NATURAL EXTENSION OF A CONGRUENCE OF A LATTICE TO ITS LATTICE OF CONVEX SUBLATTICES

S. PARAMESHWARA BHATTA AND H. S. RAMANANDA*

ABSTRACT. Let L be a lattice. In this paper, corresponding to a given congruence relation Θ of L, a congruence relation Ψ_{Θ} on CS(L) is defined and it is proved that

1. $CS(L/\Theta)$ is isomorphic to $CS(L)/\Psi_{\Theta}$;

- 2. L/Θ and $CS(L)/\Psi_{\Theta}$ are in the same equational class;
- 3. if Θ is representable in L, then so is Ψ_{Θ} in CS(L).

1. INTRODUCTION

Let L be a lattice and CS(L) be the set of all convex sublattices of L. It is proved in [3] that, there exists a partial order on CS(L) with respect to which CS(L) is a lattice such that both L and CS(L) are in the same equational class. A natural question that arises is the following:

If Θ is a congruence relation of L, does there exists a natural extension Ψ_{Θ} of Θ to CS(L) such that L/Θ and $CS(L)/\Psi_{\Theta}$ are in the same equational class?

This paper gives an affirmative answer to this question. Further, it is proved that, if Θ is representable in L, then so is Ψ_{Θ} in CS(L).

2. NOTATION AND DEFINITIONS

Let L be a lattice and CS(L) be the set of all convex sublattices of L. Define an ordering \leq on CS(L) by, for A, $B \in CS(L)$, $A \leq B$ if and only if for each $a \in A$ there exists $b \in B$ such that $a \leq b$ and for each $b \in B$ there exists $a \in A$ such that $b \geq a$. Then $(CS(L); \leq)$ is a lattice called the *lattice of convex sublattices* of L (see [3]), denoted by CS(L) in this paper.

Let L be a lattice and A and B be convex sublattices of L. Then in CS(L),

 $A \wedge B := \{ z \in L \mid a_1 \wedge b_1 \le z \le a_2 \wedge b_2 \text{ for some } a_1, a_2 \in A, b_1, b_2 \in B \};$ $A \vee B := \{ z \in L \mid a_1 \vee b_1 \le z \le a_2 \vee b_2 \text{ for some } a_1, a_2 \in A, b_1, b_2 \in B \}$

(see [3]).

²⁰¹⁰ Mathematics Subject Classification: primary 06B20; secondary 06B10.

Key words and phrases: lattice of convex sublattices of a lattice, congruence relation, representable congruence relation.

^{*}Corresponding author.

Received October 21, 2010, revised January 11, 2011. Editor J. Rosický.

Let L be a lattice and X be a sublattice of L. Then the convex sublattice generated by X in L, denoted by $\langle X \rangle$, is given by

 $\langle X \rangle = \{ z \in L | a_1 \le z \le a_2 \text{ for some } a_1, a_2 \in X \}$

(see [1]).

Let L be a lattice and Θ be a congruence relation of L. Then L/Θ denotes the quotient lattice of L modulo Θ and for $a \in L$, a/Θ denotes the congruence class containing a (see [2]).

A congruence relation Θ of a lattice L is said to be *representable* if there is a sublattice L_1 of L such that the map $f: L_1 \to L/\Theta$ defined by $f(a) = a/\Theta$ is an isomorphism (see [1]).

3. EXTENDING A CONGRUENCE RELATION OF L to CS(L)

The following lemma is often used in the paper.

Lemma 3.1. Let L be a lattice, Θ be a congruence relation of L and A be a convex sublattice of L. Suppose that the elements x_1 , x, x_2 of L satisfy the following conditions:

(1)
$$x_1 \le x \le x_2;$$

(2) $x_1 \equiv a_1(\Theta)$ for some $a_1 \in A$;

(3) $x_2 \equiv a_2(\Theta)$ for some $a_2 \in A$.

Then there exists $y \in A$ such that $x \equiv y(\Theta)$.

Proof. From (1) and (2), we get

 $(3.1) x = x \lor x_1 \equiv x \lor a_1(\Theta)$

and from (1) and (3), we get

(3.2) $x = x \wedge x_2 \equiv x \wedge a_2(\Theta).$

Take $y = (a_1 \wedge a_2) \lor (a_2 \wedge x)$. Then

$$(3.3) a_1 \wedge a_2 \le y \le a_2$$

and

$$(3.4) a_2 \wedge x \le y \le a_1 \vee x.$$

Now from (3.1), (3.2) and (3.4), $x \equiv y(\Theta)$ and from (3.3), $y \in A$.

