THE FIRST EIGENVALUE OF SPACELIKE SUBMANIFOLDS IN INDEFINITE SPACE FORM R_n^{n+p}

YINGBO HAN AND SHUXIANG FENG

ABSTRACT. In this paper, we prove that the first eigenvalue of a complete spacelike submanifold in R_p^{n+p} with the bounded Gauss map must be zero.

1. INTRODUCTION

Let M^n be a complete noncompact Riemannian manifold and $\Omega \subset M^n$ be a domain with compact closure and nonempty boundary $\partial\Omega$. The Dirichlet eigenvalue $\lambda_1(\Omega)$ of Ω is defined by

$$\lambda_1(\Omega) = \inf\left(\frac{\int_{\Omega} |\nabla f|^2 dM}{\int_M f^2 dM} \colon f \in L^2_{1,0}(\Omega) \ \{0\}\right).$$

where dM is the volume element on M^n and $L^2_{1,0}(\Omega)$ the completion of C^∞_0 with respect to the norm

$$\|\varphi\|_{\Omega}^2 = \int_M \varphi^2 dM + \int_M |\nabla \varphi|^2 \, dM \, .$$

If $\Omega_1 \subset \Omega_2$ are bounded domains, then $\lambda_1(\Omega_1) \geq \lambda_1(\Omega_2) \geq 0$. Thus one may define the first Dirichlet eigenvalue of M^n as the following limit

$$\lambda_1(M) = \lim_{r \to \infty} \lambda_1(B(p, r)) \ge 0,$$

where B(p,r) is the geodesic ball of M^n with radius r centered at p. It is clear that the definition of $\lambda_1(M)$ does not depend on the center point p. It is interesting to ask that for what geometries a noncompact manifold M^n has zero first eigenvalue. Cheng and Yau [1] showed that $\lambda_1(M) = 0$ if M^n has polynomial volume growth.

In [5], B. Wu proved the following result.

Theorem A. Let M^n be a complete spacelike hypersurface in R_1^{n+1} whose Gauss map is bounded, then $\lambda_1(M) = 0$.

In this note, we discover that Wu's result still holds for higher codimensional complete spacelike submanifolds in R_p^{n+p} . In fact, we prove

²⁰¹⁰ Mathematics Subject Classification: primary 53C42; secondary 53B30.

Key words and phrases: spacelike submanifolds, the first eigenvalue.

The first author is supported by NSFC grant No. 10971029 and NSFC-TianYuan Fund. No. 11026062.

Received September 17, 2010. Editor O. Kowalski.

Theorem 3.1. Let M^n be a complete spacelike submanifold in \mathbb{R}_p^{n+p} whose Gauss map is bounded, then $\lambda_1(M) = 0$.

2. The geometry of pseudo-Grassmannian

In this section we review some basic properties about the geometry of pseudo--Grassmannian. For details one referred to see [6, 3].

Let R_p^{n+p} be the (n + p)-dimensional pseudo-Euclidean space with index p, where, for simplicity, we assume that $n \ge p$. The case n < p can be treated similarly. We choose a pseudo-Euclidean frame field $\{e_1, \ldots, e_{n+p}\}$ such that the pseudo-Euclidean metric of R_p^{n+p} is given by $ds^2 = \sum_i (\omega_i)^2 - \sum_{\alpha} \omega_{\alpha} =$ $\sum_A \varepsilon_A (\omega_A)^2$, where $\{\omega_1, \ldots, \omega_{n=p}\}$ is the dual frame field of $\{e_1, \ldots, e_{n+p}\}, \varepsilon_i = 1$ and $\varepsilon_{\alpha} = -1$. Here and in the following we shall use the following convention on the ranges of indices:

 $1 \leq i, j, \dots \leq n; \quad n+1 \leq \alpha, \beta, \dots \leq n+p; \quad 1 \leq A, B, \dots \leq n+p.$

