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ON COMPLETE SPACELIKE HYPERSURFACES WITH
R = aH + b IN LOCALLY SYMMETRIC LORENTZ SPACES

Yingbo Han†, Shuxiang Feng, and Liju Yu‡

Abstract. In this note, we investigate n-dimensional spacelike hypersurfaces
Mn with R = aH+b in locally symmetric Lorentz space. Two rigidity theorems
are obtained for these spacelike hypersurfaces.

1. Introduction

Let Mn+1
1 be an (n+ 1)-dimensional Lorentz space, i.e. a pseudo-Riemannian

manifold of index 1. When the Lorentz space Mn+1
1 is of constant curvature c, we

call it a Lorentz space form, denoted by Mn+1
1 (c). A hypersurface Mn of a Lorentz

space is said to be spacelike if the induced metric on Mn from that of the Lorentz
space is positive definite. Since Goddard’s conjecture (see [7]), several papers about
spacelike hypersurfaces with constant mean curvature in de Sitter space Sn+1

1 (1)
have been published. For a more complete study of spacelike hypersurfaces in
general Lorentzian space with constant mean curvature, we refer to [2]. For the
study of spacelike hypersurface with constant scalar curvature in de Sitter space
Sn+1

1 (1), there are also many results such as [4, 9, 14, 15]. There are some results
about spacelike hypersurfaces with constant scalar curvature in general Lorentzian
space, such as [8] and [13].

It is natural to study complete spacelike hypersurfaces in the more general
Lorentz spaces, satisfying the assumptions R = aH + b, where R is the normalized
scalar curvature at a point of space-like hypersurface, H is the mean curvature
and a, b ∈ R are constants. First of all, we recall that Choi et al. [6, 12] introduced
the class of (n+ 1)-dimensional Lorentz spaces Mn+1

1 of index 1 which satisfy the
following two conditions for some fixed constants c1 and c2:

(i) for any spacelike vector u and any timelike vector v,

K(u, v) = −c1

n
,

(ii) for any spacelike vectors u and v,
K(u, v) ≥ c2 .
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(Here, and in the sequel, K denotes the sectional curvature of Mn+1
1 .)

Convention. When Mn+1
1 satisfies conditions (i) and (ii), we shall say that Mn+1

1
satisfies condition (∗).

We compute the scalar curvature at a point of Lorentz space Mn+1
1 ,

R̄ =
∑
A

εAR̄AA = −2
n∑
i=1

R̄n+1iin+1 +
∑
ij

R̄ijji = −2c1 +
∑
ij

R̄ijji,(1)

where R̄n+1iin+1 = −K(ei, en+1) = c1
n , for i = 1, . . . , n.

It is known that R̄ is constant when the Lorentz space Mn+1
1 is locally symmetric,

so
∑
ij R̄ijji is constant. In this note, we shall prove the following main results:

Theorem 1.1. Let Mn be a complete spacelike hypersurface with bounded mean
curvature in locally symmetric Lorentz space Mn+1

1 satisfying the condition (∗).
If R = aH + b, (n − 1)2a2 + 4

∑
ij R̄ijji − 4n(n − 1)b ≥ 0, and a ≥ 0, then the

following properties hold.
(1) If supH2 < 4(n−1)

n2 c, where c = c1
n + 2c2, then c > 0, S = nH2 and Mn is

totally umbilical.
(2) If supH2 = 4(n−1)

n2 c, then c ≥ 0 and either S = nH2 and Mn is totally
umbilical, or supS = nc.

(3-a) If c < 0, then either S = nH2 and Mn is totally umbilical, or n supH2 <
supS ≤ S+.

(3-b) If c ≥ 0 and supH2 ≥ c > 4(n−1)
n2 c, then either S = nH2 and Mn is

totally umbilical, or n supH2 < supS ≤ S+.
(3-c) If c ≥ 0 and c > supH2 > 4(n−1)

n2 c, then either S = nH2 and Mn is totally
umbilical, or S− ≤ supS ≤ S+.

