INDUCED DIFFERENTIAL FORMS ON MANIFOLDS OF FUNCTIONS

CORNELIA VIZMAN

Dedicated to Peter W. Michor at the occasion of his 60th birthday

ABSTRACT. Differential forms on the Fréchet manifold $\mathcal{F}(S, M)$ of smooth functions on a compact k-dimensional manifold S can be obtained in a natural way from pairs of differential forms on M and S by the hat pairing. Special cases are the transgression map $\Omega^p(M) \to \Omega^{p-k}(\mathcal{F}(S, M))$ (hat pairing with a constant function) and the bar map $\Omega^p(M) \to \Omega^p(\mathcal{F}(S, M))$ (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].

1. INTRODUCTION

Pairs of differential forms on the finite dimensional manifolds M and S induce differential forms on the Fréchet manifold $\mathcal{F}(S, M)$ of smooth functions. More precisely, if S is a compact oriented k-dimensional manifold, the hat pairing is:

$$\Omega^{p}(M) \times \Omega^{q}(S) \to \Omega^{p+q-k}(\mathcal{F}(S,M))$$
$$\widehat{\omega \cdot \alpha} = \int_{S} \operatorname{ev}^{*} \omega \wedge \operatorname{pr}^{*} \alpha \,,$$

where ev: $S \times \mathcal{F}(S, M) \to M$ denotes the evaluation map, pr: $S \times \mathcal{F}(S, M) \to S$ the projection and f_S fiber integration. We show that the hat pairing is compatible with the canonical Diff(M) and Diff(S) actions on $\mathcal{F}(S, M)$, and with the exterior derivative. As a consequence we obtain a hat pairing in cohomology.

The hat (transgression) map is the hat pairing with the constant function 1, so it associates to any form $\omega \in \Omega^p(M)$ the form $\widehat{\omega \cdot 1} = \widehat{\omega} = \int_S \operatorname{ev}^* \omega \in \Omega^{p-k}(\mathcal{F}(S,M))$. Since $\mathfrak{X}(M)$ acts infinitesimally transitive on the open subset $\operatorname{Emb}(S,M) \subset \mathcal{F}(S,M)$ of embeddings of the k-dimensional oriented manifold S into M [7], the expression of $\widehat{\omega}$ at $f \in \operatorname{Emb}(S, M)$ is

$$\widehat{\omega}(X_1 \circ f, \dots, X_{p-k} \circ f) = \int_S f^*(i_{X_{p-k}} \dots i_{X_1} \omega), \quad X_1, \dots, X_{p-k} \in \mathfrak{X}(M).$$

Key words and phrases: manifold of functions, fiber integral, diffeomorphism group.

²⁰¹⁰ Mathematics Subject Classification: primary 11K11; secondary 22C22.

Received January 18, 2011, revised March 2011. Editor J. Slovák.

When S is the circle, then one obtains the usual transgression map with values in the space of (p-1)-forms on the free loop space of M.

Let $\operatorname{Gr}_k(M)$ be the non-linear Grassmannian of k-dimensional oriented submanifolds of M. The tilda map associates to every $\omega \in \Omega^p(M)$ a differential (p-k)-form on $\operatorname{Gr}_k(M)$ given by [6]

$$\tilde{\omega}(\tilde{Y}_N^1,\ldots,\tilde{Y}_N^{p-k}) = \int_N i_{Y_N^{p-k}}\cdots i_{Y_N^1}\omega, \quad \forall \tilde{Y}_N^1,\ldots,\tilde{Y}_N^{p-k} \in \Gamma(TN^{\perp}) = T_N\operatorname{Gr}_k(M),$$

for \tilde{Y}_N section of the orthogonal bundle TN^{\perp} represented by the section Y_N of $TM|_N$. The natural map

$$\pi \colon \operatorname{Emb}(S, M) \to \operatorname{Gr}_k(M), \quad \pi(f) = f(S)$$

provides a principal bundle with the group $\text{Diff}_+(S)$ of orientation preserving diffeomorphisms of S as structure group.

The hat map on $\operatorname{Emb}(S, M)$ and the tilda map on $\operatorname{Gr}_k(M)$ are related by $\widehat{\omega} = \pi^* \widetilde{\omega}$. This is the reason why for the hat calculus one has similar properties to those for the tilda calculus. The tilda calculus was used to study the non-linear Grassmannian of co-dimension two submanifolds as symplectic manifold [6]. We apply the hat calculus to the hamiltonian formalism for *p*-branes and open *p*-branes [1] [2].

The bar map $\overline{\omega} = \widehat{\omega \cdot \mu}$ is the hat pairing with a fixed volume form μ on S, so

$$\bar{\omega}(Y_f^1,\ldots,Y_f^p) = \int_S \omega(Y_f^1,\ldots,Y_f^p)\mu, \quad \forall Y_f^1,\ldots,Y_f^p \in \Gamma(f^*TM) = T_f\mathcal{F}(S,M).$$

We use the bar calculus to study $\mathcal{F}(S, M)$ with symplectic form $\bar{\omega}$ induced by a symplectic form ω on M. The natural actions of $\text{Diff}_{ham}(M, \omega)$ and $\text{Diff}_{ex}(S, \mu)$, the group of hamiltonian diffeomorphisms of M and the group of exact volume preserving diffeomorphisms of S, are two commuting hamiltonian actions on $\mathcal{F}(S, M)$. Their momentum maps form the dual pair for ideal incompressible fluid flow [12] [4].

We are grateful to Stefan Haller for extremely helpful suggestions.

2. Hat pairing

We denote by $\mathcal{F}(S, M)$ the set of smooth functions from a compact oriented k-dimensional manifold S to a manifold M. It is a Fréchet manifold in a natural way [10]. Tangent vectors at $f \in \mathcal{F}(S, M)$ are identified with vector fields on M along f, i.e. sections of the pull-back vector bundle f^*TM .