The structure equations of R_n^{n+p} are given by

$$\begin{split} de_A &= -\sum_B \varepsilon_A \omega_{AB} e_B \,, \\ d\omega_A &= -\sum_B \omega_{AB} \wedge \omega_B \,, \quad \omega_{AB} + \omega_{BA} = 0 \,, \\ d\omega_{AB} &= -\sum_C \varepsilon_C \omega_{AC} \wedge \omega_{CB} \,. \end{split}$$

Let $G_{n,p}^p$ be the pseudo-Grassmannian of all spacelike *n*-subspace in R_p^{n+p} , and $\widetilde{G_{n,p}^p}$ be the pseudo-Grassmannian of all timelike *p*-subspace in R_p^{n+p} . They are specific Cartan-Hadamard manifolds, and the canonical Riemannian metric on $G_{n,p}^p$ and $\widetilde{G_{n,p}^p}$ is

$$ds_G = ds_{\widetilde{G}} = \sum_{i\alpha} (\omega_{\alpha i})^2$$

Let 0 be the origin of R_p^{n+p} . Let $SO^0(n+p,p)$ denote the identity component of the Lorentzian group O(n+p,p). $SO^0(n+p,p)$ can be viewed as the manifold consisting of all pseudo-Euclidean frames $(0; e_i, e_\alpha)$, and $SO^0(n+p,p)/SO(n) \times$ SO(p) can be viewed as $G_{n,p}^p$ or $\widehat{G_{n,p}^p}$. Any element in $G_{n,p}^p$ can be represented by a unit simple *n*-vector $e_1 \wedge \cdots \wedge e_n$, while any element in $\widehat{G_{n,p}^p}$ can be represented by a unit simple *p*-vector $e_{n+1} \wedge \cdots \wedge e_{n+p}$. They are unique up to an action of $SO(n) \times SO(p)$. The Hodge star * provides an one to one correspondence between $G_{n,p}^p$ and $\widehat{G_{n,p}^p}$. The product \langle,\rangle on $G_{n,p}^p$ for $e_1 \wedge \cdots \wedge e_n, v_1 \wedge \cdots \wedge v_n$ is defined by

$$\langle e_1 \wedge \cdots \wedge e_n, v_1 \wedge \cdots \wedge v_n \rangle = \det(\langle e_i, v_j \rangle).$$

The product on $\widetilde{G_{n,p}^p}$ can be defined similarly.

Now we fix a standard pseudo-Euclidean frame e_i, e_{α} for R_p^{n+p} , and take $g_0 = e_1 \wedge \cdots \wedge e_n \in G_{n,p}^p$, $\widetilde{g}_0 = *g_0 = e_{n+1} \wedge \cdots \wedge e_{n+p} \in \widetilde{G_{n,p}^p}$. Then we can span the

spacelike *n*-subspace g in a neighborhood of g_0 by n spacelike vectors f_i :

$$f_i = e_i + \sum_{\alpha} z_{i\alpha} e_{\alpha} \,,$$

where $(z_{i\alpha})$ are the local coordinates of g. By an action of $SO(n) \times SO(p)$ we can assume that

$$(z_{i\alpha}) = \begin{pmatrix} \mu_1 & & \\ & \ddots & \\ & & \mu_p \\ & 0 & \end{pmatrix}$$

From [3] we know that the normal geodesic g(t) between g_0 and g has local coordinates

$$(z_{i\alpha}) = \begin{pmatrix} \tanh(\lambda_1 t) & & \\ & \ddots & \\ & & \tanh(\lambda_p t) \\ & & 0 \end{pmatrix},$$

for real numbers $\lambda_1 \dots \lambda_p$ such that $\sum_{i=1}^p \lambda_i^2 = 1$. This means that g(t) is spanned by $f_1(t) = e_1 + \tanh(\lambda_1 t)e_{n+1}, \dots, f_p(t) = e_p + \tanh(\lambda_p t)e_{n+p}, f_{p+1} = e_{p+1}, \dots, f_n = e_n$. Consequently, g(t) can also be represented by a unit simple *n*-vector as following:

$$g(t) = \left(\cosh(\lambda_1 t)e_1 + \sinh(\lambda_1 t)e_{n+1}\right) \wedge \dots \wedge \left(\cosh(\lambda_p t)e_1 + \sinh(\lambda_p t)e_{n+p}\right) \wedge e_{p+1} \wedge \dots \wedge e_n.$$

