extend the corresponding Berezin transform to a class of functions on M which contains the Berezin symbol of $d \pi(X)$ for X in the Lie algebra \mathfrak{g} of G. This allows us to define and to study the Stratonovich-Weyl symbol of $d \pi(X)$ for $X \in \mathfrak{g}$.

1. Introduction

The notion of Stratonovich-Weyl correspondence was introduced in 35] as a generalization of the classical Weyl correspondence [1]. The systematic study of the Stratonovich-Weyl correspondences began with the work of J. M. Gracia-Bondìa, J. C. Vàrilly and their co-workers (see [22], [19], [17] and [21]).

Definition 1.1 ([21). Let G be a Lie group and π a unitary representation of G on a Hilbert space \mathcal{H}. Let M be a homogeneous G-space and let μ be a (suitably normalized) G-invariant measure on M. Then a Stratonovich-Weyl correspondence for the triple (G, π, M) is an isomorphism W from a vector space of operators on \mathcal{H} to a space of (generalized) functions on M satisfying the following properties:
(1) W maps the identity operator of \mathcal{H} to the constant function 1 ;
(2) the function $W\left(A^{*}\right)$ is the complex-conjugate of $W(A)$;
(3) Covariance: we have $W\left(\pi(g) A \pi(g)^{-1}\right)(x)=W(A)\left(g^{-1} \cdot x\right)$;
(4) Traciality: we have

$$
\int_{M} W(A)(x) W(B)(x) d \mu(x)=\operatorname{Tr}(A B)
$$

[^0]Received September 17, 2009, revised November 2010. Editor J. Slovák.

For example, if G is the $(2 n+1)$-dimensional Heisenberg group H_{n} which acts on $\mathbb{R}^{2 n}$ by translations and π is the Schrödinger representation of H_{n} on $L^{2}\left(\mathbb{R}^{n}\right)$ then the classical Weyl correspondence gives a Stratonovich-Weyl correspondence for the triple $\left(H_{n}, \pi, \mathbb{R}^{2 n}\right)$ 20, 21.

When G is a compact semisimple Lie group, π a unitary irreducible representation of G on a finite dimensional Hilbert space \mathcal{H} and M the coadjoint orbit of G which is associated with π by the Kostant-Kirillov method of orbits [26, a Stratonovich-Weyl correspondence for (G, π, M) was constructed in [19] by a suitable modification of the Berezin calculus on M (see also [12] and [15]).

Let us also mention that, in [17], a Stratonovich-Weyl correspondence for the massive representations of the Poincaré group was constructed. Another examples of Stratonovich-Weyl correspondences can be found in [5] and 6]. A generalization of the notion of Stratonovich-Weyl correspondence was introduced in [9].

In the present paper, we consider a connected semisimple noncompact real Lie group G with finite center. Let K be a maximal compact subgroup of G. We assume that the center of K has positive dimension. Then $M=G / K$ is a Hermitian symmetric space of the noncompact type which is diffeomorphic to a bounded symmetric domain \mathcal{D}. Let π_{χ} be a discrete series representation of G holomorphically induced from a unitary character χ of K. The representation π_{χ} can be realized on a Hilbert space \mathcal{H}_{χ} of holomorphic functions on \mathcal{D}. The domain \mathcal{D} can be quantized by the general method of quantization introduced by Berezin [7], 8]. In [14], we gave explicit formulas for the Berezin symbols of $\pi_{\chi}(g)$ for $g \in G$ and $d \pi_{\chi}(X)$ for X in the Lie algebra \mathfrak{g} of G (see also [13]). The Berezin symbol of $\pi_{\chi}(g)$ plays a central role in the Fourier theory for G [4], 38]. On the other hand, the Berezin symbol of $d \pi_{\chi}(X)$ is related to the coadjoint orbit of G associated with π_{χ} by the Kirillov-Kostant method of orbits (see [14, Proposition 5.5]; also, see [13, Proposition 3.3]). However, for the Fourier theory of G and for physical applications, it is convenient to use Stratonovich-Weyl symbols instead of Berezin symbols 19 .

Berezin quantization on \mathcal{D} gives an isomorphism S_{χ} from the space of Hilbert--Schmidt operators on \mathcal{H}_{χ} (endowed with the Hilbert-Schmidt norm) onto $L^{2}(\mathcal{D}, \mu)$ where μ is a G-invariant measure on \mathcal{D}. Here, we construct a Stratonovich-Weyl correspondence W_{χ} for the triple $\left(G, \pi_{\chi}, \mathcal{D}\right)$ as in the compact case [19. In fact, if we revisit [19] in the light of [3], [2], [30], [18] and [32], then we see that W_{χ} is the isometric part in the polar decomposition of S_{χ}, that is, $W_{\chi}=B_{\chi}^{-1 / 2} S_{\chi}$ where $B_{\chi}=S_{\chi} S_{\chi}^{*}$ is the so-called Berezin transform. Note that Berezin transforms for weighted Bergman spaces on bounded symmetric domains and their spectral decompositions have been intensively studied (see for instance [36], [32], [39] and [18).

Here, in contrast to the compact case, the operator $d \pi_{\chi}(X)$ is generally not of the Hilbert-Schmidt type and then $W_{\chi}\left(d \pi_{\chi}(X)\right)$ is not defined a priori. In this paper, we show how to extend B_{χ} to a class of functions on \mathcal{D} which contains the Berezin symbols $S_{\chi}\left(d \pi_{\chi}(X)\right)$ for $X \in \mathfrak{g}$. This allows us to define $W_{\chi}\left(d \pi_{\chi}(X)\right)$. More precisely, we show that there exists a constant $a_{\chi}>0$ such that $W_{\chi}\left(d \pi_{\chi}(X)\right)=$ $a_{\chi} S_{\chi}\left(d \pi_{\chi}(X)\right)$ for each $X \in \mathfrak{g}$. This result is similar to that obtained in the compact
case, see [15] Proposition 5.2], and it implies that W_{χ} is generally not an adapted Weyl correspondence in the sense of (11].

This paper is organized as follows. In Section 2 we introduce the representation π_{χ}, the Berezin calculus on \mathcal{D} and we review some results from [14. In Section 3) we construct a Stratonovich-Weyl correspondence W_{χ} for $\left(G, \pi_{\chi}, \mathcal{D}\right)$ as mentioned above. In Section 4 we show how to extend the Berezin transform to functions of the form $S_{\chi}\left(d \pi_{\chi}(u)\right)$ where $u \in \mathcal{U}(\mathfrak{g})$. As an application, we extend W_{χ} to the operators $d \pi_{\chi}(X)(X \in \mathfrak{g})$ and we determine the form of $W_{\chi}\left(d \pi_{\chi}(X)\right)$ (Section 5). Finally, in Section 6] we study the case of the holomorphic discrete series of $G=S U(1,1)$.

2. Berezin quantization for discrete series representations

In this section, we first review some well-known facts on Hermitian symmetric spaces of the noncompact type and on holomorphic discrete series representations. Our main references are [23, Chapter VIII], [27, Chapter 6], [29, Chapter XII] and [34, Chapter II].

Let G be a connected semisimple noncompact real Lie group with finite center and let K be a maximal compact subgroup of G. We assume that the center of the Lie algebra of K is non trival. Then the homogeneous space G / K is a Hermitian symmetric space of the noncompact type.

Let \mathfrak{g} and \mathfrak{k} be the Lie algebras of G and K, respectively. Let \mathfrak{g}^{c} and \mathfrak{k}^{c} be the complexifications of \mathfrak{g} and \mathfrak{k} and G^{c}, K^{c} the corresponding complex Lie groups containing G and K, respectively. We denote by β the Killing form of \mathfrak{g}^{c}, that is, $\beta(X, Y)=\operatorname{Tr}(\operatorname{ad} X$ ad $Y)$ for $X, Y \in \mathfrak{g}^{c}$. Let \mathfrak{p} be the ortho-complement of \mathfrak{k} in \mathfrak{g} with respect to β. Then $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of \mathfrak{g}.

We fix a Cartan subalgebra \mathfrak{h} of \mathfrak{k}. Then \mathfrak{h} is also a Cartan subalgebra of \mathfrak{g}. We denote by \mathfrak{h}^{c} the complexification of \mathfrak{h}. Let H the connected subgroup of K with Lie algebra \mathfrak{h}. Let Δ be the root system of \mathfrak{g}^{c} relative to \mathfrak{h}^{c} and let $\mathfrak{g}^{c}=\mathfrak{h}^{c} \oplus \sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$ be the root space decomposition of \mathfrak{g}^{c}. Then we have the direct decompositions $\mathfrak{k}^{c}=\mathfrak{h}^{c} \oplus \sum_{\alpha \in \Delta_{c}} \mathfrak{g}_{\alpha}$ and $\mathfrak{p}^{c}=\sum_{\alpha \in \Delta_{n}} \mathfrak{g}_{\alpha}$ where \mathfrak{p}^{c} denotes the complexification of \mathfrak{p} and Δ_{c} (resp. Δ_{n}) denotes the set of compact (resp. noncompact) roots. We choose an ordering on Δ as in [23, p. 384], and we denote by $\Delta^{+}, \Delta_{c}^{+}$and Δ_{n}^{+}the corresponding sets of positive roots, positive compact roots and positive noncompact roots, respectively. We set $\mathfrak{p}^{+}=\sum_{\alpha \in \Delta_{n}^{+}} \mathfrak{g}_{\alpha}$ and $\mathfrak{p}^{-}=\sum_{\alpha \in \Delta_{n}^{+}} \mathfrak{g}_{-\alpha}$. Then we have $\left[\mathfrak{k}^{c}, \mathfrak{p}^{ \pm}\right] \subset \mathfrak{p}^{ \pm}$and \mathfrak{p}^{+}and \mathfrak{p}^{-}are abelian subspaces [23, Proposition 7.2.]. Since $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$, we also have $\left[\mathfrak{p}^{+}, \mathfrak{p}^{-}\right] \subset \mathfrak{k}^{c}$. We denote by P^{+}and P^{-}be the analytic subgroups of G^{c} with Lie algebras \mathfrak{p}^{+}and \mathfrak{p}^{-}, respectively.