Let ev: $S \times \mathcal{F}(S, M) \to M$ be the evaluation map $\operatorname{ev}(x, f) = f(x)$ and pr: $S \times \mathcal{F}(S, M) \to S$ the projection $\operatorname{pr}(x, f) = x$. A pair of differential forms $\omega \in \Omega^p(M)$ and $\alpha \in \Omega^q(S)$ determines a differential form $\widehat{\omega \cdot \alpha}$ on $\mathcal{F}(S, M)$ by the fiber integral over S (whose definition and properties are listed in the appendix) of the (p+q)-form $\operatorname{ev}^* \omega \wedge \operatorname{pr}^* \alpha$ on $S \times \mathcal{F}(S, M)$:

(1)
$$\widehat{\omega \cdot \alpha} = \int_{S} \operatorname{ev}^{*} \omega \wedge \operatorname{pr}^{*} \alpha.$$

In this way we obtain a bilinear map called the *hat pairing*:

$$\Omega^p(M) \times \Omega^q(S) \to \Omega^{p+q-k} \left(\mathcal{F}(S,M) \right).$$

An explicit expression of the hat pairing avoiding fiber integration is:

(2)
$$(\widehat{\omega \cdot \alpha})_f(Y_f^1, \dots, Y_f^{p+q-k}) = \int_S f^* (i_{Y_f^{p+q-k}} \dots i_{Y_f^1}(\omega \circ f)) \wedge \alpha ,$$

for $Y_f^1, \ldots Y_f^{p+q-k}$ vector fields on M along $f \in \mathcal{F}(S, M)$. Here we denote by $f^*\beta_f$ the "restricted pull-back" by f of a section β_f of $f^*(\Lambda^m T^*M)$, which is a differential *m*-form on S given by $f^*\beta_f \colon x \in S \mapsto (\Lambda^m T^*_x f)(\beta_f(x)) \in \Lambda^m T^*_x S$, where $T_x^*f: T_{f(x)}^*M \to T_x^*S$ denotes the dual of T_xf .

The fact that (1) and (2) provide the same differential form on $\mathcal{F}(S, M)$ can be deduced from the identity

$$(\mathrm{ev}^*\,\omega)_{(x,f)}(Y_f^1,\dots,Y_f^{p-k},X_x^1,\dots,X_x^k) = f^*(i_{Y_f^{p-k}}\dots i_{Y_f^1}(\omega\circ f))(X_x^1,\dots,X_x^k)$$

for $Y_f^1, \ldots, Y_f^{p-k} \in T_f \mathcal{F}(S, M)$ and $X_x^1, \ldots, X_x^k \in T_x S$.

Since $\mathfrak{X}(M)$ acts infinitesimally transitive on the open subset $\operatorname{Emb}(S, M) \subset$ $\mathcal{F}(S,M)$ of embeddings of the k-dimensional oriented manifold S into M, we express $\widehat{\omega}$ at $f \in \operatorname{Emb}(S, M)$ as:

(3)
$$(\widehat{\omega \cdot \alpha})_f(X_1 \circ f, \dots, X_{p+q-k} \circ f) = \int_S f^*(i_{X_{p+q-k}} \dots i_{X_1} \omega) \wedge \alpha$$

One uses the fact that the "restricted pull-back" by f of $i_{X_{p+q-k}\circ f} \dots i_{X_1\circ f}(\omega \circ f)$ is $f^*(i_{X_{p+q-k}}\ldots i_{X_1}\omega)$.

Next we show that the hat pairing is compatible with the exterior derivative of differential forms.

Theorem 1. The exterior derivative **d** is a derivation for the hat pairing, i.e.

(4)
$$\mathbf{d}\left(\widehat{\boldsymbol{\omega}\cdot\boldsymbol{\alpha}}\right) = (\widehat{\mathbf{d}\,\boldsymbol{\omega}})\cdot\boldsymbol{\alpha} + (-1)^p \widehat{\boldsymbol{\omega}\cdot\mathbf{d}\,\boldsymbol{\alpha}},$$

where $\omega \in \Omega^p(M)$ and $\alpha \in \Omega^q(S)$.

Proof. Differentiation and fiber integration along the boundary free manifold Scommute, so

$$\mathbf{d} \,(\widehat{\omega \cdot \alpha}) = \mathbf{d} \, \int_{S} \operatorname{ev}^{*} \omega \wedge \operatorname{pr}^{*} \alpha = \int_{S} \mathbf{d} \,(\operatorname{ev}^{*} \omega \wedge \operatorname{pr}^{*} \alpha)$$
$$= \int_{S} \operatorname{ev}^{*} \mathbf{d} \,\omega \wedge \operatorname{pr}^{*} \alpha + (-1)^{p} \, \int_{S} \operatorname{ev}^{*} \omega \wedge \operatorname{pr}^{*} \mathbf{d} \,\alpha = (\widehat{\mathbf{d} \,\omega}) \cdot \alpha + (-1)^{p} \widehat{\omega \cdot \mathbf{d} \,\alpha}$$
for all $\omega \in \Omega^{p}(M)$ and $\alpha \in \Omega^{q}(S)$.

for all $\omega \in \Omega^p(M)$ and $\alpha \in \Omega^q(S)$.

The differential form $\widehat{\omega \cdot \alpha}$ is exact if ω is closed and α exact (or if α is closed and ω exact). In the special case p+q=k these conditions imply that the function $\widehat{\omega \cdot \alpha}$ on $\mathcal{F}(S, M)$ vanishes.

Corollary 2. The hat pairing induces a bilinear map on de Rham cohomology spaces

(5)
$$H^p(M) \times H^q(S) \to H^{p+q-k}(\mathcal{F}(S,M)).$$

In particular there is a bilinear map

$$H^p(M) \times H^q(M) \to H^{p+q-k}(\operatorname{Diff}(M)).$$

Remark 3. The cohomology group $H^q(S)$ is isomorphic to the homology group $H_{k-q}(S)$ by Poincaré duality. With the notation n = k - q, the hat pairing (5) becomes

$$H^p(M) \times H_n(S) \to H^{p-n}(\mathcal{F}(S,M))$$

and it is induced by the map $(\omega, \sigma) \mapsto f_{\sigma} \operatorname{ev}^* \omega$, for differential *p*-forms ω on M and *n*-chains σ on S.

If S is a manifold with boundary, then formula (4) receives an extra term coming from integration over the boundary. Let $i_{\partial} : \partial S \to S$ be the inclusion and $r_{\partial} : \mathcal{F}(S, M) \to \mathcal{F}(\partial S, M)$ the restriction map.

Proposition 4. The identity

(6)
$$\mathbf{d}\left(\widehat{\omega\cdot\alpha}\right) = (\widehat{\mathbf{d}\,\omega})\cdot\alpha + (-1)^p\widehat{\omega\cdot\mathbf{d}\,\alpha} + (-1)^{p+q-k}r_\partial^*(\widehat{\omega\cdot i_\partial^*\alpha})$$

holds for $\omega \in \Omega^p(M)$ and $\alpha \in \Omega^q(S)$, where the upper index ∂ assigned to the hat means the pairing

$$\Omega^p(M) \times \Omega^q(\partial S) \to \Omega^{p+q-k+1} \big(\mathcal{F}(\partial S, M) \big) \,.$$