(4)

(2) S ≡ n

2(n− 1) [n2 supH2 + (n− 2) sup |H|
√
n2 supH2 − 4(n− 1)c]− nc ,

if and only if M is an isoparametric hypersurface with two distinct principal
curvatures one of which is simple.

Here S+ = n
2(n−1) [n2 supH2 +(n−2) sup |H|

√
n2 supH2 − 4(n− 1)c]−nc, and

S− = n
2(n−1) [n2 supH2 − (n− 2) sup |H|

√
n2 supH2 − 4(n− 1)c]− nc.

Theorem 1.2. Let Mn (n > 1) be a complete spacelike hypersurface in locally
symmetric Lorentz space Mn+1

1 satisfying the condition (∗). If c = c1
n + c2 > 0,

c2 > 0 and

(3) W 2 = tr(W )W ,

where W is the shape operator with respect to en+1, then Mn must be totally
geodesic.

Remark 1.3. The Lorentz space form Mn+1
1 (c) satisfies the condition (∗), where

− c1
n = c2 = const.
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2. Preliminaries

Let Mn be a spacelike hypersurface of Lorentz space Mn+1
1 . We choose a local

field of semi-Riemannian orthonormal frames {e1, . . . , en, en+1} in Mn+1
1 such

that, restricted to Mn, e1, . . . , en are tangent to Mn and en+1 is the unit timelike
normal vector. Denote by {ωA} the corresponding dual coframe and by {ωAB} the
connection forms of Mn+1

1 . Then the structure equations of Mn+1
1 are given by

dωA = −
∑
B

εBωAB ∧ ωB , ωAB + ωBA = 0 , εi = 1 , εn+1 = −1 ,(4)

dωAB = −
∑
C

εCωAC ∧ ωCB −
1
2
∑
CD

εCεDR̄ABCDωC ∧ ωD ,(5)

where A,B,C, · · · = 1, . . . , n+ 1 and i, j, l, · · · = 1, . . . , n. The components R̄CD of
the Ricci tensor and the scalar curvature R̄ of Mn+1

1 are given by

R̄CD =
∑
B

εBR̄BCDB , R̄ =
∑
A

εAR̄AA .(6)

The components R̄ABCD;E of the covariant derivative of the Riemannian curvature
tensor R̄ are defined by∑

E

εER̄ABCD;EωE = dR̄ABCD −
∑
E

εE(R̄EBCDωEA

+ R̄AECDωEB + R̄ABEDωEC + R̄ABCEωED) .(7)

We restrict these forms to Mn, then ωn+1 = 0 and the Riemannian metric of
Mn is written as ds2 =

∑
i ω

2
i . Since

0 = dωn+1 = −
∑
i

ωn+1,i ∧ ωi ,(8)

by Cartan’s lemma we may write

ωn+1,i =
∑
j

hijωj , hij = hji .(9)

From these formulas, we obtain the structure equations of Mn:

dωi = −
∑
j

ωij ∧ ωj , ωij + ωji = 0 ,

dωij = −
∑
k

ωik ∧ ωkj −
1
2
∑
k,l

Rijklωk ∧ ωl ,

Rijkl = R̄ijkl − (hilhjk − hikhjl) ,(10)
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where Rijkl are the components of curvature tensor of Mn. Components Rij of
Ricci tensor and scalar curvature R of Mn are given by

Rij =
∑
k

R̄kijk −
(∑

k

hkk

)
hij +

∑
k

hikhjk ,(11)

n(n− 1)R =
∑
ij

R̄ijji + S − n2H2 .(12)

We call
B =

∑
i,j,α

hijωi ⊗ ωj ⊗ en+1(13)

the second fundamental form ofMn. The mean curvature vector is h = 1
n

∑
i hiien+1.