For each $\mu \in\left(\mathfrak{h}^{c}\right)^{*}$, we denote by H_{μ} the element of \mathfrak{h}^{c} satisfying $\beta\left(H, H_{\mu}\right)=$ $\mu(H)$ for all $H \in \mathfrak{h}^{c}$. Note that if μ is real-valued on $i \mathfrak{h}$ then $i H_{\mu} \in \mathfrak{g}$. For $\mu, \nu \in\left(\mathfrak{h}^{c}\right)^{*}$, we set $(\mu, \nu):=\beta\left(H_{\mu}, H_{\nu}\right)$.

Let θ denotes conjugation over the real form \mathfrak{g} of \mathfrak{g}^{c}. For $X \in \mathfrak{g}^{c}$, we set $X^{*}=-\theta(X)$. We denote by $g \rightarrow g^{*}$ the involutive anti-automorphism of G^{c} which is obtained by exponentiating $X \rightarrow X^{*}$ to G^{c}. Recall that the multiplication map $(z, k, y) \rightarrow z k y$ is a diffeomorphism from $P^{+} \times K^{c} \times P^{-}$onto an open submanifold of G^{c} containing G [23, Lemma 7.9]. Following [29], we introduce the projections
$\zeta: P^{+} K^{c} P^{-} \rightarrow P^{+}, \kappa: P^{+} K^{c} P^{-} \rightarrow K^{c}$ and $\eta: P^{+} K^{c} P^{-} \rightarrow P^{-}$. Then the map $g K \rightarrow \log \zeta(g)$ from G / K to \mathfrak{p}^{+}induces a diffeomorphism from G / K onto a bounded domain $\mathcal{D} \subset \mathfrak{p}^{+}$[23] p. 392]. The natural action of G on G / K corresponds to the action of G on \mathcal{D} given by $g \cdot Z=\log \zeta(g \exp Z)$. The G-invariant measure on \mathcal{D} is $d \mu(Z)=\chi_{0}\left(\kappa\left(\exp Z^{*} \exp Z\right)\right) d \mu_{L}(Z)$ where χ_{0} is the character on K^{c} defined by $\chi_{0}(k)=\operatorname{Det}_{\mathfrak{p}^{+}}(\operatorname{Ad} k)$ and $d \mu_{L}(Z)$ is a Lebesgue measure on \mathcal{D} [29]. To simplify the notation, we set $k(Z):=\kappa\left(\exp Z^{*} \exp Z\right)$ for $Z \in \mathcal{D}$.

We introduce the holomorphic discrete series representations of scalar type of G as follows. Let χ be a unitary character of K. We also denote by χ the extension of χ to K^{c}. Let us introduce the Hilbert space \mathcal{H}_{χ} of holomorphic functions on \mathcal{D} such that

$$
\|f\|_{\chi}^{2}:=\int_{\mathcal{D}}|f(Z)|^{2} \chi(k(Z)) c_{\chi} d \mu(Z)<+\infty
$$

where the constant c_{χ} is defined by

$$
c_{\chi}^{-1}=\int_{\mathcal{D}}\left(\chi \cdot \chi_{0}\right)(k(Z)) d \mu_{L}(Z) .
$$

Note that $\chi(k(Z))>0$ for all $Z \in \mathcal{D}$. Indeed, for each $Z \in \mathcal{D}$ there exists $g_{Z} \in G$ such that $g_{Z} \cdot 0=Z$. Writing $g_{Z}=\exp Z k y$ with $k \in K^{c}$ and $y \in P^{-}$, we have $k(Z)=\left(k^{*}\right)^{-1} k^{-1}$ which gives $\chi(k(Z))=\overline{\chi(k)}^{-1} \chi(k)=\left|\chi\left(g_{Z}^{-1} \exp Z\right)\right|^{2}>0$.

Proposition 2.1 ([31], [27]). Let $\lambda:=\left.d \chi\right|_{\mathfrak{h}^{c}}$ and $\delta=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha$. Then \mathcal{H}_{χ} is nonzero if and only if $(\lambda+\delta, \alpha)<0$ for every noncompact positive root α. In that case, \mathcal{H}_{χ} contains all polynomials. Moreover, the action of G on \mathcal{H}_{χ} defined by

$$
\pi_{\chi}(g) f(Z)=\chi\left(\kappa\left(g^{-1} \exp Z\right)\right)^{-1} f\left(g^{-1} \cdot Z\right)
$$

is a unitary representation of G which belongs to the holomorphic discrete series of G.

In the rest of the paper, we assume that χ satisfies the preceding condition. Note that \mathcal{H}_{χ} is a reproducing kernel Hilbert space. More precisely, we have the reproducing property $f(Z)=\left\langle f, e_{Z}\right\rangle_{\chi}$ for each $f \in \mathcal{H}_{\chi}$ and each $Z \in \mathcal{D}$, where the coherent states $e_{Z} \in \mathcal{H}_{\chi}$ are defined by $e_{Z}(W)=\chi\left(\kappa\left(\exp Z^{*} \exp W\right)\right)^{-1}$ (see [29], Chapter XII for instance). Here $\langle\cdot, \cdot\rangle_{\chi}$ denotes the inner product on \mathcal{H}_{χ}.

Now we introduce the Berezin calculus on \mathcal{D} as follows. Consider an operator (not necessarily bounded) A on \mathcal{H}_{χ} whose domain contains e_{Z} for each $Z \in \mathcal{D}$. The Berezin (covariant) symbol of A is the function defined on \mathcal{D} by

$$
S_{\chi}(A)(Z)=\frac{\left\langle A e_{Z}, e_{Z}\right\rangle_{\chi}}{\left\langle e_{Z}, e_{Z}\right\rangle_{\chi}}
$$

From the equality

$$
\begin{equation*}
\pi_{\chi}(g) e_{Z}=\overline{\chi(\kappa(g \exp Z))}^{-1} e_{g \cdot Z} \tag{2.1}
\end{equation*}
$$

for $g \in G$ and $Z \in \mathcal{D}$ (see [14, Proposition 2.2]), we deduce that, for each $Z \in \mathcal{D}$, e_{Z} is a smooth vector for π_{χ} and hence the Berezin symbol of $d \pi_{\chi}(X)(X \in \mathfrak{g})$ is well-defined.

Also, note that if A is an operator on \mathcal{H}_{χ} whose domain contains the coherent states $e_{Z}(Z \in \mathcal{D})$ then, for each $g \in G$, the domain of $\pi_{\chi}\left(g^{-1}\right) A \pi_{\chi}(g)$ also contains e_{Z} for each $Z \in \mathcal{D}$ and we have

$$
\begin{equation*}
S_{\chi}\left(\pi_{\chi}\left(g^{-1}\right) A \pi_{\chi}(g)\right)(Z)=S(A)(g \cdot Z) \tag{2.2}
\end{equation*}
$$

for each $g \in G$ and $Z \in \mathcal{D}$.
In [14], we gave explicit expressions for the derived representation $d \pi_{\chi}$, for the Berezin symbols of $\pi_{\chi}(g)$ and $d \pi_{\chi}(X)$. In the rest of this section, we recall some results from [14].

If L is a Lie group and X is an element of the Lie algebra of L then we denote by X^{+}the right invariant vector field on L generated by X, that is, $X^{+}(h)=\left.\frac{d}{d t}(\exp t X) h\right|_{t=0}$ for $h \in L$.

Let $p_{\mathfrak{p}^{+}}, p_{\mathfrak{k}^{c}}$ and $p_{\mathfrak{p}^{-}}$be the projections of \mathfrak{g}^{c} onto $\mathfrak{p}^{+}, \mathfrak{k}^{c}$ and \mathfrak{p}^{-}associated with the direct decomposition $\mathfrak{g}^{c}=\mathfrak{p}^{+} \oplus \mathfrak{k}^{c} \oplus \mathfrak{p}^{-}$. By differentiating the multiplication map from $P^{+} \times K^{c} \times P^{-}$onto $P^{+} K^{c} P^{-}$, we can easily prove the following result.