Set $\lambda_{\alpha} = \lambda_{\alpha-n}$, then it is clear that

$$\cosh(\lambda_1 t)e_1 + \sinh(\lambda_1 t)e_{n+1}, \dots, \cosh(\lambda_p t)e_1 + \sinh(\lambda_p t)e_{n+p}, e_{p+1}, \dots, e_n,$$

$$\sinh(\lambda_{n+1} t)e_1 + \cosh(\lambda_{n+1} t)e_{n+1}, \dots, \sinh(\lambda_{n+p} t)e_p + \cosh(\lambda_{n+p} t)e_{n+p}$$

is again a pseudo-Euclidean frame for R_p^{n+p} , so we have

$$\widetilde{g(t)} = *g(t) = \left(\sinh(\lambda_{n+1}t)e_1 + \cosh(\lambda_{n+1}t)e_{n+1}\right) \wedge \dots \wedge \left(\sinh(\lambda_{n+p}t)e_p + \cosh(\lambda_{n+p}t)e_{n+p}\right) \in \widetilde{G_{n,p}^p}.$$

Thus we have

$$\langle g_0, g \rangle = (-1)^p \langle *g_0, *g \rangle = (-1)^p \langle \widetilde{g_0}, \widetilde{g} \rangle = \prod_{\alpha} \cosh(\lambda_{\alpha} t)$$

In this note, we also need the following lemma,

Lemma 2.1 ([4]). Let $\mu_1 \ge 1, \ldots, \mu_p \ge 1$ and $\prod_{\alpha} \mu_{\alpha} = C$. Then $\sum_{\alpha} \cosh^2(\lambda_{\alpha}) \le C^2 + p - 1$, and the equality holds if and only if $\mu_{i_0} = C$ for some $1 \le i_0 \le p$ and $\mu_i = 1$ for any $i \ne i_0$.

3. Main results for space-like submanifolds

In this note, we get the following result:

Theorem 3.1. Let M^n be a complete space-like submanifold in \mathbb{R}_p^{n+p} whose Gauss map is bounded, then we have $\lambda_1(M) = 0$.

Proof. We choose a local frames $e_1 \ldots, e_{n+p}$ in \mathbb{R}_p^{n+p} such that restricted to M^n , e_1, \ldots, e_n are tangent to M^n , e_{n+1}, \ldots, e_{n+p} are normal to M^n , the Gauss map is defined by $e_{n+1} \wedge \cdots \wedge e_{n+p} \colon M^n \to \widetilde{G}_{n,p}^p$. Let us fix *p*-vector and *n*-vector $a_{n+1} \wedge \cdots \wedge a_{n+p} \in \widetilde{G}_{n,p}^p$, $a_1 \wedge \cdots \wedge a_n \in G_{n,p}^p$, where $\langle a_{\alpha}, a_{\beta} \rangle = -\delta_{\alpha\beta}$ and $\langle a_i, a_j \rangle = \delta_{ij}$. We defined the projection $\Pi \colon M^n \to \mathbb{R}_a^n$ by

(1)
$$\Pi(x) = x + \sum_{\alpha=n+1}^{n+p} \langle x, a_{\alpha} \rangle a_{\alpha},$$

where \langle , \rangle is the standard indefinite inner product on R_p^{n+p} and R_a^n the totally geodesic Euclidean *n*-space determined by $a = a_{n+1} \wedge \cdots \wedge a_{n+p}$ which is defined by

(2)
$$R_a^n = \left\{ x \in R_p^{n+p} : \langle x, a_{n+1} \rangle = \dots = \langle x, a_{n+p} \rangle = 0 \right\}.$$