We denote S =
∑
i,j(hij)2, H2 = |h|2 and W = (hij)ni,j=1. We call that Mn is

maximal if its mean curvature vector vanishes, i.e. h = 0.
Let hijk and hijkl denote the covariant derivative and the second covariant

derivative of hαij . Then we have hijk = hikj + R̄(n+1)ijk and

hijkl − hijlk = −
∑
m

himRmjkl −
∑
m

hmjRmikl .(14)

Restricting the covariant derivative R̄ABCD;E on Mn, then R̄(n+1)ijk;l is given by

R̄(n+1)ijk;l = R̄(n+1)ijkl + R̄(n+1)i(n+1)khjl

+ R̄(n+1)ij(n+1)hkl +
∑
m

R̄mijkhml ,(15)

where R̄(n+1)ijkl denotes the covariant derivative of R̄(n+1)ijk as a tensor on Mn

so that
R̄(n+1)ijkl = gR̄(n+1)ijk −

∑
l

R̄(n+1)ljkωli −
∑
l

R̄(n+1)ilkωlj

−
∑
l

R̄(n+1)ijlωlk .(16)

The Laplacian 4hij is defined by 4hij =
∑
k hijkk. Using Gauss equation, Codazzi

equation Ricci identity and (2), a straightforward calculation will give
1
24S =

∑
ijk

h2
ijk +

∑
ij

hij4hij

=
∑
ijk

h2
ijk +

∑
ij

(nH)ijhij +
∑
ijk

(R̄(n+1)ijk;k + R̄(n+1)kik;j)hij

− (
∑
ij

nHhijR̄(n+1)ij(n+1) + S
∑
k

R̄(n+1)k(n+1)k)

− 2
∑
ijkl

(hklhijR̄lijk + hilhijR̄lkjk)− nH
∑
ijl

hilhljhij + S2 .(17)

Set Φij = hij −Hδij , it is easy to check that Φ is traceless and |Φ|2 = S − nH2.
In this note we consider the spacelike hypersurface with R = aH + b in locally
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symmetric Lorentz space Mn+1
1 , where a, b are real constants. Following Cheng-Yau

[5], we introduce a modified operator acting on any C2-function f by

L(f) =
∑
ij

(nHδij − hij)fij + n− 1
2 a∆f .(18)

We need the following algebraic Lemmas.

Lemma 2.1 ([11]). Let Mn be an n-dimensional complete Riemannian manifold
whose sectional curvature is bounded from below and F : Mn → R be a smooth
function which is bounded above on Mn. Then there exists a sequence of points
xk ∈Mn such that

lim
k→∞

F (xk) = sup(F ) ,

lim
k→∞

|∇F (xk)| = 0 ,

lim
k→∞

sup max{(∇2(F )(xk))(X,X) : |X| = 1} ≤ 0 .

Lemma 2.2 ([1, 10]). Let µ1, . . . , µn be real numbers such that
∑
i µi = 0 and∑

i µ
2
i = β2, where β ≥ 0 is constant. Then∣∣∣∑

i

µ3
i

∣∣∣ ≤ n− 2√
n(n− 1)

β3 ,(19)

and equality holds if and only if at least n− 1 of µi’s are equal.

3. Proof of the theorems

First, we give the following lemma.

Lemma 3.1. Let Mn be a complete spacelike hypersurface in locally symmetric
Lorentz space Mn+1

1 satisfying the condition (∗). If R = aH + b, a, b ∈ R and
(n− 1)2a2 + 4

∑
ij R̄ijji − 4n(n− 1)b ≥ 0.

(1) We have the following inequality,

L(nH) ≥ |Φ|2
(
|Φ|2 − n(n− 2)√

n(n− 1)
|H||Φ|+ nc− nH2

)
.(20)

where c = 2c2 + c1
n .