Lemma 2.1 ([14]). Let $X \in \mathfrak{g}^{c}$ and $g=z k y$ where $z \in P^{+}, k \in K^{c}$ and $y \in P^{-}$. We have
(1) $d \zeta_{g}\left(X^{+}(g)\right)=\left(\operatorname{Ad}(z) p_{\mathfrak{p}^{+}}\left(\operatorname{Ad}\left(z^{-1}\right) X\right)\right)^{+}(z)$.
(2) $d \kappa_{g}\left(X^{+}(g)\right)=\left(p_{\mathfrak{k}^{c}}\left(\operatorname{Ad}\left(z^{-1}\right) X\right)\right)^{+}(k)$.
(3) $d \eta_{g}\left(X^{+}(g)\right)=\left(\operatorname{Ad}\left(k^{-1}\right) p_{\mathfrak{p}^{-}}\left(\operatorname{Ad}\left(z^{-1}\right) X\right)\right)^{+}(y)$.

From this lemma, we deduce the following propositions (see [14] and also [29, Proposition XII.2.1]).

Proposition 2.2. For $X \in \mathfrak{g}^{c}$ and $f \in \mathcal{H}_{\chi}$, we have

$$
d \pi_{\chi}(X) f(Z)=d \chi\left(p_{\mathfrak{k}^{c}}\left(\operatorname{Ad}\left((\exp Z)^{-1}\right) X\right)\right) f(Z)-(d f)_{Z}\left(p_{\mathfrak{p}^{+}}\left(e^{-\operatorname{ad} Z} X\right)\right) .
$$

In particular, we have
(1) If $X \in \mathfrak{p}^{+}$then $d \pi_{\chi}(X) f(Z)=-(d f)_{Z}(X)$.
(2) If $X \in \mathfrak{k}^{c}$ then $d \pi_{\chi}(X) f(Z)=d \chi(X) f(Z)+(d f)_{Z}([Z, X])$.
(3) If $X \in \mathfrak{p}^{-}$then $d \pi_{\chi}(X) f(Z)=-d \chi([Z, X]) f(Z)-\frac{1}{2}(d f)_{Z}([Z,[Z, X]])$.

Proposition 2.3.
(1) Let $g \in G$. We have

$$
S_{\chi}\left(\pi_{\chi}(g)\right)(Z)=\chi\left(\kappa\left(\exp Z^{*} g^{-1} \exp Z\right)^{-1} \kappa\left(\exp Z^{*} \exp Z\right)\right)
$$

(2) Let $X \in \mathfrak{g}^{c}$. We have

$$
S_{\chi}\left(d \pi_{\chi}(X)\right)(Z)=d \chi\left(p_{\mathfrak{k} c}\left(\operatorname{Ad}\left(\zeta\left(\exp Z^{*} \exp Z\right)^{-1} \exp Z^{*}\right) X\right)\right.
$$

In particular, for $X \in \mathfrak{k}^{c}$, we have

$$
S_{\chi}\left(d \pi_{\chi}(X)\right)(Z)=d \chi\left(X+\left[\log \eta\left(\left(\exp Z^{*} \exp Z\right),[X, Z]\right]\right)\right.
$$

(3) We can write

$$
S\left(d \pi_{\chi}(X)\right)(Z)=i \beta\left(\psi_{\chi}(Z), X\right)
$$

where the map ψ_{χ} defined by

$$
\psi_{\chi}(Z):=\operatorname{Ad}\left(\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right)\right)\left(-i H_{\lambda}\right)
$$

is a diffeomorphism from \mathcal{D} onto the orbit \mathcal{O}_{χ} of $-i H_{\lambda} \in \mathfrak{g}$ for the adjoint action of G.

3. Berezin transform and Stratonovich-Weyl correspondence

We retain the notation from Section 2 Also, we denote by $\mathcal{L}_{2}\left(\mathcal{H}_{\chi}\right)$ the space of the Hilbert-Schmidt operators on \mathcal{H}_{χ} and by μ_{χ} the G-invariant measure on \mathcal{D} defined by $d \mu_{\chi}(Z)=c_{\chi} d \mu_{0}(Z)=c_{\chi} \chi_{0}(k(Z)) d \mu_{L}(Z)$. Then the map S_{χ} is a bounded operator on $\mathcal{L}_{2}\left(\mathcal{H}_{\chi}\right)$ into $L^{2}\left(\mathcal{D}, \mu_{\chi}\right)$ which is one-to-one and has dense range [33], [36]. It is not hard to verify that the adjoint operator $S_{\chi}^{*}: L^{2}\left(\mathcal{D}, \mu_{\chi}\right) \rightarrow \mathcal{L}_{2}\left(\mathcal{H}_{\chi}\right)$ is given by

$$
\begin{equation*}
S_{\chi}^{*} F=\int_{\mathcal{D}} F(Z) P_{Z} d \mu_{\chi}(Z) \tag{3.1}
\end{equation*}
$$

where P_{Z} is the orthogonal projection operator of \mathcal{H}_{χ} on the line generated by e_{Z}. The Berezin transform $B_{\chi}=S_{\chi} S_{\chi}^{*}$ is then the operator on $L^{2}\left(\mathcal{D}, \mu_{\chi}\right)$ given by

$$
\begin{equation*}
B_{\chi} F(Z)=\int_{\mathcal{D}} F(W) \frac{\left|\left\langle e_{Z}, e_{W}\right\rangle\right|_{\chi}^{2}}{\left\langle e_{Z}, e_{Z}\right\rangle_{\chi}\left\langle e_{W}, e_{W}\right\rangle_{\chi}} d \mu_{\chi}(W) \tag{3.2}
\end{equation*}
$$

(see, for instance, [7], [36] [39]). Note that B_{χ} commute with $\rho(g)(g \in G)$ where ρ denotes the left-regular representation of G on $L^{2}\left(\mathcal{D}, \mu_{\chi}\right)$.

Now, we introduce the polar decomposition of $S_{\chi}: S_{\chi}=\left(S_{\chi} S_{\chi}^{*}\right)^{1 / 2} W=B_{\chi}^{1 / 2} W_{\chi}$ where $W_{\chi}:=B_{\chi}^{-1 / 2} S_{\chi}$ is a unitary operator from $\mathcal{L}_{2}\left(\mathcal{H}_{\chi}\right)$ onto $L^{2}\left(\mathcal{D}, \mu_{\chi}\right)$. The following proposition is analogous to Theorem 3 of [19].

Proposition 3.1. The map $W_{\chi}: \mathcal{L}_{2}\left(\mathcal{H}_{\chi}\right) \rightarrow L^{2}\left(\mathcal{D}, \mu_{\chi}\right)$ is a Stratonovich-Weyl correspondence for the triple $\left(G, \pi_{\chi}, \mathcal{D}\right)$.

Proof. We have to verify that the properties (1), (2) and (3) of Definition 1.1 are satisfied. Property (1) follows from the fact that $B_{\chi} 1=1$. Since we have the properties $S_{\chi}\left(A^{*}\right)=\overline{S_{\chi}(A)}$ and $S_{\chi}^{*}(\bar{F})=\left(S_{\chi}^{*} F\right)^{*}$, we see that B_{χ} hence $B_{\chi}^{-1 / 2}$ commute with complex conjugation. This gives Property (2). Finally, Property (3) is a consequence of Equality (2.2).

In the rest of this section, we show that the Stratonovich-Weyl correspondence W_{χ} is related to the operator Q introduced in [32] as a natural generalization of the Weyl transform.

Let $A \in \mathcal{L}_{2}\left(\mathcal{H}_{\chi}\right)$. For $Z \in \mathcal{D}$, we have

$$
\begin{aligned}
A f(Z) & =\left\langle A f, e_{Z}\right\rangle_{\chi}=\left\langle f, A^{*} e_{Z}\right\rangle_{\chi} \\
& =\int_{\mathcal{D}} f(W) \overline{A^{*} e_{Z}(W)}\left\langle e_{W}, e_{W}\right\rangle_{\chi}^{-1} d \mu_{\chi}(W) \\
& =\int_{\mathcal{D}} f(W){\overline{\left\langle A^{*} e_{Z}, e_{W}\right\rangle_{\chi}}\left\langle e_{W}, e_{W}\right\rangle_{\chi}^{-1} d \mu_{\chi}(W)}=\int_{\mathcal{D}} f(W)\left\langle A e_{W}, e_{Z}\right\rangle_{\chi}\left\langle e_{W}, e_{W}\right\rangle_{\chi}^{-1} d \mu_{\chi}(W) .
\end{aligned}
$$

This shows that the kernel of A is the function

$$
\begin{equation*}
k_{A}(Z, W)=\left\langle A e_{W}, e_{Z}\right\rangle_{\chi} \tag{3.3}
\end{equation*}
$$

which is holomorphic in the variable Z and anti-holomorphic in the variable W.
Now, let \mathcal{H}_{χ}^{-}be the Hilbert space conjugate to \mathcal{H}_{χ}, that is, the elements of \mathcal{H}_{χ}^{-}are the functions \bar{f} where $f \in \mathcal{H}_{\chi}$ and the Hilbert norm on \mathcal{H}_{χ}^{-}is defined by $\|\bar{f}\|_{\mathcal{H}_{\chi}^{-}}=\|f\|_{\chi}$. We form the Hilbert space tensor product $\mathcal{H}_{\chi} \otimes \mathcal{H}_{\chi}^{-}$which can be identified with $\mathcal{L}_{2}\left(\mathcal{H}_{\chi}\right)$ endowed with the Hilbert-Schmidt norm by means of the map $\mathcal{K}: A \rightarrow k_{A}$. In [32], the authors introduced the restriction operator $D: \mathcal{H}_{\chi} \otimes \mathcal{H}_{\chi}^{-} \rightarrow L^{2}\left(\mathcal{D}, \mu_{\chi}\right)$

$$
k(Z, W) \rightarrow k(Z, Z)\left\langle e_{Z}, e_{Z}\right\rangle_{\chi}^{-1}
$$

and its polar decomposition $D=|D| Q$. Then, by using (3.3), we see immediately that $S_{\chi}=D \circ \mathcal{K}$. Hence we can conclude that $W_{\chi}=Q \circ \mathcal{K}$.