In the following lemma a congruence relation on CS(L) corresponding to a congruence relation of a lattice L is constructed. Note that, in [4], a similar congruence relation is defined on I(L) of a trellis L, and it is used for proving some results.

Lemma 3.2. Let *L* be a lattice and Θ be a congruence relation of *L*. Then the binary relation Ψ on CS(L) defined by " $X \equiv Y(\Psi)$ if and only if for each $x \in X$ there exists $y \in Y$ such that $x \equiv y(\Theta)$ and for each $y \in Y$ there exists $x \in X$ such that $x \equiv y(\Theta)$ ", is a congruence relation on CS(L).

Proof. Clearly Ψ is an equivalence relation on CS(L). To show that Ψ satisfies the substitution property, consider $A, B, C \in CS(L)$ with $A \equiv C(\Psi)$. It is enough to prove that

$$A \wedge B \equiv C \wedge B(\Psi);$$
$$A \vee B \equiv C \vee B(\Psi).$$

Let $x \in A \wedge B$. Then, by the definition of $A \wedge B$ in CS(L), there exist $a_1, a_2 \in A$ and $b_1, b_2 \in B$ such that $a_1 \wedge b_1 \leq x \leq a_2 \wedge b_2$. Since $a_1 \in A$ and $A \equiv C(\Psi)$, there exists $c_1 \in C$ such that $a_1 \equiv c_1(\Theta)$. But then $a_1 \wedge b_1 \equiv c_1 \wedge b_1(\Theta)$. Similarly, $a_2 \wedge b_2 \equiv c_2 \wedge b_2(\Theta)$ for some $c_2 \in C$. Note that $c_1 \wedge b_1$ and $c_2 \wedge b_2 \in C \wedge B$. Applying Lemma 3.1 for $a_1 \wedge b_1, x, a_2 \wedge b_2$ in L, noting that $C \wedge B \in CS(L)$, there exists $y \in C \wedge B$ such that $x \equiv y(\Theta)$.

Similarly, for each $x \in C \land B$ there exists $y \in A \land B$ such that $x \equiv y(\Theta)$. Hence $A \land B \equiv C \land B(\Psi)$.

By the dual argument it follows that $A \vee B \equiv C \vee B(\Psi)$.

Definition 3.3. For a given congruence relation Θ on L, the congruence relation on CS(L) defined in Lemma 3.2 is denoted by Ψ_{Θ} .

One can easily verify the following lemma.

Lemma 3.4 ([3]). L/Θ is a suborder of CS(L) for any $\Theta \in \text{Con } L$.

Theorem 3.5. Let L be a lattice and Θ be a congruence relation of L. Then $CS(L|\Theta)$ is isomorphic to $CS(L)/\Psi_{\Theta}$.

Proof. Define a map $f: CS(L/\Theta) \to CS(L)/\Psi_{\Theta}$ by

$$f(X) = (\cup X)/\Psi_{\Theta}.$$

It is easy to see that $\cup X$ is a convex sublattice of L and hence the map f is well-defined.

To prove f is one to one, suppose that $(\cup X)/\Psi_{\Theta} = (\cup Y)/\Psi_{\Theta}$. We assert that $\cup X = \cup Y$ which eventually proves X = Y. Let $x \in \cup X$. Since $(\cup X) \equiv (\cup Y)(\Psi_{\Theta})$, there is a $y \in \cup Y$ such that $x \equiv y(\Theta)$. Now $x/\Theta = y/\Theta \in Y$ so that $x \in \cup Y$. Hence $\cup X \subseteq \cup Y$. Similarly it follows that $\cup Y \subseteq \cup X$. Thus f is one to one.

To prove f is onto, we need some preliminary considerations.

Let $A \in CS(L)$ and $S = \bigcup \{B \in CS(L) \mid B \equiv A(\Psi_{\Theta})\}.$

Claim 1: S is a convex sublattice of L.