Proof. For any differential *n*-form β on $S \times \mathcal{F}(S, M)$, the identity

$$\mathbf{d} \, \oint_{S} \beta - \oint_{S} \mathbf{d} \, \beta = (-1)^{n-k} \, \oint_{\partial S} (i_{\partial} \times 1_{\mathcal{F}(S,M)})^{*} \beta$$

holds because of the identity (19) from the appendix. The obvious formulas

$$\operatorname{pr} \circ (i_{\partial} \times 1_{\mathcal{F}(S,M)}) = i_{\partial} \circ \operatorname{pr}_{\partial}, \quad \operatorname{ev} \circ (i_{\partial} \times 1_{\mathcal{F}(S,M)}) = \operatorname{ev}_{\partial},$$

for $\operatorname{ev}_{\partial} : \partial S \times \mathcal{F}(S, M) \to M$ and $\operatorname{pr}_{\partial} : \partial S \times \mathcal{F}(S, M) \to \partial S$, are used to compute

$$\begin{aligned} \mathbf{d} \left(\widehat{\boldsymbol{\omega} \cdot \boldsymbol{\alpha}} \right) &= \mathbf{d} \, \int_{S} \mathrm{ev}^{*} \, \boldsymbol{\omega} \wedge \mathrm{pr}^{*} \, \boldsymbol{\alpha} \\ &= \int_{S} \mathbf{d} \left(\mathrm{ev}^{*} \, \boldsymbol{\omega} \wedge \mathrm{pr}^{*} \, \boldsymbol{\alpha} \right) + (-1)^{p+q-k} \, \int_{\partial S} (i_{\partial} \times \mathbf{1}_{\mathcal{F}(S,M)})^{*} (\mathrm{ev}^{*} \, \boldsymbol{\omega} \wedge \mathrm{pr}^{*} \, \boldsymbol{\alpha}) \\ &= \int_{S} \mathrm{ev}^{*} \, \mathbf{d} \, \boldsymbol{\omega} \wedge \mathrm{pr}^{*} \, \boldsymbol{\alpha} + (-1)^{p} \, \int_{S} \mathrm{ev}^{*} \, \boldsymbol{\omega} \wedge \mathrm{pr}^{*} \, \mathbf{d} \, \boldsymbol{\alpha} + (-1)^{p+q-k} \, \int_{\partial S} \mathrm{ev}_{\partial}^{*} \, \boldsymbol{\omega} \wedge \mathrm{pr}_{\partial}^{*} \, i_{\partial}^{*} \boldsymbol{\alpha} \\ &= (\widehat{\mathbf{d} \, \boldsymbol{\omega}) \cdot \boldsymbol{\alpha} + (-1)^{p} \widehat{\boldsymbol{\omega} \cdot \mathbf{d}} \, \boldsymbol{\alpha} + (-1)^{p+q-k} r_{\partial}^{*} (\widehat{\boldsymbol{\omega} \cdot i_{\partial}^{*} \boldsymbol{\alpha}^{\partial}}) \,, \end{aligned}$$

thus obtaining the requested identity.

Left Diff(M) action. The natural left action of the group of diffeomorphisms Diff(M) on $\mathcal{F}(S, M)$ is $\varphi \cdot f = \varphi \circ f$. The infinitesimal action of $X \in \mathfrak{X}(M)$ is the vector field \overline{X} on $\mathcal{F}(S, M)$:

$$\bar{X}(f) = X \circ f$$
, $\forall f \in \mathcal{F}(S, M)$.

We denote by $\bar{\varphi}$ the diffeomorphism of $\mathcal{F}(S, M)$ induced by the action of $\varphi \in \text{Diff}(M)$, so $\bar{\varphi}(f) = \varphi \circ f$ is the push-forward by φ .

Proposition 5. Given $\omega \in \Omega^p(M)$ and $\alpha \in \Omega^q(S)$, the identity

(7)
$$\overline{\varphi^* \omega \cdot \alpha} = (\widehat{\varphi^* \omega}) \cdot \overline{\varphi^* \omega}$$

and its infinitesimal version

(8)
$$L_{\bar{X}}\widehat{\omega\cdot\alpha} = (\widehat{L_{X}}\widehat{\omega)\cdot\alpha}$$

hold for all $\varphi \in \text{Diff}(M)$ and $X \in \mathfrak{X}(M)$.

Proof. Using the expression (1) of the hat pairing and identity (15) from the appendix, we have:

$$\begin{split} \bar{\varphi}^* \widehat{\omega \cdot \alpha} &= \bar{\varphi}^* \oint_S \operatorname{ev}^* \omega \wedge \operatorname{pr}^* \alpha = \oint_S (1_S \times \bar{\varphi})^* (\operatorname{ev}^* \omega \wedge \operatorname{pr}^* \alpha) \\ &= \oint_S \operatorname{ev}^* \varphi^* \omega \wedge \operatorname{pr}^* \alpha = (\widehat{\varphi^* \omega) \cdot \alpha} \,, \end{split}$$

since $\operatorname{pr} \circ (1_S \times \overline{\varphi}) = \operatorname{pr}$ and $\operatorname{ev} \circ (1_S \times \overline{\varphi}) = \varphi \circ \operatorname{ev}$.

A similar result is obtained for any smooth map $\eta \in \mathcal{F}(M_1, M_2)$ and its push-forward $\bar{\eta} \colon \mathcal{F}(S, M_1) \to \mathcal{F}(S, M_2), \, \bar{\eta}(f) = \eta \circ f$:

$$\bar{\eta}^* \widehat{\omega \cdot \alpha} = \widehat{\eta^* \omega \cdot \alpha} \,,$$

for all $\omega \in \Omega^p(M_2)$ and $\alpha \in \Omega^q(S)$.

Lemma 6. For all vector fields $X \in \mathfrak{X}(M)$, the identity $i_{\bar{X}} \widehat{\omega \cdot \alpha} = (i_{\bar{X}} \widehat{\omega}) \cdot \alpha$ holds. **Proof.** The vector field $0_S \times \bar{X}$ on $S \times \mathcal{F}(S, M)$ is ev-related to the vector field X on M, so

$$\begin{split} i_{\bar{X}}\widehat{\omega \cdot \alpha} &= i_{\bar{X}} \oint_{S} \operatorname{ev}^{*} \omega \wedge \operatorname{pr}^{*} \alpha = \oint_{S} i_{0_{S} \times \bar{X}} (\operatorname{ev}^{*} \omega \wedge \operatorname{pr}^{*} \alpha) \\ &= \oint_{S} \operatorname{ev}^{*} (i_{X} \omega) \wedge \operatorname{pr}^{*} \alpha = (\widehat{i_{X} \omega}) \cdot \alpha \,. \end{split}$$

At step two we use formula (18) from the appendix.

Right Diff(S) action. The natural right action of the diffeomorphism group Diff(S) on $\mathcal{F}(S, M)$ can be transformed into a left action by $\psi \cdot f = f \circ \psi^{-1}$. The infinitesimal action of $Z \in \mathfrak{X}(S)$ is the vector field \hat{Z} on $\mathcal{F}(S, M)$:

$$\widehat{Z}(f) = -Tf \circ Z, \quad \forall f \in \mathcal{F}(S, M).$$

We denote by $\widehat{\psi}$ the diffeomorphism of $\mathcal{F}(S, M)$ induced by the action of ψ , so $\widehat{\psi}(f) = f \circ \psi^{-1}$ is the pull-back by ψ^{-1} .