4. Extension of the Berezin transform

We introduce some additional notation. Let $\left(E_{\alpha}\right)_{\alpha \in \Delta_{n}^{+}}$be a basis for \mathfrak{p}^{+}as in [23, Chapter VIII, Corollary 7.6]. In particular, we have $E_{\alpha} \in \mathfrak{g}_{\alpha}$ and $\left[E_{\alpha}, E_{-\alpha}\right]=$ $\frac{2}{\alpha\left(H_{\alpha}\right)} H_{\alpha}$ for each $\alpha \in \Delta_{n}^{+}$. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be an enumeration of Δ_{n}^{+}. We write $Z=\sum_{k=1}^{n} z_{k} E_{\alpha_{k}}$ for the decomposition of $Z \in \mathfrak{p}^{+}$in the basis $\left(E_{\alpha_{k}}\right)$. If f is a holomorphic function on \mathcal{D}, then we denote by $\partial_{k} f$ the partial derivative of f with respect to z_{k}. We say that a function $f(Z)$ on \mathcal{D} is a polynomial of degree q in the variable Z if $f\left(\sum_{k=1}^{n} z_{k} E_{\alpha_{k}}\right)$ is a polynomial of degree q in the variables $z_{1}, z_{2}, \ldots, z_{n}$. For $Z, W \in \mathcal{D}$, we set $l_{Z}(W):=\log \eta\left(\exp Z^{*} \exp W\right) \in \mathfrak{p}^{-}$. We first establish some technical lemmas.

Lemma 4.1. (1) For $Z, W \in \mathcal{D}$ and $V \in \mathfrak{p}^{+}$, we have

$$
\left.\frac{d}{d t} e_{Z}(W+t V)\right|_{t=0}=-e_{Z}(W) d \chi\left(\left[l_{Z}(W), V\right]\right)
$$

(2) For $Z, W \in \mathcal{D}$ and $V \in \mathfrak{p}^{+}$, we have

$$
\left.\frac{d}{d t} l_{Z}(W+t V)\right|_{t=0}=\frac{1}{2}\left[l_{Z}(W),\left[l_{Z}(W), V\right]\right]
$$

(3) The function $\left(\partial_{k_{1}} \partial_{k_{2}} \ldots \partial_{k_{q}} e_{Z}\right)(W)$ is of the form $e_{Z}(W) P\left(l_{Z}(W)\right)$ where P is a polynomial of degree $\leq q$.
(4) For each $X_{1}, X_{2}, \ldots, X_{q} \in \mathfrak{g}^{c}$, the operator $d \pi_{\chi}\left(X_{1} X_{2} \ldots X_{q}\right)$ is a sum of terms of the form $P(Z) \partial_{k_{1}} \partial_{k_{2}} \ldots \partial_{k_{q}}$ where P is a polynomial in Z of degree $\leq 2 q$.

Proof. By (2) of Lemma 2.1, we have

$$
\begin{aligned}
& \left.\frac{d}{d t} e_{Z}(W+t V)\right|_{t=0}=\left.\frac{d}{d t} \chi^{-1}\left(\kappa\left(\exp Z^{*} \exp W \exp t V\right)\right)\right|_{t=0} \\
& \quad=d \chi_{\kappa\left(\exp Z^{*} \exp W\right)}^{-1} d \kappa_{\exp Z^{*} \exp W}\left(\left(\operatorname{Ad}\left(\exp Z^{*} \exp W\right) V\right)^{+}\left(\exp Z^{*} \exp W\right)\right) \\
& \quad=-\chi^{-1}\left(\kappa\left(\exp Z^{*} \exp W\right)\right) d \chi\left(p_{\mathfrak{k}^{c}}\left(\operatorname{Ad}\left(\kappa\left(\exp Z^{*} \exp W\right) \eta\left(\exp Z^{*} \exp W\right)\right) V\right)\right)
\end{aligned}
$$

Since $d \chi\left(p_{\mathfrak{k}^{c}}(\operatorname{Ad}(k) X)\right)=d \chi\left(\operatorname{Ad}(k) p_{\mathfrak{k}^{c}}(X)\right)=d \chi\left(p_{\mathfrak{k}^{c}}(X)\right)$ for each $k \in K^{c}$ and each $X \in \mathfrak{g}^{c}$, we obtain

$$
\begin{aligned}
\left.\frac{d}{d t} e_{Z}(W+t V)\right|_{t=0} & =-e_{Z}(W) d \chi\left(p_{\mathfrak{k}^{c}}\left(\operatorname{Ad}\left(\eta\left(\exp Z^{*} \exp W\right)\right) V\right)\right) \\
& =-e_{Z}(W) d \chi\left(\left[\log \eta\left(\exp Z^{*} \exp W\right), V\right]\right)
\end{aligned}
$$

Then Statement (1) is proved. Similarly, by using (3) of Lemma 2.1, we have

$$
\begin{aligned}
\frac{d}{d t} & \left.l_{Z}(W+t V)\right|_{t=0} \\
& =d \log _{\eta\left(\exp Z^{*} \exp W\right)} d \eta_{\exp Z^{*} \exp W}\left(\left(\operatorname{Ad}\left(\exp Z^{*}\right) V\right)^{+}\left(\exp Z^{*} \exp W\right)\right) \\
& =\operatorname{Ad} \kappa\left(\exp Z^{*} \exp W\right)^{-1} p_{\mathfrak{p}^{-}}\left(\operatorname{Ad}\left(\zeta\left(\exp Z^{*} \exp W\right)^{-1} \exp Z^{*}\right) V\right) \\
& =p_{\mathfrak{p}^{-}}\left(\operatorname{Ad}\left(\eta\left(\exp Z^{*} \exp W\right)\right) V\right) \\
& =\frac{1}{2}\left[\log \eta\left(\exp Z^{*} \exp W\right),\left[\log \eta\left(\exp Z^{*} \exp W\right), V\right]\right]
\end{aligned}
$$

and hence we have proved (2). Now, by induction on q, we easily obtain (3). Finally, (4) is a consequence of Proposition 2.3 .

The following lemma is an immediate consequence of Lemma 4.1 (see also [16]).
Lemma 4.2. Each holomorphic differential operator on \mathcal{D} with polynomial coefficients has Berezin symbol. In particular, for each $X_{1}, X_{2}, \ldots, X_{q} \in \mathfrak{g}^{c}$,
$S_{\chi}\left(d \pi_{\chi}\left(X_{1} X_{2} \ldots X_{q}\right)\right)$ is well-defined and is a sum of terms of the form $P(Z) Q\left(l_{Z}(Z)\right)$ where P is a polynomial of degree $\leq 2 q$ and Q is a polynomial of degree $\leq q$.

Lemma 4.3. Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{r}$ be a subset of Δ_{n}^{+}consisting of strongly orthogonal roots.
(1) Let $\tilde{\chi}$ be a character (non necessarily unitary) on K and $\tilde{\lambda}=\left.d \tilde{\chi}\right|_{\mathfrak{h}}{ }^{c}$. Then $\left(\tilde{\lambda}, \gamma_{k}\right)$ does not depend on $k=1,2, \ldots, r$.
(2) In particular, let $\lambda_{0}:=\left.d \chi_{0}\right|_{\mathfrak{h}^{c}}$. Then $q_{\chi}=-2 \frac{\left(\lambda_{0}+\lambda, \gamma_{k}\right)}{\left(\gamma_{k}, \gamma_{k}\right)}$ does not depend on $k=1,2, \ldots, r$.

Proof. (1) By [28, Lemma 2.1], each γ_{r} is of the form $\gamma_{r}=\mu_{1}+\sum_{i \geq 2} n_{i} \mu_{i}$ where μ_{1} is the unique noncompact simple root and the $\mu_{i}(i \geq 2)$ are the compact simple roots. Since $\left(\tilde{\lambda}, \mu_{i}\right)=0$ for each $i \geq 2$, we have $\left(\tilde{\lambda}, \gamma_{k}\right)=\left(\tilde{\lambda}, \mu_{1}\right)$ for each k.
(2) By [28, Theorem 2], $\left(\gamma_{k}, \gamma_{k}\right)$ does not depend on k. The result then follows from (1).