Let $x, y \in S$. Then $x \in A_1 \equiv A(\Psi_{\Theta})$ and $y \in A_2 \equiv A(\Psi_{\Theta})$ for some A_1 , $A_2 \in CS(L)$. Now $A_1 \underset{CS(L)}{\wedge} A_2 \equiv A_1 \underset{CS(L)}{\vee} A_2 \equiv A(\Psi_{\Theta})$. Note that $x \land y \in A_1 \underset{CS(L)}{\wedge} A_2$ and $x \lor y \in A_1 \underset{CS(L)}{\vee} A_2$. Hence $x \land y$ and $x \lor y \in S$.

Let $a \leq x \leq b$ in L and $a, b \in S$. Then $a \in A_1 \equiv A(\Psi_{\Theta})$ and $b \in A_2 \equiv A(\Psi_{\Theta})$ for some $A_1, A_2 \in CS(L)$. We can assume w.l.g that $A_1 \leq A_2$. Let $C = [A_1) \cap (A_2]$,

where $[A_1)$ is the filter of L generated by A_1 and $(A_2]$ is the ideal of L generated by A_2 . Then C is a convex sublattice of L. Also $A_1 \leq C \leq C \leq A_2$ so that $A_1 \equiv C \equiv A_2(\Psi_{\Theta})$. Thus $x \in C \subseteq S$. Claim 1 holds.

Claim 2: $S \equiv A(\Psi_{\Theta})$.

Let $x \in A$. Since $A \subseteq S$, clearly $x \in S$ and $x \equiv x(\Theta)$. On the other hand, let $y \in S$. Then $y \in B \equiv A(\Psi_{\Theta})$ for some B in CS(L), i.e. there exists $x \in A$ such that $y \equiv x(\Theta)$. Claim 2 holds.

Now set

$$X := \{ x / \Theta \in L / \Theta | \ x \in S \}.$$

We shall prove that X is a convex sublattice of L/Θ . Let a/Θ , $b/\Theta \in X$. Then $a/\Theta = x/\Theta$ and $b/\Theta = y/\Theta$ for some x, $y \in S$. Now, since S is a sublattice of L, $x \wedge y$ and $x \vee y \in S$. Therefore $x \wedge y/\Theta = x/\Theta \wedge y/\Theta = a/\Theta \wedge b/\Theta \in X$ and $x \vee y/\Theta = x/\Theta \vee y/\Theta = a/\Theta \vee b/\Theta \in X$.

 $\begin{array}{l} x \lor y/\Theta = x/\Theta \lor y/\Theta = a/\Theta \lor b/\Theta \in X. \\ \text{Let } a/\Theta \underset{L/\Theta}{\leq} c/\Theta \underset{L/\Theta}{\leq} b/\Theta \text{ and } a/\Theta, b/\Theta \in X. \text{ We can assume w.l.g that } a, \end{array}$

 $b \in S$. Using Lemma 3.4, there exist $x \in c/\Theta$ and $b_1 \in b/\Theta$ such that $a \leq x \leq b_1$. Applying Lemma 3.1 for $a \leq x \leq b_1$ in L and $S \in CS(L)$, there exists $y \in S$ such that $x \equiv y(\Theta)$, i.e., $y/\Theta = x/\Theta = c/\Theta \in X$. Hence X is a convex sublattice of L/Θ .

It is easy to see that $\cup X \equiv S(\Psi_{\Theta})$. Now $X \in CS(L/\Theta)$ and from claim 2, $\cup X \equiv S \equiv A(\Psi_{\Theta})$, so that f is onto.

To prove that f is order preserving, let $X \leq_{CS(L/\Theta)} Y$. Consider any $x \in \cup X$. Then $x/\Theta \in X \leq_{CS(L/\Theta)} Y$ and hence there exists $y/\Theta \in Y$ such that $x/\Theta \leq_{L/\Theta} y/\Theta$. Now $x/\Theta \lor y/\Theta = (x \lor y)/\Theta = y/\Theta \in Y$. Hence $x \lor y \in \cup Y$ and also $x \leq x \lor y$. Similarly for each $y \in \cup Y$ we can find $x \in \cup X$ such that $x \leq y$. Thus $\cup X \leq_{CS(L)} \cup Y$.

Therefore $(\cup X)/\Psi_{\Theta} \leq (\cup Y)/\Psi_{\Theta}$, proving f is order preserving.

It remains to prove that f^{-1} is order preserving. First we observe the following fact.