Proposition 7. Given $\omega \in \Omega^p(M)$ and $\alpha \in \Omega^q(S)$, the identity

$$\widehat{\psi^*}\widehat{\omega\cdot\alpha} = \widehat{\omega\cdot\psi^*\alpha}$$

and its infinitesimal version

$$L_{\widehat{Z}}\widehat{\omega\cdot\alpha} = \widehat{\omega\cdot L_Z}\alpha$$

hold for all orientation preserving $\psi \in \text{Diff}(S)$ and $Z \in \mathfrak{X}(S)$.

 \square

 \square

Proof. The obvious identities $\operatorname{ev} \circ (1_S \times \widehat{\psi}) = \operatorname{ev} \circ (\psi^{-1} \times 1_{\mathcal{F}})$, $\operatorname{pr} \circ (1_S \times \widehat{\psi}) = \operatorname{pr}$ and $\operatorname{pr} \circ (\psi \times 1_{\mathcal{F}}) = \psi \circ \operatorname{pr}$ are used in the computation

$$\begin{split} \widehat{\psi^* \omega \cdot \alpha} &= \widehat{\psi^*} \oint_S \operatorname{ev}^* \omega \wedge \operatorname{pr}^* \alpha = \oint_S (\mathbf{1}_S \times \widehat{\psi})^* (\operatorname{ev}^* \omega \wedge \operatorname{pr}^* \alpha) \\ &= \oint_S \left((\psi^{-1} \times \mathbf{1}_{\mathcal{F}})^* \operatorname{ev}^* \omega \right) \wedge \operatorname{pr}^* \alpha = \oint_S \operatorname{ev}^* \omega \wedge (\psi \times \mathbf{1}_{\mathcal{F}})^* \operatorname{pr}^* \alpha \\ &= \oint_S \operatorname{ev}^* \omega \wedge \operatorname{pr}^* \psi^* \alpha = \widehat{\omega \cdot \psi^* \alpha} \,, \end{split}$$

together with formula (17) from the appendix at step four.

Lemma 8. The identity $i_{\widehat{Z}}\widehat{\omega \cdot \alpha} = (-1)^p \widehat{\omega \cdot i_Z \alpha}$ holds for all vector fields $Z \in \mathfrak{X}(S)$, if $\omega \in \Omega^p(M)$.

Proof. The infinitesimal version of the first identity in the proof of Proposition 7 is $T \text{ ev } .(0_S \times \widehat{Z}) = T \text{ ev } .(-Z \times 0_{\mathcal{F}(S,M)})$, so we compute:

$$\begin{split} i_{\widehat{Z}}\widehat{\omega\cdot\alpha} &= i_{\widehat{Z}} \oint_{S} \operatorname{ev}^{*}\omega \wedge \operatorname{pr}^{*}\alpha = \oint_{S} i_{0_{S}\times\widehat{Z}}(\operatorname{ev}^{*}\omega \wedge \operatorname{pr}^{*}\alpha) \\ &= \int_{S} (i_{0_{S}\times\widehat{Z}} \operatorname{ev}^{*}\omega) \wedge \operatorname{pr}^{*}\alpha = \int_{S} (i_{-Z\times 0_{\mathcal{F}(S,M)}} \operatorname{ev}^{*}\omega) \wedge \operatorname{pr}^{*}\alpha \\ &= \int_{S} i_{-Z\times 0_{\mathcal{F}(S,M)}}(\operatorname{ev}^{*}\omega \wedge \operatorname{pr}^{*}\alpha) - \int_{S} (-1)^{p} \operatorname{ev}^{*}\omega \wedge i_{-Z\times 0_{\mathcal{F}(S,M)}} \operatorname{pr}^{*}\alpha \\ &= (-1)^{p} \oint_{S} \operatorname{ev}^{*}\omega \wedge \operatorname{pr}^{*}(i_{Z}\alpha) = (-1)^{p} \widehat{\omega\cdot i_{Z}\alpha} \,. \end{split}$$

At step two we use formula (18) from the appendix.

3. TILDA MAP AND HAT MAP

Let $\operatorname{Gr}_k(M)$ be the non-linear Grassmannian (or differentiable Chow variety) of compact oriented k-dimensional submanifolds of M. It is a Fréchet manifold [10] and the tangent space at $N \in \operatorname{Gr}_k(M)$ can be identified with the space of smooth sections of the normal bundle $TN^{\perp} = (TM|_N)/TN$. The tangent vector at N determined by the section $Y_N \in \Gamma(TM|_N)$ is denoted by $\tilde{Y}_N \in T_N \operatorname{Gr}_k(M)$.

The *tilda map* [6] associates to any *p*-form ω on M a (p-k)-form $\tilde{\omega}$ on $\operatorname{Gr}_k(M)$ by:

(9)
$$\tilde{\omega}_N(\tilde{Y}_N^1,\ldots,\tilde{Y}_N^{p-k}) = \int_N i_{Y_N^{p-k}}\cdots i_{Y_N^1}\omega.$$

Here all \tilde{Y}_N^j are tangent vectors at $N \in \operatorname{Gr}_k(M)$, i.e. sections of TN^{\perp} represented by sections Y_N^j of $TM|_N$. Then $i_{Y_N^{p-k}} \cdots i_{Y_N^1} \omega \in \Omega^k(N)$ does not depend on representatives Y_N^j of \tilde{Y}_N^j , and integration is well defined since $N \in \operatorname{Gr}_k(M)$ comes with an orientation.

Let S be a compact oriented k-dimensional manifold. The hat map is the hat pairing with the constant function $1 \in \Omega^0(S)$. It associates to any form $\omega \in \Omega^p(M)$

the form $\widehat{\omega} \in \Omega^{p-k}(\mathcal{F}(S, M))$:

(10)
$$\widehat{\omega} = \widehat{\omega \cdot 1} = \oint_S \operatorname{ev}^* \omega \,.$$

On the open subset $\operatorname{Emb}(S, M) \subset \mathcal{F}(S, M)$ of embeddings, formula (2) gives

(11)
$$\widehat{\omega}(X_1 \circ f, \dots, X_{p-k} \circ f) = \int_S f^*(i_{X_{p-k}} \dots i_{X_1} \omega)$$

Remark 9. The hat map induces a transgression on cohomology spaces

$$H^p(M) \to H^{p-k} = \left(\mathcal{F}(S, M)\right).$$

When S is the circle, then one obtains the usual transgression map with values in the (p-1)-th cohomology space of the free loop space of M.