We are now in position to extend the Berezin transform to a class of Berezin symbols of unbounded operators. Note that, by fixing an Iwasawa decomposition $G=N A K$, we get a smooth section $G / K \rightarrow N A \subset G$ and then we obtain a smooth section $\mathcal{D} \rightarrow G, Z \rightarrow g_{Z}$.

Proposition 4.1. If $q \leq q_{\chi}$ then for each $X_{1}, X_{2}, \ldots, X_{q} \in \mathfrak{g}^{c}$, the Berezin transform of $S_{\chi}\left(d \pi_{\chi}\left(X_{1} X_{2} \ldots X_{q}\right)\right)$ is well-defined.

Proof. First, note that if we change variables $W \rightarrow g_{Z} \cdot W$ in the integral (3.2) then by 2.1 we obtain

$$
\begin{align*}
\left(B_{\chi} F\right)(Z) & =\int_{\mathcal{D}} F\left(g_{Z} \cdot W\right)\left\langle e_{W}, e_{W}\right\rangle_{\chi}^{-1} d \mu_{\chi}(W) \\
& =\int_{\mathcal{D}} F\left(g_{Z} \cdot W\right) c_{\chi}\left(\chi \cdot \chi_{0}\right)(k(W)) d \mu_{L}(W) \tag{4.1}
\end{align*}
$$

In particular, if $F(W)=S_{\chi}\left(d \pi_{\chi}\left(X_{1} X_{2} \ldots X_{q}\right)\right)(W)$ then, by 2.2), we have $F\left(g_{Z}\right.$. $W)=S_{\chi}\left(d \pi_{\chi}\left(Y_{1} Y_{2} \ldots Y_{q}\right)\right)(W)$ where $Y_{k}:=\operatorname{Ad}\left(g_{Z}^{-1}\right) X_{k}$ for $k=1,2, \ldots, q$.

We will show that, under the condition that $q \leq q_{\chi}$, the function

$$
W \rightarrow S_{\chi}\left(d \pi_{\chi}\left(Y_{1} Y_{2} \ldots Y_{q}\right)\right)(W)\left(\chi \cdot \chi_{0}\right)(k(W))
$$

is bounded hence integrable on \mathcal{D}. Recall that $S_{\chi}\left(d \pi_{\chi}\left(Y_{1} Y_{2} \ldots Y_{q}\right)\right)(W)$ is the sum of terms of the form $P(W) Q\left(\log \eta\left(\exp W^{*} \exp W\right)\right)$ where P is a polynomial and Q is a polynomial of degree $\leq q$.

Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{r}$ as in Lemma 4.3. Then each $W \in \mathcal{D}$ can be written as $W=\operatorname{Ad}(k)\left(\sum_{k=1}^{r} t_{s} E_{\gamma_{s}}\right)$ for $k \in K$ and $-1<t_{s}<1,1 \leq s \leq r$ (see for instance [23, Chapter VIII]). From matrix calculations in the group $S L(2, \mathbb{C})$ and strongly orthogonality of the roots γ_{s}, we have

$$
\begin{equation*}
\log \eta\left(\exp W^{*} \exp W\right)=\operatorname{Ad}(k)\left(-\sum_{s=1}^{r} \frac{t_{s}}{1-t_{s}^{2}} E_{-\gamma_{s}}\right) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
k(W)=\kappa\left(\exp W^{*} \exp W\right)=k \exp \left(\sum_{s=1}^{r} \log \frac{1}{1-t_{s}^{2}}\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right) k^{-1} \tag{4.3}
\end{equation*}
$$

Then

$$
\left(\chi \cdot \chi_{0}\right)(k(W))=\prod_{s=1}^{r}\left(1-t_{s}^{2}\right)^{-\left(\lambda+\lambda_{0}\right)\left(\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right)}
$$

and, since we have

$$
-\left(\lambda+\lambda_{0}\right)\left(\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right)=-2 \frac{\left(\lambda+\lambda_{0}\right)\left(H_{\gamma_{s}}\right)}{\gamma_{s}\left(H_{\gamma_{s}}\right)}=-2 \frac{\left(\lambda_{0}+\lambda, \gamma_{s}\right)}{\left(\gamma_{s}, \gamma_{s}\right)}=q_{\chi}
$$

we obtain

$$
\begin{equation*}
\left(\chi \cdot \chi_{0}\right)(k(W))=\prod_{s=1}^{r}\left(1-t_{s}^{2}\right)^{q_{\chi}} \tag{4.4}
\end{equation*}
$$

Hence we see that the condition $q \leq q_{\chi}$ guarantees that the functions

$$
W \rightarrow P(W) Q\left(l_{W}(W)\right)\left(\chi \cdot \chi_{0}\right)(k(W))
$$

are bounded on \mathcal{D}. This finishes the proof.

Remarks.

(1) Since we have

$$
\int_{\mathcal{D}}\left(\chi \cdot \chi_{0}\right)(k(W)) d \mu_{L}(W)<+\infty
$$

we see immediately from (4.4) that $q_{\chi} \geq 0$.
(2) By [13, Lemma 5.2], we have $\chi(k(Z)) \leq 1$ for each $Z \in \mathcal{D}$ with equality if and only if $Z=0$. This implies that $-\lambda\left(\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right)>0$ for each $s=1,2, \ldots, r$.
(3) An extension of the Berezin transform to another class of functions on \mathcal{D} is given in [36].
5. Stratonovich-Weyl symbols of derived representation operators

When $q_{\chi} \geq 1$, the Berezin transform of $S_{\chi}\left(d \pi_{\chi}(X)\right)\left(X \in \mathfrak{g}^{c}\right)$ is well-defined by Proposition 4.1. In this section, we determine the form of $B_{\chi} S_{\chi}\left(d \pi_{\chi}(X)\right)$ and we show how to extend the Stratonovich-Weyl correspondence to the operators $d \pi_{\chi}(X)\left(X \in \mathfrak{g}^{c}\right)$. To this aim, we first study the linear form b_{χ} defined on \mathfrak{g}^{c} by

$$
\begin{equation*}
b_{\chi}(X):=B_{\chi} S_{\chi}\left(d \pi_{\chi}(X)\right)(0)=\int_{\mathcal{D}} S_{\chi}\left(d \pi_{\chi}(X)\right)(Z) \chi(k(Z)) d \mu_{\chi}(Z) \tag{5.1}
\end{equation*}
$$

Proposition 5.1. There exists a real number $a_{\chi} \geq 1$ such that $b_{\chi}(X)=a_{\chi} \lambda\left(p_{\mathfrak{h}^{c}}(X)\right)$ for each $X \in \mathfrak{g}^{c}$. Here $p_{\mathfrak{h}^{c}}$ denotes the projection operator from \mathfrak{g}^{c} onto \mathfrak{h}^{c} associated with the decomposition $\mathfrak{g}^{c}=\mathfrak{h}^{c} \oplus \sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$.
Proof. For each $k \in K$ and each $Z \in \mathcal{D}$, we have $\pi_{\chi}(k) e_{Z}=\chi(k) e_{k \cdot Z}$ and then $\left\langle e_{k \cdot Z}, e_{k \cdot Z}\right\rangle_{\chi}=\left\langle e_{Z}, e_{Z}\right\rangle_{\chi}$. Thus, by changing variables $Z \rightarrow k^{-1} \cdot Z$ in the integral (5.1) and by using the fact that

$$
S_{\chi}\left(d \pi_{\chi}(X)\right)\left(k^{-1} \cdot Z\right)=S_{\chi}\left(d \pi_{\chi}(\operatorname{Ad}(k) X)\right)(Z)
$$

we get

$$
\begin{equation*}
b_{\chi}(X)=b_{\chi}(\operatorname{Ad}(k) X) \tag{5.2}
\end{equation*}
$$

for each $k \in K$ and each $X \in \mathfrak{g}^{c}$. Specializing to $X=E_{\alpha}(\alpha \in \Delta)$ and $k=\exp Y$ where $Y \in \mathfrak{h}$ and noting that $\operatorname{Ad}(k) E_{\alpha}=e^{\alpha(Y)} E_{\alpha}$, we find that $b_{\chi}\left(E_{\alpha}\right)=0$ for each $\alpha \in \Delta$.