Claim 3: Let $X \in CS(L|\Theta)$ and $S = \bigcup \{A \in CS(L) | A \equiv \bigcup X(\Psi_{\Theta})\}$. Then $S = \bigcup X$. Since $\bigcup X \in CS(L)$ and $\bigcup X \equiv \bigcup X(\Psi_{\Theta}), \ \bigcup X \subseteq S$. On the other hand, if $x \in S$, then $x \in A \equiv \bigcup X(\Psi_{\Theta})$, for some $A \in CS(L)$. Now there exists $y \in \bigcup X$ such that $x \equiv y(\Theta)$. But then, $x|\Theta = y|\Theta \in X$. Hence $x \in \bigcup X$. Claim 3 holds.

Let $(\cup X)/\Psi_{\Theta} \leq (\cup Y)/\Psi_{\Theta}$. We prove that $\cup X \leq \cup Y$ which leads to $X \leq S(L)/\Psi_{\Theta}$. Using Claim 3, it can be assumed that $\cup X = S_1$ and $\cup Y = S_2$ where S_1 and S_2 are as defined in Claim 3. It remains to show that $S_1 \leq S_2$.

Let $x \in S_1$. Then $x \in A \equiv \bigcup X(\Psi_{\Theta})$, for some $A \in CS(L)$. Since $S_1/\Psi_{\Theta} \leq S_2/\Psi_{\Theta}$ and $A \in S_1/\Psi_{\Theta}$; by Lemma 3.4, there exists $B \in S_2/\Psi_{\Theta}$ such that $A \leq S_1/\Psi_{\Theta}$. Since $x \in A \leq S_1/\Psi_{\Theta}$ by Lemma 3.4, there exists $y \in B$ such that $x \leq y$. Clearly $B \subseteq S_2$, so that $y \in S_2$. Similarly one can prove that for each $x \in S_2$ there exists $y \in S_1$ such that $y \leq x$. Thus $S_1 \leq S_2$.

With the aid of Theorem 3.5, we obtain the following result.

Corollary 3.6. Let L be a lattice and Θ be a congruence relation of L. Then L/Θ and $CS(L)/\Psi_{\Theta}$ are in the same equational class.

Proof. It is known that for a lattice L, L/Θ and $CS(L/\Theta)$ are in the same equational class ([3]). Now by Theorem 3.5, $CS(L)/\Psi_{\Theta}$ is also in the same equational class.

Next theorem shows that, the map $\Theta \to \Psi_{\Theta}$, preserves representability. But it requires a lemma.

In the following lemma a sublattice of CS(L) corresponding to a sublattice of L is constructed.

Lemma 3.7. Let L_1 be a sublattice of L. Let

$$Cvx(L_1) := \{ \langle X \rangle \in CS(L) | X \in CS(L_1) \}.$$

Then $Cvx(L_1)$ is a sublattice of CS(L).

Proof. The result follows by noting that, for $\langle X \rangle$, $\langle Y \rangle \in Cvx(L_1)$,

$$\left\langle X\right\rangle \underset{CS(L)}{\wedge}\left\langle Y\right\rangle = \left\langle X\underset{CS(L_{1})}{\wedge}Y\right\rangle$$

and

$$\langle X \rangle \underset{CS(L)}{\vee} \langle Y \rangle = \left\langle X \underset{CS(L_1)}{\vee} Y \right\rangle.$$

Theorem 3.8. If Θ is a representable congruence relation of L, then so is Ψ_{Θ} of CS(L).

Proof. Let Θ be a representable congruence relation of L. Then there exists a sublattice L_1 of L such that the map $L_1 \to L/\Theta$, $a \mapsto a/\Theta$, defines an isomorphism. Let $Cvx(L_1)$ be the sublattice of CS(L) as defined in Lemma 3.7.

Define a map $f: Cvx(L_1) \to CS(L)/\Psi_{\Theta}$ by

$$f(\langle X \rangle) = \langle X \rangle / \Psi_{\Theta} ,$$

where $X \in CS(L_1)$. We shall prove that f is an isomorphism.

Clearly f is well defined and a homomorphism.