It is clear from (1) that

(3)
$$d\Pi(X) = X + \sum_{\alpha=n+1}^{n+p} \langle X, a_{\alpha} \rangle a_{\alpha}$$

for any tangent vector field on M^n and consequently,

(4)
$$|\mathrm{d}\Pi(X)|^2 = |X|^2 + \sum_{\alpha=n+1}^{n+p} \langle X, a_{\alpha} \rangle^2$$

From the equation (4), we know that the map $\Pi: M^n \to R_a^n$ increases the distance. If a map, from a complete Riemannian manifold M_1 into another Riemannian manifold M_2 of same dimension, increases the distance, then it is a covering map and M_2 is complete (in [2, VIII, Lemma 8.1]). Hence Π is a covering map, but R_a^n being simply connected this means that Π is in face a diffeomorphism between M^n and R_a^n , and thus M^n is noncompact. Now assume that the Gauss map $e_{n+1} \wedge \cdots \wedge e_{n+p}: M^n \to \widetilde{G}_{n,p}^p$ is bounded, then there exists $\rho > 0$ such that

(5)
$$1 \le (-1)^p \langle e_{n+1} \wedge \dots \wedge e_{n+p}, a_{n+1} \wedge \dots \wedge a_{n+p} \rangle \le \rho.$$

From Section 2 we know that by an action of $SO(n) \times SO(p)$ we can assume that

$$e_{n+1} = \sinh(\lambda_{n+1}t)a_1 + \cosh(\lambda_{n+1}t)a_{n+1}, \dots, e_{n+p}$$
$$= \sinh(\lambda_{n+p}t)a_1 + \cosh(\lambda_{n+p}t)a_{n+p},$$

where $\sum_{\alpha} \lambda_{\alpha}^2 = 1$ and $t \in \mathbb{R}$.

Write

(6)
$$a_{\alpha} = a^{\top} - \sum_{\beta=n+1}^{n+p} \langle a_{\alpha}, e_{\beta} \rangle e_{\beta},$$

where a_{α}^{\top} denote the component of a_{α} which is tangent to M^n , and $\alpha = n + 1, \ldots, n + p$. Since $\langle a_{\alpha}, a_{\beta} \rangle = -\delta_{\alpha\beta}$, we have

(7)
$$-1 = |a_{\alpha}^{\top}|^2 - \sum_{\beta=n+1}^{n+p} \langle a_{\alpha}, e_{\beta} \rangle^2 = |a_{\alpha}^{\top}|^2 - \cosh^2(\lambda_{\alpha} t),$$

where $\alpha = n + 1, \dots, n + p$. It follows from Lemma 2.1 and Eq. (5), (7), we have

(8)
$$1 + \sum_{\alpha=n+1}^{n+p} |a_{\alpha}^{\top}|^2 = \sum_{\alpha=n+1}^{n+p} \cosh^2(\lambda_{\alpha} t) - p + 1 \le \prod \cosh^2(\lambda_{\alpha} t) \le \rho^2.$$

From Eq.(4) and (8), we have

(9)
$$|\mathrm{d}\Pi(X)|^2 = |X|^2 + \sum_{\alpha=n+1}^{n+p} \langle X, a_{\alpha}^{\top} \rangle^2 \le |X|^2 (1 + \sum_{\alpha=n+1}^{n+p} |a_{\alpha}^{\top}|^2) \le \rho^2 |X|^2$$

for any tangent vector field on M^n . Let B(p,r) is the geodesic ball of M^n with radius r centered at $p \in M^n$. We claim that $\Pi(B(p,r)) \subset \widetilde{B}(\widetilde{p},\rho r)$, where $\widetilde{B}(\widetilde{p},\rho r)$ denotes the geodesic ball of R^n_a with radius ρr centered at $\widetilde{p} = \Pi(p)$. In fact, for any $\widetilde{q} \in \Pi(B(p,r))$ let $q \in B(p,r)$ be the unique point such that $\Pi(q) = \widetilde{q}$, and $\gamma \colon [a,b] \to M^n$ is the minimal geodesic joining p and q, then from (9) we have