On the other hand, observe that, for each $X \in \mathfrak{g}$,

$$
\overline{b_{\chi}(X)}=B_{\chi} S_{\chi}\left(d \pi_{\chi}\left(X^{*}\right)\right)(0)=b_{\chi}\left(X^{*}\right)=-b_{\chi}(X)
$$

and then $b_{\chi}(X) \in i \mathbb{R}$. Now, introduce the element $H_{b_{\chi}} \in \mathfrak{k}^{c}$ satisfying $b_{\chi}(Y)=$ $\beta\left(Y, H_{b_{\chi}}\right)$ for each $Y \in \mathfrak{k}^{c}$. Then $H_{b_{\chi}} \in i \mathfrak{k}$. By (5.2), we have $\operatorname{Ad}(k) H_{b_{\chi}}=H_{b_{\chi}}$ for each $k \in K$. This implies that $i H_{b_{\chi}}$ lies in the center of \mathfrak{k}. Since the center of \mathfrak{k} is one-dimensional (see for instance [24]) and contains $i H_{\lambda}$, there exists a real number a_{χ} such that $i H_{b_{\chi}}=a_{\chi} i H_{\lambda}$. Thus we have $b_{\chi}=a_{\chi} \lambda$ on \mathfrak{h}^{c}. Hence, we have obtained that $b_{\chi}(X)=a_{\chi} \lambda\left(p_{\mathfrak{h}^{c}}(X)\right)$ for each $X \in \mathfrak{g}^{c}$. It remains to show that $a_{\chi} \geq 1$. To this goal, we consider the function φ_{χ} defined on \mathcal{D} by $\varphi_{\chi}(Z)=S_{\chi}\left(d \pi_{\chi}\left(H_{\lambda}\right)\right)(Z)$. By Proposition 2.3 we have

$$
\varphi_{\chi}(Z)=\lambda\left(H_{\lambda}\right)+\lambda\left(\left[\log \eta\left(\exp Z^{*} \exp Z\right),\left[H_{\lambda}, Z\right]\right]\right)
$$

Moreover, since $i H_{\lambda}$ is central in \mathfrak{k}, we have $\varphi_{\chi}(\operatorname{Ad}(k) Z)=\varphi_{\chi}(Z)$ for each $k \in K$ and $Z \in \mathcal{D}$.

As in the proof of Proposition 4.1 we write each $Z \in \mathcal{D}$ as $Z=\operatorname{Ad}(k)\left(\sum_{s=1}^{r} t_{s} E_{\gamma_{s}}\right)$ with $k \in K$ and $-1<t_{s}<1$ for $s=1,2, \ldots, r$. Then, for each $Z \in \mathcal{D}$, we have

$$
\begin{aligned}
& \varphi_{\chi}(Z)=\lambda\left(H_{\lambda}\right)+\lambda\left(\left[-\sum_{s=1}^{r} \frac{t_{s}}{1-t_{s}^{2}} E_{-\gamma_{s}},\left[H_{\lambda}, \sum_{s=1}^{r} t_{s} E_{\gamma_{s}}\right]\right]\right) \\
& =\lambda\left(H_{\lambda}\right)+2 \sum_{s=1}^{r} \frac{t_{s}^{2}}{1-t_{s}^{2}} \frac{\left(\gamma_{s}, \lambda\right)^{2}}{\left(\gamma_{s}, \gamma_{s}\right)} \geq \lambda\left(H_{\lambda}\right)
\end{aligned}
$$

Thus

$$
a_{\chi} \lambda\left(H_{\lambda}\right)=b_{\chi}\left(H_{\lambda}\right)=\int_{\mathcal{D}} \varphi_{\chi}(Z) \chi(k(Z)) d \mu_{\chi}(Z) \geq \lambda\left(H_{\lambda}\right) .
$$

Hence $a_{\chi} \geq 1$.
Proposition 5.2. With the notation of Proposition 5.1, for each $X \in \mathfrak{g}^{c}$, we have $B_{\chi} S_{\chi}\left(d \pi_{\chi}(X)\right)=a_{\chi} S_{\chi}\left(d \pi_{\chi}(X)\right)$.

Proof. Applying successively Equality (4.1), Proposition 5.1. Proposition 2.3 and Equality 2.2, we have

$$
\begin{aligned}
B_{\chi} S_{\chi}\left(d \pi_{\chi}(X)\right)(Z) & =B_{\chi} S_{\chi}\left(d \pi_{\chi}\left(\operatorname{Ad}\left(g_{Z}^{-1}\right) X\right)\right)(0) \\
& =a_{\chi} \lambda\left(p_{\mathfrak{h}^{c}}\left(\operatorname{Ad}\left(g_{Z}^{-1}\right) X\right)\right)=a_{\chi} S_{\chi}\left(d \pi_{\chi}\left(\operatorname{Ad}\left(g_{Z}^{-1}\right) X\right)\right)(0) \\
& =a_{\chi} S_{\chi}\left(d \pi_{\chi}(X)\right)\left(g_{Z} \cdot 0\right)=a_{\chi} S_{\chi}\left(d \pi_{\chi}(X)\right)(Z)
\end{aligned}
$$

for each $Z \in \mathcal{D}$ and each $X \in \mathfrak{g}^{c}$.
Consequently, we can define $B_{\chi}^{-1 / 2}$ on the space of functions of the form $S_{\chi}\left(d \pi_{\chi}(X)\right)$ and W_{χ} on the space $\left\{d \pi_{\chi}(X): X \in \mathfrak{g}^{c}\right\}$. Moreover, we have $W_{\chi}\left(d \pi_{\chi}(X)\right)=a_{\chi}^{-1 / 2} S_{\chi}\left(d \pi_{\chi}(X)\right)$ for each $X \in \mathfrak{g}^{c}$.

In [14], we showed that S_{χ} is adapted to π_{χ} in the sense that the linear form $X \rightarrow-i S_{\chi}\left(d \pi_{\chi}(X)\right)$ lies in the coadjoint orbit of G associated with π_{χ} by the method of orbits (see also Proposition 2.3). In general, we have $a_{\chi} \neq 1$ (see for example Section (6) and then W_{χ} is not adapted to π_{χ}. However, the following proposition shows that W_{χ} is 'asymptotically adapted'.

Proposition 5.3. We have $\lim _{m \rightarrow+\infty} a_{\chi^{m}}=1$.

Proof. Here we use the same notation as in the proofs of Proposition 4.1 and Proposition 5.1. We have

$$
a_{\chi^{m}}=\frac{1}{(m \lambda, m \lambda)} \int_{\mathcal{D}} \varphi_{\chi^{m}}(Z)\left(\chi^{m} \cdot \chi_{0}\right)(k(Z)) c_{\chi^{m}} d \mu_{L}(Z)
$$

Then

$$
a_{\chi^{m}}-1=\int_{\mathcal{D}} \frac{\varphi_{\chi^{m}}(Z)-(m \lambda, m \lambda)}{(m \lambda, m \lambda)}\left(\chi^{m} \cdot \chi_{0}\right)(k(Z)) c_{\chi^{m}} d \mu_{L}(Z)
$$

Changing variables $Z \rightarrow Z / \sqrt{m}$ in this integral, we get

$$
a_{\chi^{m}}-1=m^{-n} c_{\chi^{m}} \int_{\sqrt{m} \mathcal{D}} I_{m}(Z) d \mu_{L}(Z)
$$

where we have put

$$
I_{m}(Z):=\frac{\varphi_{\chi^{m}}(Z / \sqrt{m})-(m \lambda, m \lambda)}{(m \lambda, m \lambda)}\left(\chi^{m} \cdot \chi_{0}\right)(k(Z / \sqrt{m})) .
$$

By [13, Lemma 5.3], we have $\lim _{m \rightarrow+\infty} m^{-n} c_{\chi^{m}}=\pi^{-n}$. On the other hand, we have

$$
\begin{aligned}
I_{m}(Z)= & \left(\sum_{s=1}^{r} 2 \frac{\left(\gamma_{s}, \lambda\right)^{2}}{(\lambda, \lambda)\left(\gamma_{s}, \gamma_{s}\right)} \frac{\left(t_{s} / \sqrt{m}\right)^{2}}{1-\left(t_{s} / \sqrt{m}\right)^{2}}\right) \\
& \times \prod_{s=1}^{r}\left(1-\left(t_{s} / \sqrt{m}\right)^{2}\right)^{-\left(\lambda_{0}+m \lambda\right)\left(\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right)}
\end{aligned}
$$

where $\left|t_{s}\right|<\sqrt{m}$ for each s and we see that $\lim _{m \rightarrow+\infty} I_{m}(Z)=0$. In order to obtain the desired result, it suffices to verify that the Lebesgue dominated convergence theorem can be applied. This can be done as follows. Recall that we have $-\lambda\left(\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right)>0$ for each $s=1,2, \ldots, r$. Then we fix m_{0} so that we have

$$
-m \lambda\left(\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right)-1 \geq-\frac{m}{2} \lambda\left(\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right)
$$

for each $m \geq m_{0}$ and each $s=1,2, \ldots, r$. Thus for each $m \geq m_{0}$ and each $Z \in \sqrt{m} \mathcal{D}$, we have

$$
\begin{aligned}
I_{m}(Z) & \leq \sum_{s=1}^{r} 2 \frac{\left(\gamma_{s}, \lambda\right)^{2}}{(\lambda, \lambda)\left(\gamma_{s}, \gamma_{s}\right)} \prod_{s=1}^{r}\left(1-\left(t_{s} / \sqrt{m}\right)^{2}\right)^{-\left(\lambda_{0}+m \lambda\right)\left(\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right)-1} \\
& \leq C \prod_{s=1}^{r}\left(1-\left(t_{s} / \sqrt{m}\right)^{2}\right)^{-\frac{m}{2} \lambda\left(\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right)} \\
& \leq C \exp \left(\sum_{s=1}^{r} \frac{1}{2} \lambda\left(\left[E_{\gamma_{s}}, E_{-\gamma_{s}}\right]\right) t_{s}^{2}\right)
\end{aligned}
$$

where $C>0$ is a constant which does not depend on m. Hence we obtain the estimate

$$
I_{m}(Z) \leq C e^{-D|Z|^{2}}
$$

where $D>0$ is a constant and $|\cdot|$ is an Euclidean norm on \mathcal{P}^{+}. This ends the proof.