Let π denote the natural map

$$\pi \colon \operatorname{Emb}(S, M) \to \operatorname{Gr}_k(M), \quad \pi(f) = f(S)$$

where the orientation on f(S) is chosen such that the diffeomorphism $f: S \to f(S)$ is orientation preserving. The image $\pi(\operatorname{Emb}(S, M))$ is the manifold $\operatorname{Gr}_k^S(M)$ of *k*-dimensional submanifolds of M of type S. Then $\pi: \operatorname{Emb}(S, M) \to \operatorname{Gr}_k^S(M)$ is a principal bundle over $\operatorname{Gr}_k^S(M)$ with structure group $\operatorname{Diff}_+(S)$, the group of orientation preserving diffeomorphisms of S.

Note that there is a natural action of the group $\operatorname{Diff}(M)$ on the non-linear Grassmannian $\operatorname{Gr}_k(M)$ given by $\varphi \cdot N = \varphi(N)$. Let $\tilde{\varphi}$ be the diffeomorphism of $\operatorname{Gr}_k(M)$ induced by the action of $\varphi \in \operatorname{Diff}(M)$. Then $\tilde{\varphi} \circ \pi = \pi \circ \bar{\varphi}$ for the restriction of $\bar{\varphi}(f) = \varphi \circ f$ to a diffeomorphism of $\operatorname{Emb}(S, M) \subset \mathcal{F}(S, M)$. As a consequence, the infinitesimal generators for the $\operatorname{Diff}(M)$ actions on $\operatorname{Gr}_k(M)$ and on $\operatorname{Emb}(S, M)$ are π -related. This means that for all $X \in \mathfrak{X}(M)$, the vector fields \tilde{X} on $\operatorname{Gr}_k(M)$ given by $\tilde{X}(N) = X|_N$ and \bar{X} on $\operatorname{Emb}(S, M)$ given by $\bar{X}(f) = X \circ f$ are π -related.

Proposition 10. The hat map on Emb(S, M) and the tilda map on $\text{Gr}_k(M)$ are related by $\hat{\omega} = \pi^* \tilde{\omega}$, for any k-dimensional oriented manifold S.

Proof. For the proof we use the fact that $\mathfrak{X}(M)$ acts infinitesimally transitive on $\operatorname{Emb}(S, M)$, so $T_f \operatorname{Emb}(S, M) = \{X \circ f \colon X \in \mathfrak{X}(M)\}$. With (9) and (11) we compute:

$$(\pi^*\tilde{\omega})_f(X_1 \circ f, \dots, X_{p-k} \circ f) = \tilde{\omega}_{f(S)}(X_1|_{f(S)}, \dots, X_{p-k}|_{f(S)})$$
$$= \int_{f(S)} i_{X_{p-k}} \dots i_{X_1} \omega = \int_S f^*(i_{X_{p-k}} \dots i_{X_1} \omega) = \hat{\omega}_f(X_1 \circ f, \dots, X_{p-k} \circ f),$$

since \overline{X} and \overline{X} are π -related.

From the properties of the hat pairing presented in Proposition 5, Lemma 6 and Theorem 1, a hat calculus follows easily:

Proposition 11. For any $\omega \in \Omega^p(M)$, $\varphi \in \text{Diff}(M)$, $X \in \mathfrak{X}(M)$, and $\eta \in \mathcal{F}(M', M)$ with push-forward $\bar{\eta} \colon \mathcal{F}(S, M') \to \mathcal{F}(S, M)$, the following identities hold:

(1) $\bar{\varphi}^* \widehat{\omega} = \widehat{\varphi^* \omega} \text{ and } \bar{\eta}^* \widehat{\omega} = \widehat{\eta^* \omega}$ (2) $L_{\bar{X}} \widehat{\omega} = \widehat{L_X \omega}$ (3) $i_{\bar{X}} \widehat{\omega} = \widehat{i_X \omega}$ (4) $\mathbf{d} \widehat{\omega} = \widehat{\mathbf{d} \omega}$.

Remark 12. If S is a manifold with boundary, then the formula 4. above receives an extra term coming from integration over the boundary ∂S as in Proposition 4:

(12)
$$\mathbf{d}\,\widehat{\boldsymbol{\omega}} = \widehat{\mathbf{d}\,\boldsymbol{\omega}} + (-1)^{p-k} r_{\partial}^* \widehat{\boldsymbol{\omega}}^{\partial}$$

for $\omega \in \Omega^p(M)$. As before, $r_\partial : \mathcal{F}(S, M) \to \mathcal{F}(\partial S, M)$ denotes the restriction map on functions and $\omega \in \Omega^p(M) \mapsto \widehat{\omega}^\partial \in \Omega^{p-k+1}(\mathcal{F}(\partial S, M))$.

Now the properties of the tilda calculus follow imediately from Proposition 11.

Proposition 13. [6] For any $\omega \in \Omega^p(M)$, $\varphi \in \text{Diff}(M)$ and $X \in \mathfrak{X}(M)$, the following identities hold:

(1) $\tilde{\varphi}^* \tilde{\omega} = \widetilde{\varphi^* \omega}$ (2) $L_{\tilde{X}} \tilde{\omega} = \widetilde{L_X \omega}$ (3) $i_{\tilde{X}} \tilde{\omega} = \widetilde{i_X \omega}$ (4) $\mathbf{d} \tilde{\omega} = \mathbf{d} \tilde{\omega}$.

Proof. We verify the identities 1. and 4. From relation 1. from Proposition 11 we get that

$$\pi^* \tilde{\varphi}^* \tilde{\omega} = \bar{\varphi}^* \pi^* \tilde{\omega} = \bar{\varphi}^* \widehat{\omega} = \widehat{\varphi^* \omega} = \pi^* \widetilde{\varphi^* \omega} \,,$$

and this implies the first identity. Using identity 4. from Proposition 11 we compute

$$\pi^* \mathbf{d}\,\widetilde{\boldsymbol{\omega}} = \mathbf{d}\,\pi^*\widetilde{\boldsymbol{\omega}} = \mathbf{d}\,\widehat{\boldsymbol{\omega}} = \widehat{\mathbf{d}\,\boldsymbol{\omega}} = \pi^*\widetilde{\mathbf{d}\,\boldsymbol{\omega}}\,,$$

which shows the last identity.

Hamiltonian formalism for p-branes. In this section we show how the hat calculus appears in the hamiltonian formalism for p-branes and open p-branes [1] [2].

Let S be a compact oriented p-dimensional manifold. The phase space for the p-brane world volume $S \times \mathbb{R}$ is the cotangent bundle $T^*\mathcal{F}(S, M)$, where the canonical symplectic form is twisted. The twisting consists in adding a magnetic term, namely the pull-back of a closed 2-form on the base manifold, to the canonical symplectic form on a cotangent bundle [11]. These twisted symplectic forms appear also in cotangent bundle reduction.