Let $\langle X \rangle \equiv \langle Y \rangle (\Psi_{\Theta})$. We claim that X = Y, which proves that f is one to one. Let $x \in X$. Then there exists $y \in \langle Y \rangle$ such that $x \equiv y(\Theta)$. Since $y \in \langle Y \rangle$, there exist $y_1, y_2 \in Y$ such that $y_1 \leq y \leq y_2$. Then

$$(3.5) y_1 = y \land y_1 \equiv x \land y_1(\Theta)$$

and

$$(3.6) y_2 = y \lor y_2 \equiv x \lor y_2(\Theta).$$

Since $x, y_1, y_2 \in L_1$ and L_1 has only one element in each congruence class, (3.5) and (3.6) give $y_1 \leq x \leq y_2$. Now $x \in Y$ by the convexity of Y in L_1 . Therefore $X \subseteq Y$. Similarly, by interchanging X and Y, we get $Y \subseteq X$.

To prove that f is onto, let $A \in CS(L)$. Set

$$X := \{ x \in L_1 | A \cap (x/\Theta) \neq \emptyset \}.$$

Then X is nonempty. In fact, A is nonempty therefore there exists an element $a \in A$ and

$$A = A \cap L = A \cap \left(\bigcup_{x \in L_1} x/\Theta\right) = \bigcup_{x \in L_1} \left(A \cap (x/\Theta)\right)$$

so that $a \in A \cap (x/\Theta)$ for some $x \in L_1$. But then $x \in X$.

We prove that X is a convex sublattice of L_1 . Let $a, b \in X$. Since L_1 is a sublattice of $L, a \wedge b$ and $a \vee b \in L_1$. Further, since $A \cap (a/\Theta) \neq \emptyset$ and $A \cap (b/\Theta) \neq \emptyset$, take $x \in A \cap (a/\Theta)$ and $y \in A \cap (b/\Theta)$. Then $x \wedge y \in A \cap ((a \wedge b)/\Theta)$ and $x \vee y \in A \cap ((a \vee b)/\Theta)$, proving $A \cap ((a \wedge b)/\Theta) \neq \emptyset$ and $A \cap ((a \vee b)/\Theta) \neq \emptyset$. Thus $a \wedge b$ and $a \vee b \in X$.

Let $x_1, x_2 \in X$ and $x_1 \leq x \leq x_2$. Since $A \cap (x_1/\Theta) \neq \emptyset$ and $A \cap (x_2/\Theta) \neq \emptyset$, take $a \in A \cap (x_1/\Theta)$ and $b \in A \cap (x_2/\Theta)$. By Lemma 3.1, there exists $y \in A$ such that $x \equiv y(\Theta)$. Therefore $y \in A \cap (x/\Theta)$, so that $A \cap (x/\Theta) \neq \emptyset$. Thus $x \in X$. Hence X is a convex sublattice of L_1 .

Now we prove that $\langle X \rangle \equiv A(\Psi_{\Theta})$.

Let $x \in \langle X \rangle$. Then there exist $x_1, x_2 \in X$ such that $x_1 \leq x \leq x_2$. Since $A \cap (x_1/\Theta) \neq \emptyset$ and $A \cap (x_2/\Theta) \neq \emptyset$, take $b_1 \in A \cap (x_1/\Theta)$ and $b_2 \in A \cap (x_2/\Theta)$. Then again by Lemma 3.1, there is a $y \in A$ such that $x \equiv y(\Theta)$.

On the other hand, if $x \in A$, then $x \in A \cap (y/\Theta)$ for some $y \in L_1$. Clearly $y \in X$ and $y \equiv x(\Theta)$ holds.

References

- [1] Grätzer, G., General Lattice Theory, 2nd ed., Birkhäuser Verlag, 1998.
- [2] Grätzer, G., The Congruence of a Finite Lattice, A Proof by Picture Aproach, Birkhäuser Boston, 2006.
- [3] Lavanya, S., Parameshwara Bhatta, S., A new approach to the lattice of convex sublattice of a lattice, Algebra Universalis 35 (1996), 63–71.
- [4] Parameshwara Bhatta, S., Ramananda, H. S., On ideals and congruence relations in trellises, Acta Math. Univ. Comenian. 2 (2010), 209–216.

DEPARTMENT OF MATHEMATICS, MANGALORE UNIVERSITY, MANGALAGANGOTHRI, 574 199, KARNATAKA STATE, INDIA *E-mail*: s_p_bhatta@yahoo.co.in

Department of Mathematics, Mangalore University, Mangalagangothri, 574 199, Karnataka State, INDIA E-mail: ramanandahs@gmail.com