6. Example

In this section, we consider the case of the holomorphic discrete series of $S U(1,1)$ (see 10). We take

$$
G=S U(1,1)=\left\{\left(\begin{array}{ll}
a & b \\
b & \bar{a}
\end{array}\right):|a|^{2}-|b|^{2}=1, \quad a, b \in \mathbb{C}\right\}
$$

and

$$
K=\left\{\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right), \quad \theta \in \mathbb{R}\right\}
$$

The Lie algebra \mathfrak{g} of G has basis

$$
u_{1}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad u_{2}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad u_{3}=\frac{1}{2}\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)
$$

and its complexification \mathfrak{g}^{c} is $\operatorname{sl}(2, \mathbb{C})$. Then we have $G^{c}=S L(2, \mathbb{C})$ and

$$
K^{c}=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right), \quad a \in \mathbb{C} \backslash(0)\right\}
$$

The conjugation of \mathfrak{g}^{c} with respect to \mathfrak{g} is given by

$$
\theta\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-\bar{a} & \bar{c} \\
\bar{b} & -\bar{d}
\end{array}\right)
$$

and we have $X^{*}=-\theta(X)$ for $X \in \mathfrak{g}^{c}$.
The root system of $\mathfrak{g}^{c}=\operatorname{sl}(2, \mathbb{C})$ relative to \mathfrak{k}^{c} consists in the two noncompact roots α and $-\alpha$ where $\alpha\left(i u_{3}\right)=1$. The corresponding root spaces are

$$
\mathfrak{g}_{\alpha}=\mathbb{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \mathfrak{g}_{-\alpha}=\mathbb{C}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

We say that a root is positive if it is positive on $i u_{3} \in i \mathfrak{h}$. Then α is the positive root and $\mathfrak{p}^{+}=\mathfrak{g}_{\alpha}$ and $\mathfrak{p}^{-}=\mathfrak{g}_{-\alpha}$. The corresponding groups are

$$
P^{+}=\left\{\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right): z \in \mathbb{C}\right\}, \quad P^{-}=\left\{\left(\begin{array}{ll}
1 & 0 \\
z & 1
\end{array}\right): z \in \mathbb{C}\right\} .
$$

In the rest of this section, we identify \mathfrak{p}^{+}to \mathbb{C} by means of the map

$$
z \rightarrow Z=\left(\begin{array}{ll}
0 & z \\
0 & 0
\end{array}\right)
$$

Each element $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{C})$ such that $d \neq 0$ has the following $P^{+} K^{c} P^{-}$-decomposition

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1 & b / d \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 / d & 0 \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
c / d & 1
\end{array}\right)
$$

In particular we have $G \subset P^{+} K^{c} P^{-}$.
The map $g K=\left(\begin{array}{cc}a & b \\ \bar{b} & \bar{a}\end{array}\right) K \in G / K \rightarrow \log \zeta(g)=b / \bar{a}$ is then a diffeomorphism from G / K onto the unit disk $D=\{z \in \mathbb{C}:|z|=1\}$ and we can verify that the
natural action of G on G / K corresponds to the action of G on D by fractional linear transformations defined by

$$
g \cdot z=\frac{a z+b}{\bar{b} z+\bar{a}}, \quad g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), z \in D .
$$

Note that the map

$$
z \rightarrow g_{z}:=\frac{1}{\sqrt{1-z \bar{z}}}\left(\begin{array}{ll}
1 & z \\
\bar{z} & 1
\end{array}\right)
$$

is a section for the action of G on D, that is, we have $g_{z} \cdot 0=z$ for each $z \in D$. One can easily verify that a G-invariant measure on D is $d \mu(z)=(1-z \bar{z})^{-2} d \mu_{L}(z)$ where $d \mu_{L}(z):=d x d y$ denotes the Lebesgue measure on $D(z=x+i y, x, y \in \mathbb{R})$.

Now, we fix an integer m and we consider the unitary character χ_{m} of K defined by

$$
\chi_{m}\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)=e^{-i m \theta}
$$

We denote also by χ_{m} the extension of χ_{m} to K^{c}. We obtain immediately

$$
\chi_{m}\left(\kappa\left(\exp Z^{*} \exp Z\right)\right)=(1-z \bar{z})^{m}
$$

The space $\mathcal{H}_{\chi_{m}}$ is the Hilbert space of holomorphic functions f such that

$$
\begin{equation*}
\|f\|_{m}^{2}:=\int_{D}|f(z)|^{2}(1-z \bar{z})^{m-2} \frac{m-1}{\pi} d x d y<+\infty \tag{6.1}
\end{equation*}
$$

Let $\lambda_{m}=d \chi_{m}$. By Proposition 2.1, $\mathcal{H}_{\chi_{m}}$ is nonzero if and only if the condition

$$
\left(\lambda_{m}+\frac{1}{2} \alpha, \alpha\right)>0
$$

holds. Since $\lambda_{m}=-\frac{m}{2} \alpha$, this condition reads $\frac{1-m}{2}(\alpha, \alpha)<0$ and, as the restriction of β to $i \mathfrak{k}$ is positive definite, it is equivalent to $m \geq 2$.

Also, note that the normalization of the measure in (6.1) is taken so that $\|1\|_{m}=1$.

For each $m \geq 2$, the representation π_{m} of $G=S U(1,1)$ corresponding to m is realized in $\mathcal{H}_{\chi_{m}}$ as

$$
\begin{aligned}
\left(\pi_{m}(g)\right) f(z) & =\chi_{m}^{-1}\left(\kappa\left(g^{-1} \exp Z\right)\right) f\left(g^{-1} \cdot z\right) \\
& =(-\bar{b} z+a)^{-m} f\left(g^{-1} \cdot z\right)
\end{aligned}
$$

for $g=\left(\begin{array}{cc}a & b \\ b & \bar{a}\end{array}\right) \in G, f \in \mathcal{H}_{\chi_{m}}$ and $z \in D$.
One can easily show that the family $f_{p}(z):=\binom{m+p-1}{p}^{1 / 2} z^{p}$ is an orthonormal basis for $\mathcal{H}_{\chi_{m}}$ (see [29] p. 11], for instance). From this, we see that the coherent states

$$
e_{z}(w)=\chi_{m}\left(\kappa\left(\exp Z^{*} \exp W\right)^{-1}\right)=(1-\bar{z} w)^{-m}=\sum_{p \geq 0} \overline{f_{p}(z)} f_{p}(w)
$$

satisfy the reproducing property $\left\langle f, e_{z}^{m}\right\rangle_{m}=f(z)$ for each $f \in \mathcal{H}_{\chi_{m}}$ and each $z \in D$.

Here we obtain the following formula for the Berezin symbol of $\pi_{m}(g)$ for $g \in G$

$$
S_{m}\left(\pi_{m}(g)\right)(z)=\frac{\left(\pi_{m}(g) e_{z}\right)(z)}{e_{z}(z)}=\frac{(1-z \bar{z})^{m}}{(a-\bar{b} z+b \bar{z}-\bar{a} z \bar{z})^{m}}, \quad g=\left(\begin{array}{cc}
a & b \\
\bar{b} & \bar{a}
\end{array}\right)
$$

Moreover, since $d \pi_{m}$ is given by

$$
\begin{aligned}
d \pi_{m}\left(u_{1}\right) f(z) & =\frac{m}{2} i z f(z)+\frac{1}{2} i\left(z^{2}+1\right) f^{\prime}(z) \\
d \pi_{m}\left(u_{2}\right) f(z) & =\frac{m}{2} z f(z)+\frac{1}{2}\left(z^{2}-1\right) f^{\prime}(z) \\
d \pi_{m}\left(u_{3}\right) f(z) & =\frac{m}{2} i f(z)+i z f^{\prime}(z)
\end{aligned}
$$

we get

$$
\begin{aligned}
& S_{m}\left(d \pi_{m}\left(u_{1}\right)\right)(z)=i \frac{m}{2} \frac{z+\bar{z}}{1-z \bar{z}} \\
& S_{m}\left(d \pi_{m}\left(u_{2}\right)\right)(z)=\frac{m}{2} \frac{z-\bar{z}}{1-z \bar{z}} \\
& S_{m}\left(d \pi_{m}\left(u_{3}\right)\right)(z)=i \frac{m}{2} \frac{1+z \bar{z}}{1-z \bar{z}}
\end{aligned}
$$

From this we deduce that $S_{m}\left(d \pi_{m}(X)\right)(z)=i \beta\left(X, \psi_{m}(z)\right)$ where the map ψ_{m} is defined by

$$
\psi_{m}(z):=\frac{m}{8} i\left(\begin{array}{ll}
\frac{1+z \bar{z}}{1-z \bar{z}} & -\frac{2 z}{1-z \bar{z}} \\
\frac{2 \bar{z}}{1-z \bar{z}} & -\frac{1+z \bar{z}}{1-z \bar{z}}
\end{array}\right) .
$$

Note that $\psi_{m}(0)=-i H_{m}$ where H_{m} is the coroot vector of λ_{m} and that $\psi_{m}(z)=\operatorname{Ad}\left(g_{z}\right)\left(-i H_{m}\right)$. Then ψ_{m} is a diffeomorphism from D onto the orbit of $-i H_{m}$ under the adjoint action of G.