(2) If the mean curvature H is bounded, then there is a sequence of points
{xk} ∈M such that

lim
k→∞

nH(xk) = sup(nH) , lim
k→∞

|∇nH(xk)| = 0 ,

lim
k→∞

sup
(
L(nH)(xk)

)
≤ 0 .(21)

Proof. (1) Choose a local orthonormal frame field {e1, . . . , en} such that hij =
λiδij and Φij = λiδij −Hδij . Let µi = λi −H and denote Φ2 =

∑
i µ

2
i . From (12),
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(18) and the relation R = aH + b, we have

L(nH) =
∑
ij

(nHδij − hij)(nH)ij + (n− 1)a
2 4(nH)

= nH4(nH)−
∑
ij

hij(nH)ij + 1
24(n(n− 1)R− n(n− 1)b)

= 1
24[(nH)2 + n(n− 1)R]− n2|∇H|2 −

∑
ij

hij(nH)ij

= 1
24
[∑
ij

R̄ijji + S
]
− n2|∇H|2 −

∑
ij

hij(nH)ij

= 1
24S − n

2|∇H|2 −
∑
ij

hij(nH)ij .

From (17) and Mn
1 is locally symmetric, we have

L(nH) =
∑
ijk

h2
ijk − n2|∇H|2︸ ︷︷ ︸

I

−nH
∑
i

λ3
i + S2

︸ ︷︷ ︸
II

−
(∑

ij

nHλiR̄(n+1)ii(n+1) + S
∑
k

R̄(n+1)k(n+1)k

)
− 2

∑
ijkl

(λkλiR̄kiik + λ2
i R̄ikik)︸ ︷︷ ︸

III

.

Firstly, we estimate (I):
From Gauss equation, we have∑

ijji

R̄ijji + S − n2H2 = n(n− 1)R = n(n− 1)(aH + b) ,(22)

Taking the covariant derivative of the above equation, we have

2
∑
ijk

hijhijk = 2n2HHk + n(n− 1)aHk .(23)

Therefore

4S
∑
ijk

h2
ijk ≥ 4

∑
k

(∑
ij

hijhijk

)2
= [2n2H + n(n− 1)a]2|∇H|2 .(24)

Since we know

[2n2H + n(n− 1)a]2 − 4n2S = 4n4H2 + n2(n− 1)2a2 + 4n3(n− 1)aH

− 4n2
[
n2H2 + n(n− 1)R−

∑
ij

R̄ijji

]
= n2

[
(n− 1)2a2 + 4

∑
ijji

R̄ijji − 4n(n− 1)b
]
≥ 0 .
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if follows that ∑
ijk

h2
ijk ≥ n2|∇H|2 .(25)

Secondly, we estimate (II):
It is easy to know that∑

i

λ3
i = nH3 + 3H

∑
i

µ2
i +

∑
i

µ3
i .(26)

By applying Lemma 2.2 to real numbers µ1, . . . , µn, we get

S2 − nH
∑
i

λ3
i = (|Φ|2 + nH2)2 − n2H4 − 3nH2|Φ|2 − nH

∑
i

µ3
i

≥ |Φ|4 − nH2|Φ|2 − n(n− 2)√
n(n− 1)

|H||Φ|3 .(27)

Finally, we estimate (III):
Using curvature condition (∗), we get

−
(∑

ij

nHλiR̄(n+1)ii(n+1) + S
∑
k

R̄(n+1)k(n+1)k

)
= c1(S − nH2) .(28)

Notice that S − nH2 = 1
2n
∑
ij(λi − λj)2, we also have

−2
∑
ik

(λkλiR̄kiik + λ2
i R̄ikik) = −2

∑
ik

(λiλk − λ2
i )Rikki

≥ c2
∑
ik

(λi − λk)2 = 2nc2(S − nH2) .(29)

From (25), ??, (28), (29) and set c = 2c2 + c1
n , we have

L(nH) ≥ |Φ|2
(
|Φ|2 − n(n− 2)√

n(n− 1)
|H| |Φ|+ nc− nH2

)
.