We consider a closed differential form $H \in \Omega^{p+2}(M)$. Since dim S = p, the hat map (10) provides a closed 2-form \hat{H} on $\mathcal{F}(S, M)$. If $\pi_{\mathcal{F}} : T^*\mathcal{F}(S, M) \to \mathcal{F}(S, M)$ denotes the canonical projection, the twisted symplectic form on $T^*\mathcal{F}(S, M)$ is

$$\Omega_H = -\mathbf{d}\,\Theta_\mathcal{F} + \frac{1}{2}\pi_\mathcal{F}^*\widehat{H}\,,$$

where $\Theta_{\mathcal{F}}$ is the canonical 1-form on $T^*\mathcal{F}(S, M)$.

208

For the description of open branes one considers a compact oriented *p*-dimensional manifold *S* with boundary ∂S and a submanifold *D* of *M*. The phase space is in this case the cotangent bundle $T^*\mathcal{F}_D(S, M)$ over the manifold [13]

$$\mathcal{F}_D(S, M) = \{ f : S \to M | f(\partial S) \subset D \}.$$

The twisting of the canonical symplectic form is done with a closed differential form $H \in \Omega^{p+2}(M)$ with $i^*H = \mathbf{d} B$ for some $B \in \Omega^{p+1}(D)$, where $i: D \to M$ denotes the inclusion. The twisted symplectic form on $T^*\mathcal{F}_D(S, M)$ is

$$\Omega_{(H,B)} = -\mathbf{d}\,\Theta_{\mathcal{F}_D} + \frac{1}{2}\pi^*_{\mathcal{F}_D}(\widehat{H} - \partial^*\widehat{B}^\partial)$$

with $\partial: \mathcal{F}_D(S, M) \to \mathcal{F}(\partial S, D)$ the restriction map and $\pi_{\mathcal{F}_D}: T^*\mathcal{F}_D(S, M) \to \mathcal{F}_D(S, M)$. To distinguish between the hat calculus for $\mathcal{F}(S, M)$ and the hat calculus for $\mathcal{F}(\partial S, M)$, we denote $\widehat{\mathcal{P}}: \Omega^n(M) \to \Omega^{n-p+1}(\mathcal{F}(\partial S, M))$.

The only thing we have to verify is the closedness of $\widehat{H} - \partial^* \widehat{B}^\partial$. We first notice that (12) implies $\mathbf{d} \,\widehat{H} = \widehat{\mathbf{d} \, H} + r_\partial^* \widehat{H}^\partial$, where $r_\partial \colon \mathcal{F}(S, M) \to \mathcal{F}(\partial S, M)$ denotes the restriction map, and identity 4 from Proposition 11 implies $\widehat{\mathbf{d} \, B}^\partial = \mathbf{d} \, \widehat{B}^\partial$. On the other hand identity 1 from Proposition 11 ensures that $\widehat{i^*H}^\partial = \overline{i^*}\widehat{H}^\partial$, with $\overline{i} \colon \mathcal{F}(\partial S, D) \to \mathcal{F}(\partial S, M)$ denoting the push-forward by $i \colon D \to M$. Knowing that $r_\partial = \overline{i} \circ \partial$, we compute:

$$\mathbf{d}\,\widehat{H} = \widehat{\mathbf{d}\,H} + r_{\partial}^{*}\widehat{H}^{\partial} = \partial^{*}\overline{i}^{*}\widehat{H}^{\partial} = \partial^{*}\widehat{i}^{*}\overline{H}^{\partial} = \partial^{*}\widehat{\mathbf{d}\,B}^{\partial} = \mathbf{d}\,\partial^{*}\widehat{B}^{\partial}\,,$$

so the closed 2-form $\widehat{H} - \partial^* \widehat{B}^\partial$ provides a twist for the canonical symplectic form on the cotangent bundle $T^* \mathcal{F}_D(S, M)$.

Non-linear Grassmannians as symplectic manifolds. In this subsection we recall properties of the co-dimension two non-linear Grassmannian as a symplectic manifold.

Proposition 14 ([8]). Let M be a closed m-dimensional manifold with volume form ν . The tilda map provides a symplectic form $\tilde{\nu}$ on $\operatorname{Gr}_{m-2}(M)$

$$\tilde{\nu}_N(\tilde{X}_N,\tilde{Y}_N) = \int_N i_{Y_N} i_{X_N} \nu \,,$$

for \tilde{X}_N and \tilde{Y}_N sections of TN^{\perp} determined by sections X_N and Y_N of $TM|_N$.

Proof. The 2-form $\tilde{\nu}$ is closed since $\mathbf{d}\,\tilde{\nu} = \mathbf{d}\,\nu$ by the tilda calculus. To verify that it is also (weakly) non-degenerate, let X_N be an arbitrary vector field along N such that $\int_N i_{Y_N} i_{X_N} \nu = 0$ for all vector fields Y_N along N. Then X_N must be tangent to N, so $\tilde{X}_N = 0$.

In dimension m = 3 the symplectic form $\tilde{\nu}$ is known as the Marsden–Weinstein symplectic from on the space of unparameterized oriented links, see [12], [3].

Hamiltonian $\text{Diff}_{\text{ex}}(M,\nu)$ action. The action of the group $\text{Diff}(M,\nu)$ of volume preserving diffeomorphisms of M on $\text{Gr}_{m-2}(M)$ preserves the symplectic form $\tilde{\nu}$:

$$\tilde{\varphi}^*\tilde{\nu} = \widetilde{\varphi^*\nu} = \tilde{\nu} \,, \quad \forall \varphi \in \mathrm{Diff}(M,\nu) \,.$$

The subgroup $\operatorname{Diff}_{\mathrm{ex}}(M,\nu)$ of exact volume preserving diffeomorphisms acts in a hamiltonian way on the symplectic manifold $(\operatorname{Gr}_{m-2}(M),\tilde{\nu})$. Its Lie algebra is $\mathfrak{X}_{\mathrm{ex}}(M,\nu)$, the Lie algebra of exact divergence free vector fields, i.e. vector fields X_{α} such that $i_{X_{\alpha}}\nu = \mathbf{d}\,\alpha$ for a potential form $\alpha \in \Omega^{m-2}(M)$. The infinitesimal action of X_{α} is the vector field \tilde{X}_{α} . By the tilda calculus $\tilde{\alpha} \in \mathcal{F}(\operatorname{Gr}_{m-2}(M))$ is a hamiltonian function for the hamiltonian vector field \tilde{X}_{α} :

$$i_{\tilde{X}_{\alpha}}\tilde{\nu} = \widetilde{i_{X_{\alpha}}\nu} = \widetilde{\mathbf{d}\,\alpha} = \mathbf{d}\,\tilde{\alpha}\,.$$