Now, we turn to the Berezin transform B_{m}. Here we have

$$
\begin{equation*}
B_{m}(f)(z)=\int_{D} F(w) \frac{|1-\bar{z} w|^{4}}{(1-z \bar{z})^{2}}(1-w \bar{w})^{m-2} \frac{m-1}{\pi} d \mu_{L}(w) \tag{6.2}
\end{equation*}
$$

Let us compute $q_{\chi_{m}}$ (see Section 4). We have

$$
q_{\chi_{m}}=-2 \frac{\left(d \chi_{0}+\lambda_{m}, \alpha\right)}{(\alpha, \alpha)}=-2\left(1-\frac{m}{2}\right)=m-2
$$

and Proposition 4.1 asserts that if $q \leq q_{\chi_{m}}$ then for each $X_{1}, X_{2}, \ldots, X_{q}$ in \mathfrak{g}^{c}, the Berezin transform of $S_{m}\left(d \pi_{m}\left(X_{1} X_{2} \ldots X_{q}\right)\right)$ is well-defined. Here, this can be directly verified as follows. By using the formulas for $d \pi_{m}$ given above, we immediately see that $d \pi_{m}\left(X_{1} X_{2} \ldots X_{q}\right)$ is a linear combination of the differential operators $D_{p, r}:=z^{p}\left(\frac{d}{d z}\right)^{r}$ where $r \leq q$. By differentiating $e_{z}(w)=(1-\bar{z} w)^{-m}$, we get

$$
S_{m}\left(D_{p, r}\right)(w)=m(m+1) \ldots(m+r-1) w^{p} \bar{w}^{r}(1-w \bar{w})^{-r} .
$$

Taking formula $\sqrt{6.2}$ into account, we see that the Berezin transform of $S_{m}\left(D_{p, r}\right)$ is well-defined. Hence the result.

Now, we want to compute the constant $a_{\chi_{m}}$ for $m>2$ (see Section 5). To this aim, we apply the equality $\left(B_{m} F\right)(0)=a_{\chi_{m}} F(0)$ to the function

$$
F(Z):=S_{m}\left(d \pi_{m}\left(i u_{3}\right)\right)(z)=-\frac{m}{2} \frac{1+z \bar{z}}{1-z \bar{z}}
$$

We then obtain $\left(B_{m} F\right)(0)=-m^{2} / 2(m-2)$ and hence we find that $a_{\chi_{m}}=m / m-2$. In particular, we have $\lim _{m \rightarrow+\infty} a_{\chi^{m}}=1$, in accordance with Proposition 5.3

Finally, let us mention that the computation of $a_{\chi_{m}}$ can be performed similarly when $G=S U(p, q), K=S(U(p) \times U(q))$ and χ_{m} is the unitary character of K defined by

$$
\chi_{m}\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)=(\operatorname{Det} A)^{-m}
$$

In that case, by adapting some methods from [25], we find that $a_{\chi_{m}}=m / m-p-q$ for $m>p+q$.

References

[1] Ali, S. T., Englis, M., Quantization methods: a guide for physicists and analysts, Rev. Math. Phys. 17 (4) (2005), 391-490.
[2] Arazy, J., Upmeier, H., Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function spaces, interpolation theory and related topics, Lund, de Gruyter, Berlin, 2002, pp. 151-211.
[3] Arazy, J., Upmeier, H., Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13 (3-4), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165-181.
[4] Arnal, D., Cahen, M., Gutt, S., Exponential and holomorphic discrete series, Bull. Soc. Math. Belg. Sér. B 41 (1989), 207-227.
[5] Arratia, O., Del Olmo, M. A., Moyal quantization on the cylinder, Rep. Math. Phys. 40 (1997), 149-157.
[6] Ballesteros, A., Gadella, M., Del Olmo, M. A., Moyal quantization of $2+1$-dimensional Galilean systems, J. Math. Phys. 33 (1992), 3379-3386.
[7] Berezin, F. A., Quantization, Math. USSR-Izv. 8 (1974), 1109-1165, Russian.
[8] Berezin, F. A., Quantization in complex symmetric domains, Math. USSR-Izv. 9 (1975), 341-379.
[9] Brif, C., Mann, A., Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries, Phys. Rev. A 59 (2) (1999), 971-987.
[10] Cahen, B., Contraction de $S U(1,1)$ vers le groupe de Heisenberg, Mathematical works, Part XV, Luxembourg: Université du Luxembourg, Séminaire de Mathématique, 2004, pp. 19-43.
[11] Cahen, B., Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177-190.
[12] Cahen, B., Berezin quantization on generalized flag manifolds, Math. Scand. 105 (2009), 66-84.
[13] Cahen, B., Contraction of discrete series via Berezin quantization, J. Lie Theory 19 (2009), 291-310.
[14] Cahen, B., Berezin quantization for discrete series, Beiträge Algebra Geom. 51 (2010), 301-311.
[15] Cahen, B., Stratonovich-Weyl correspondence for compact semisimple Lie groups, Rend. Circ. Mat. Palermo (2) 59 (2010), 331-354.
[16] Cahen, M., Gutt, S., Rawnsley, J., Quantization on Kähler manifolds IV, Lett. Math. Phys. 34 (1995), 159-168.
[17] Cariñena, J. F., Gracia-Bondìa, J. M., Vàrilly, J. C., Relativistic quantum kinematics in the Moyal representation, J. Phys. A 23 (1990), 901-933.
[18] Davidson, M., Òlafsson, G., Zhang, G., Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials, J. Funct. Anal. 204 (2003), 157-195.
[19] Figueroa, H., Gracia-Bondìa, J. M., Vàrilly, J. C., Moyal quantization with compact symmetry groups and noncommutative analysis, J. Math. Phys. 31 (1990), 2664-2671.
[20] Folland, B., Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989.
[21] Gracia-Bondìa, J. M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics, vol. 134, Amherst, MA, 1990, Contemp. Math., 1992, pp. 93-114.
[22] Gracia-Bondìa, J. M., Vàrilly, J. C., The Moyal representation for spin, Ann. Physics 190 (1989), 107-148.
[23] Helgason, S., Differential geometry, Lie groups and symmetric spaces, Grad. Stud. Math. 34 (2001).
[24] Herb, R. A., Wolf, J. A., Wave packets for the relative discrete series I. The holomorphic case, J. Funct. Anal. 73 (1987), 1-37.
[25] Hua, L. K., Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963.
[26] Kirillov, A. A., Lectures on the orbit method, Grad. Stud. Math. 64 (2004).
[27] Knapp, A. W., Representation theory of semi-simple groups. An overview based on examples, Princeton Math. Ser. 36 (1986).
[28] Moore, C. C., Compactifications of symmetric spaces II: The Cartan domains, Amer. J. Math. 86 (2) (1964), 358-378.
[29] Neeb, K.-H., Holomorphy and Convexity in Lie Theory, de Gruyter Exp. Math. 28 (2000), xxii +778 pp .
[30] Nomura, T., Berezin transforms and group representations, J. Lie Theory 8 (1998), 433-440.
[31] Oliveira, M. P. De, Some formulas for the canonical Kernel function, Geom. Dedicata 86 (2001), 227-247.
[32] Ørsted, B., Zhang, G., Weyl quantization and tensor products of Fock and Bergman spaces, Indiana Univ. Math. J. 43 (2) (1994), 551-583.
[33] Peetre, J., Zhang, G., A weighted Plancherel formula III. The case of a hyperbolic matrix ball, Collect. Math. 43 (1992), 273-301.
[34] Satake, I., Algebraic structures of symmetric domains, Iwanami Sho-ten, Tokyo and Princeton Univ. Press, 1971.
[35] Stratonovich, R. L., On distributions in representation space, Soviet Physics JETP 4 (1957), 891-898.
[36] Unterberger, A., Upmeier, H., Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (3) (1994), 563-597.
[37] Varadarajan, V. S., Lie groups, Lie algebras and their representations, Grad. Texts in Math. 102 (1984), xiii+430 pp.
[38] Wildberger, N. J., On the Fourier transform of a compact semisimple Lie group, J. Austral. Math. Soc. Ser. A 56 (1994), 64-116.
[39] Zhang, G., Berezin transform on compact Hermitian symmetric spaces, Manuscripta Math. 97 (1998), 371-388.

Université de Metz, UFR-MIM,
DÉpartement de mathématiques,
LMMAS, ISGMP-BÂt. A
Ile du Saulcy 57045, Metz cedex 01, France
E-mail: cahen@univ-metz.fr

[^0]: 2010 Mathematics Subject Classification: primary 22E46; secondary 81S10, 46E22, 32M15.
 Key words and phrases: Stratonovich-Weyl correspondence, Berezin quantization, Berezin transform, semisimple Lie group, coadjoint orbits, unitary representation, Hermitian symmetric space of the noncompact type, discrete series representation, reproducing kernel Hilbert space, coherent states.