(2) Choose a local orthonormal frame field {e1, . . . , en} such that hij = λiδij . By
definition, L(nH) =

∑
i(nH − λi)(nH)ii + (n−1)a

2
∑
i(nH)ii. If H ≡ 0 the result is

obvious. Let suppose that H is not identically zero. By changing the orientation of
Mn if necessary, we may assume that supH > 0. From

(λi)2 ≤ S = n2H2 + n(n− 1)R−
∑
ij

R̄ijji

= n2H2 + n(n− 1)(aH + b)−
∑
ij

R̄ijji

= (nH + (n− 1)a
2 )2 − 1

4(n− 1)2a2 −
∑
ij

R̄ijji + n(n− 1)b

≤ (nH + (n− 1)a
2 )2 ,(30)
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we have

|λi| ≤ |nH + (n− 1)a
2 | .(31)

Since H is bounded and Eq. (30), we know that S is also bounded. From the
Eq. (10),

Rijji = R̄ijji − hiihjj + (hij)2 ≥ c2 − hiihjj
= c2 − λiλj ≥ c2 − S .(32)

This shows that the sectional curvatures of Mn are bounded from below because
S is bounded. Therefore we may apply Lemma 2.1 to the function nH, and obtain
a sequence of points {xk} ∈Mn such that

lim
k→∞

nH(xk) = sup(nH) , lim
k→∞

|∇(nH)(xk)| = 0 ,

lim
k→∞

sup
(
nHii(xk)

)
≤ 0 .(33)

Since H is bounded, taking subsequences if necessary, we can arrive to a sequence
{xk} ∈ Mn which satisfies (33) and such that H(xk) ≥ 0 (by changing the
orientation of Mn if necessary). Thus from (31) we get

0 ≤ nH(xk) + (n− 1)a
2 − |λi(xk)| ≤ nH(xk) + (n− 1)a

2 − λi(xk)

≤ nH(xk) + (n− 1)a
2 + |λi(xk)| ≤ 2(nH(xk) + (n− 1)a

2 ) .(34)

Using once the fact that H is bounded, from (34) we infer that {nH(xk) −
λn+1
i (xk)} is non-negative and bounded. By applying L(nH) at xk, taking the

limit and using (33) and (34) we have

(35) lim
k→∞

sup(L(nH))(xk)

≤
∑
i

lim
k→∞

sup(nH + (n− 1)a
2 − λi)(xk)nHii(xk) ≤ 0 .

�

Remark 3.2. When a = 0, then R = b is constant, the inequality (20) appeared
in [3, 8, 13].

Proof of Theorem 1.1. According to Lemma 3.1 (2), there exists a sequence of
points {xk} in Mn such that

lim
k→∞

nH(xk) = sup(nH) , lim
k→∞

sup
(
L(nH)(xk)

)
≤ 0 .(36)

From Gauss equation, we have that

|Φ|2 = S − nH2 = n(n− 1)H2 + n(n− 1)(aH + b)−
∑
ij

R̄ijji .(37)
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Notice that limk→∞(nH)(xk) = sup(nH), a ≥ 0 and
∑
ij R̄ijji is constant, we

have
lim
k→∞

|Φ|2(xk) = sup |Φ|2 .(38)

Evaluating (20) at the points xk of the sequence, taking the limit and using (36),
we obtain that

0 ≥ lim
k→∞

sup
(
L(nH)(xk)

)
≥ sup |Φ|2

(
sup |Φ|2 − n(n− 2)√

n(n− 1)
sup |H| sup |Φ|+ nc− n supH2

)
.(39)

Consider the following polynomial given by

PsupH(x) = x2 − n(n− 2)√
n(n− 1)

sup |H|x+ nc− n supH2 .(40)

(1) If supH2 < 4(n−1)
n2 c holds, then we have c > 0 and P (sup |Φ|) > 0. From

(39), we know that sup |Φ| = 0, that is |Φ| = 0. Thus, we infer that S = nH2 and
Mn is totally umbilical.

(2) If supH2 = 4(n−1)
n2 c holds, then we have c ≥ 0 and P (|Φ|) =

(
|Φ| −

n−2√
n

√
c
)2 ≥ 0. If

(
|Φ|− n−2√

n

√
c
)2
> 0, from (39) we have, sup |Φ| = 0, that is |Φ| = 0.