It depends on the particular choice of the potential α of X_{α} . A fixed continuous right inverse $b : \mathbf{d} \Omega^{m-2}(M) \to \Omega^{m-2}(M)$ to the differential \mathbf{d} picks up a potential $b(\mathbf{d}\alpha)$ of X_{α} . The corresponding momentum map is:

$$\mathbf{J}: \mathcal{M} \to \mathfrak{X}_{\mathrm{ex}}(M, \nu)^*, \quad \langle \mathbf{J}(N), X_{\alpha} \rangle = \widetilde{b(\mathbf{d}\,\alpha)}(N) = \int_N b(\mathbf{d}\,\alpha)$$

On the connected component \mathcal{M} of $N \in \operatorname{Gr}_{m-2}(M)$, the non-equivariance of **J** is measured by the Lie algebra 2-cocycle on $\mathfrak{X}_{ex}(M,\nu)$

$$\sigma_N(X,Y) = \langle \mathbf{J}(N), [X,Y]^{\mathrm{op}} \rangle - \tilde{\nu}(\tilde{X},\tilde{Y})(N) = (b \, \widetilde{\mathbf{d}} \, i_Y i_X \nu)(N) - (\widetilde{i_Y i_X \nu})(N)$$
$$= (\widetilde{Pi_X i_Y \nu})(N) = \int_N Pi_X i_Y \nu \,.$$

Here $P = 1_{\Omega^{m-2}(M)} - b \circ \mathbf{d}$ is a continuous linear projection on the subspace of closed (m-2)-forms and $(X,Y) \mapsto [Pi_Y i_X \nu] \in H^{m-2}(M)$ is the universal Lie algebra 2-cocycle on $\mathfrak{X}_{\mathrm{ex}}(M,\nu)$ [14]. The cocycle σ_N is cohomologous to the Lichnerowicz cocycle

(13)
$$\sigma_{\eta}(X,Y) = \int_{M} \eta(X,Y)\nu,$$

where η is a closed 2-form Poincaré dual to N [15].

If ν is an integral volume form, then σ_N is integrable [8]. The connected component \mathcal{M} of $\operatorname{Gr}_{m-2}(\mathcal{M})$ is a coadjoint orbit of a 1-dimensional central Lie group extension of $\operatorname{Diff}_{\mathrm{ex}}(\mathcal{M},\nu)$ integrating σ_N , and $\tilde{\nu}$ is the Kostant-Kirillov-Souriau symplectic form. [6].

4. Bar map

When a volume form μ on the compact k-dimensional manifold S is given, one can associate to each differential p-form on M a differential p-form on $\mathcal{F}(S, M)$

$$\bar{\omega}(Y_f^1,\ldots,Y_f^p) = \int_S \omega(Y_f^1,\ldots,Y_f^p)\mu, \quad \forall Y_f^i \in T_f \mathcal{F}(S,M),$$

where $\omega(Y_f^1, \ldots, Y_f^p) \colon x \mapsto \omega_{f(x)}(Y_f^1(x), \ldots, Y_f^p(x))$ defines a smooth function on S. In this way a *bar map* is defined. Formula (2) assures that this bar map is just the hat pairing of differential forms on M with the volume form μ

(14)
$$\bar{\omega} = \widehat{\omega \cdot \mu} = \oint_S \operatorname{ev}^* \omega \wedge \operatorname{pr}^* \mu$$

From the properties of the hat pairing presented in Proposition 5, Lemma 6 and Theorem 1, one can develop a bar calculus.

Proposition 15. For any $\omega \in \Omega^p(M)$, $\varphi \in \text{Diff}(M)$ and $X \in \mathfrak{X}(M)$, the following identities hold:

(1)
$$\bar{\varphi}^* \bar{\omega} = \overline{\varphi^* \omega}$$

- (2) $L_{\bar{X}}\bar{\omega} = \overline{L_X\omega}$
- (3) $i_{\bar{X}}\bar{\omega} = \overline{i_X\omega}$

(4)
$$\mathbf{d}\,\bar{\boldsymbol{\omega}} = \overline{\mathbf{d}\,\boldsymbol{\omega}}$$

 $\mathcal{F}(S, M)$ as symplectic manifold. Let (M, ω) be a connected symplectic manifold and S a compact k-dimensional manifold with a fixed volume form μ , normalized such that $\int_{S} \mu = 1$. The following fact is well known:

Proposition 16. The bar map provides a symplectic form $\bar{\omega}$ on $\mathcal{F}(S, M)$:

$$\bar{\omega}_f(X_f, Y_f) = \int_S \omega(X_f, Y_f) \mu$$
.

Proof. That $\bar{\omega}$ is closed follows from the bar calculus: $\mathbf{d}\,\bar{\omega} = \overline{\mathbf{d}\,\omega} = 0$. The (weakly) non-degeneracy of $\bar{\omega}$ can be verified as follows. If the vector field X_f on M along S is non-zero, then $X_f(x) \neq 0$ for some $x \in S$. Because ω is non-degenerate, one can find another vector field Y_f along f such that $\omega(X_f, Y_f)$ is a bump function on S. Then $\bar{\omega}(X_f, Y_f) = \int_S \omega(X_f, Y_f) \mu \neq 0$, so X_f does not belong to the kernel of $\bar{\omega}$, thus showing that the kernel of $\bar{\omega}$ is trivial.

Hamiltonian action on M. Let G be a Lie group acting in a hamiltonian way on M with momentum map $J: M \to \mathfrak{g}^*$. Then $\mathcal{F}(S, M)$ inherits a G-action: $(g \cdot f)(x) = g \cdot (f(x))$ for any $x \in S$. The infinitesimal generator is $\xi_{\mathcal{F}} = \bar{\xi}_M$ for any $\xi \in \mathfrak{g}$, where ξ_M denotes the infinitesimal generator for the G-action on M. The bar calculus shows quickly that G acts in a hamiltonian way on $\mathcal{F}(S, M)$ with momentum map

$$\mathbf{J} = \bar{J} \colon \mathcal{F}(S, M) \to \mathfrak{g}^*, \quad \bar{J}(f) = \int_S (J \circ f) \mu, \quad \forall f \in \mathcal{F}(S, M).$$

Indeed, for all $\xi \in \mathfrak{g}$

$$i_{\xi_{\mathcal{F}}}\bar{\omega} = i_{\bar{\xi}_M}\bar{\omega} = \overline{i_{\xi_M}\omega} = \overline{\mathbf{d}\left\langle J,\xi\right\rangle} = \mathbf{d}\left\langle \bar{J},\xi\right\rangle.$$

Let M be connected and let σ be the \mathbb{R} -valued Lie algebra 2-cocycle on \mathfrak{g} measuring the non-equivariance of J, i.e.

$$\sigma(\xi,\eta) = \langle J(x), [\xi,\eta] \rangle - \omega(\xi_M,\eta_M)(x), \quad x \in M,$$