$$\widetilde{d}(\widetilde{p},\widetilde{q}) \le L(\Pi \circ r) = \int_{a}^{b} \left| \mathrm{d}\Pi\left(\gamma'(t)\right) \right| dt \le \rho \int_{a}^{b} \left|\gamma'(t)\right| dt = \rho L(\gamma) = \rho d(p,q) \le \rho r \,,$$

where \tilde{d} and d denote the distance in R_a^n and M^n , respectively. This prove our claim.

Let dV denotes the *n*-dimensional volume element on \mathbb{R}^n_a . Using (3) and (6) it follows that

$$\Pi^*(dV)(X_1,\ldots,X_n) = \det\left(\mathrm{d}\Pi(X_1),\ldots,\mathrm{d}\Pi(X_n),a_{n+1},\ldots,a_{n+p}\right)$$
$$= \det(X_1,\ldots,X_n,a_{n+1},\ldots,a_{n+p})$$
$$= (-1)^p \langle e_{n+1} \wedge \cdots \wedge e_{n+p}, a_{n+1} \wedge \cdots \wedge a_{n+p} \rangle$$
$$\det(X_1,\ldots,X_n,e_{n+1},\ldots,e_{n+p})$$
$$= (-1)^p \langle e_{n+1} \wedge \cdots \wedge e_{n+p}, a_{n+1} \wedge \cdots \wedge a_{n+p} \rangle$$
$$dM(X_1,\ldots,X_n)$$

for any tangent vector fields X_1, \ldots, X_n of M^n . In other words,

(10)
$$\Pi^*(dV) = (-1)^p \langle e_{n+1} \wedge \dots \wedge e_{n+p}, a_{n+1} \wedge \dots \wedge a_{n+p} \rangle dM \ge dM.$$

Since $\Pi(B(p,r)) \subset \widetilde{B}(\widetilde{p},\rho r)$ and $\Pi: M^n \to R^n_a$ is diffeomorphism, it follows from Eq. (10) that

(11)

$$\rho^{n} r^{n} \omega_{n} = \operatorname{Vol}\left(\widetilde{B}(\widetilde{p}, \rho r)\right) \geq \operatorname{Vol}\left(\Pi(B(p, r))\right) = \int_{\Pi(B(p, r))} dV$$

$$= \int_{B(p, r)} \Pi^{*} dV \geq \int_{B(p, r)} dM = \operatorname{Vol}\left(B(p, r)\right),$$

where ω_n denotes the volume of unit ball in Euclidean *n*-space. (11) means that the order of the volume growth of M^n is not larger than *n*, thus by [1] we see that $\lambda_1(M) = 0$.

References

- Cheng, S. Y., Yau, S. T., Differential equations on Riemannian manifolds and geometric applications, Comm. Pure Appl. Math. 28 (1975), 333–354.
- [2] Kobayashi, S., Nomizu, K., Foundations of differential geometry, John Wiley & Sons, Inc., 1969.
- [3] Wong, Y. C., Euclidean n-space in pseudo-Euclidean spaces and differential geometry of Cartan domain, Bull. Amer. Math. Soc. (N.S.) 75 (1969), 409–414.
- [4] Wu, B. Y., On the volume and Gauss map image of spacelike submanifolds in de Sitter space form, J. Geom. Phys. 53 (2005), 336–344.
- [5] Wu, B. Y., On the first eigenvalue of spacelike hypersurfaces in Lorentzian space, Arch. Math. (Brno) 42 (2006), 233–238.
- [6] Xin, Y. L., A rigidity theorem for spacelike graph of higher codimension, Manuscripta Math. 103 (2000), 191–202.

COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE, XINYANG NORMAL UNIVERSITY, XINYANG 464000, HENAN, P. R. CHINA *E-mail*: yingbhan@yahoo.com.cn fsxhyb@yahoo.com.cn