Thus, we infer that S = nH2 and Mn is totally umbilical. If sup |Φ| = n−2√
n

√
c, we

have that supS = nc.
(3) If supH2 > 4(n−1)

n2 c, we know that P (x) has two real roots x−supH and x+
supH

given by

x−supH =
√

n

4(n− 1)
{

(n− 2) sup |H| −
√
n2 supH2 − 4(n− 1)c

}
x+

supH =
√

n

4(n− 1)
{

(n− 2) sup |H|+
√
n2 supH2 − 4(n− 1)c

}
It is easy to know that x+

supH is always positive. In this case, we also have that

PsupH(x) = (sup |Φ| − x−supH)(sup |Φ| − x+
supH) .(41)

From (39) and (41), we have that

0 ≥ sup |Φ|2(sup |Φ| − x−supH)(sup |Φ| − x+
supH) .(42)

(3-a) If c < 0, we know that x−supH < 0. Therefore, from (42), we have, sup |Φ| =
0, in this case Mn is totally umbilical, or 0 < sup |Φ| ≤ x+

supH , i.e.

n supH2 < supS ≤ S+ .

(3-b) If c ≥ 0 and sup(H)2 ≥ c > 4(n−1)
n2 c, we know that x−supH < 0. Therefore,

from (42), we have, sup |Φ| = 0, in this case Mn is totally umbilical, or 0 <
sup |Φ| ≤ x+

supH , i.e.

n supH2 < supS ≤ S+ .



160 Y. HAN, S. FENG AND L. YU

(3-c) If c ≥ 0 and c > sup(H)2 > 4(n−1)
n2 c, then we have x−supH > 0. Therefore,

from (39), we have that sup |Φ| = 0, in this case Mn is totally umbilical or
x−supH ≤ sup |Φ| ≤ x+

supH , i.e.

S− ≤ supS ≤ S+ .

(4) If S ≡ n
2(n−1) [n2 supH2 +(n−2) sup |H|

√
n2 supH2 − 4(n− 1)c]−nc holds,

from Gauss equation, we have S = nH2 + n(n− 1)(aH + b)−
∑
ij R̄ijji. Since S is

constant, then H is also constant. We know that these inequalities in the proof of
Lemma 2.2, and (27) are equalities and S > nH2. Hence, we have H2 ≥ 4(n−1)

n2 c
from (1) in Theorem 1.1. Thus, we can infer that n− 1 of the principal curvatures
λi are equal. Since S and H is constant, we know that principal curvatures are
constant on Mn. Thus, Mn is an isoparametric hypersurface with two distinct
principal curvatures one of which is simple. This proves Theorem 1.1. �

Proof of Theorem 1.2. From (3), we have that∑
k

hikhjk = nHhij , for i, j ∈ {1, . . . , n} ,(43)

and ∑
ij

h2
ij = n2H2 , i.e. S = n2H2 .(44)

Choose a local orthonormal frame field {e1, . . . , en} such that Rij = υiδij . From
(11) and (43), we have Rii =

∑
k R̄kiik ≥ (n− 1)c2 > 0, that is, υi ≥ (n− 1)c2 > 0,

so we know that Ric = (Rij) ≥ (n− 1)c2I, we see by the Bonnet-Myers theorem
that Mn is bounded and hence compact.

From (12) and (44), we have that n(n− 1)R =
∑
ij R̄ijji is constant, then from

Lemma 3.1 for a = 0, we have the following inequality

L(nH) ≥ |Φ|2
(
|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ|+ nc− nH2

)
.(45)

Since L is self-adjoint and Mn is compact, we have

0 ≥
∫
Mn
|Φ|2

(
|Φ|2 − n(n− 2)√

n(n− 1)
|H||Φ|+ nc− nH2

)
.(46)

Since n2|H|2 = S and |Φ|2 = S − nH2 = n(n− 1)H2, we have

nc− nH2 + |Φ|2 − n(n− 2)√
n(n− 1)

|H| |Φ|

= nc− nH2 + n(n− 1)H2 − n(n− 2)H2 = nc > 0 .

so we know that |Φ|2 = 0, that is, S = nH2. From Eq. (44), we know that
n2H2 = nH2, so we have H = 0, i.e. S = nH2 = 0, so Mn is totally geodesic. This
proves Theorem 1.2. �
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