(both terms are hamiltonian function for the vector field $[\xi, \eta]_M = -[\xi_M, \eta_M]$). Then the non-equivariance of $\mathbf{J} = \overline{J}$ is also measured by σ : for all $f \in \mathcal{F}(S, M)$

$$\langle \bar{J}(f), [\xi, \eta] \rangle - \bar{\omega}(\xi_{\mathcal{F}}, \eta_{\mathcal{F}})(f) = \overline{\langle J, [\xi, \eta] \rangle}(f) - \overline{\omega(\xi_M, \eta_M)}(f) = \sigma(\xi, \eta)$$

Hamiltonian $\text{Diff}_{ham}(M, \omega)$ action. The action of the group $\text{Diff}(M, \omega)$ of symplectic diffeomorphisms preserves the symplectic form $\bar{\omega}$:

$$\bar{\varphi}^*\bar{\omega} = \overline{\varphi^*\omega} = \bar{\omega} \,, \quad \forall \varphi \in \mathrm{Diff}(M,\omega)$$

The subgroup $\operatorname{Diff}_{ham}(M, \omega)$ of hamiltonian diffeomorphisms of M acts in a hamiltonian way on the symplectic manifold $\mathcal{F}(S, M)$. The infinitesimal action of $X_h \in \mathfrak{X}_{ham}(M, \omega), h \in \mathcal{F}(M)$, is the hamiltonian vector field \overline{X}_h on $\mathcal{F}(S, M)$ with hamiltonian function \overline{h} . This follows by the bar calculus:

$$\mathbf{d}\,\bar{h} = \overline{\mathbf{d}\,h} = \overline{i_{X_h}\omega} = i_{\bar{X}_h}\bar{\omega}$$

The hamiltonian function \bar{h} of \bar{X}_h depends on the particular choice of the hamiltonian function h. To solve this problem we fix a point $x_0 \in M$ and we choose the unique hamiltonian function h with $h(x_0) = 0$, since M is connected. The corresponding momentum map is

$$\mathbf{J}: \mathcal{F}(S, M) \to \mathfrak{X}_{\mathrm{ham}}(M, \omega)^*, \quad \langle \mathbf{J}(f), X_h \rangle = \bar{h}(f) = \int_S (h \circ f) \mu$$

The Lie algebra 2-cocycle on $\mathfrak{X}_{ham}(M,\omega)$ measuring the non-equivariance of the momentum map is

$$\sigma(X,Y) = -\omega(X,Y)(x_0),$$

by the bar calculus

$$\sigma(X,Y)(f) = \langle \mathbf{J}(f), [X,Y]^{\mathrm{op}} \rangle - \bar{\omega}(X_{\mathcal{F}}, Y_{\mathcal{F}})(f)$$

= $\overline{\omega(X,Y) - \omega(X,Y)(x_0)}(f) - \bar{\omega}(\bar{X},\bar{Y})(f) = -\omega(X,Y)(x_0).$

This is a Lie algebra cocycle describing the central extension

$$0 \to \mathbb{R} \to \mathcal{F}(M) \to \mathfrak{X}_{ham}(M,\omega) \to 0$$

where $\mathcal{F}(M)$ is enowed with the canonical Poisson bracket. A group cocycle on $\operatorname{Diff}_{\operatorname{ham}}(M,\omega)$ integrating the Lie algebra cocycle σ if ω exact is studied in [9]. Hamiltonian $\operatorname{Diff}_{\operatorname{ex}}(S,\mu)$ action. The (left) action of the group $\operatorname{Diff}(S,\mu)$ of volume preserving diffeomorphisms preserves the symplectic form $\bar{\omega}$:

$$\widehat{\psi}^* \bar{\omega} = \widehat{\psi}^* \widehat{\omega \cdot \mu} = \widehat{\omega \cdot \psi^* \mu} = \widehat{\omega \cdot \mu} = \bar{\omega} \,, \quad \forall \psi \in \mathrm{Diff}(S, \mu) \,.$$

The subgroup $\operatorname{Diff}_{\mathrm{ex}}(S,\mu)$ of exact volume preserving diffeomorphisms acts in a hamiltonian way on the symplectic manifold $\mathcal{F}(S,M)$. The infinitesimal action of the exact divergence free vector field $X_{\alpha} \in \mathfrak{X}_{\mathrm{ex}}(S,\mu)$ with potential form $\alpha \in \Omega^{k-2}(S)$ is the hamiltonian vector field \widehat{X}_{α} on $\mathcal{F}(S,M)$ with hamiltonian function $\widehat{\omega \cdot \alpha}$. Indeed, from $i_{X_{\alpha}}\mu = \mathbf{d}\,\alpha$ follows by the hat calculus that

$$\mathbf{d}\left(\widehat{\omega\cdot\alpha}\right) = \widehat{\mathbf{d}\,\omega\cdot\alpha} + \widehat{\omega\cdot\mathbf{d}\,\alpha} = \widehat{\omega\cdot i_{X_{\alpha}}}\mu = i_{\widehat{X}_{\alpha}}\widehat{\omega\cdot\mu} = i_{\widehat{X}_{\alpha}}\overline{\omega}\,.$$

If the symplectic form ω is exact, then the corresponding momentum map is

$$\mathbf{J}\colon \mathcal{F}(S,M) \to \mathfrak{X}_{\mathrm{ex}}(S,\mu)^*, \quad \langle \mathbf{J}(f), X_\alpha \rangle = \widehat{(\omega \cdot \alpha)}(f) = \int_S f^* \omega \wedge \alpha$$

It takes values in the regular part of $\mathfrak{X}_{ex}(S,\mu)^*$, which can be identified with $\mathbf{d} \Omega^1(S)$, so we can write $\mathbf{J}(f) = f^* \omega$ under this identification.

In general the hamiltonian function $\widehat{\omega \cdot \alpha}$ of \widehat{X}_{α} depends on the particular choice of the potential form α of X_{α} . To fix this problem we consider as in Section 3 a continuous right inverse $b: \mathbf{d} \Omega^{m-2}(M) \to \Omega^{m-2}(M)$ to the differential \mathbf{d} , so $b(\mathbf{d} \alpha)$ is a potential for X_{α} . The corresponding momentum map is

$$\mathbf{J}: \mathcal{F}(S, M) \to \mathfrak{X}_{\mathrm{ex}}(S, \mu)^*, \quad \langle \mathbf{J}(f), X_\alpha \rangle = (\widehat{\boldsymbol{\omega} \cdot b \mathbf{d} \, \alpha})(f) = \int_S f^* \boldsymbol{\omega} \wedge b(\mathbf{d} \, \alpha)$$

On a connected component \mathcal{F} of $\mathcal{F}(S, M)$, the non-equivariance of **J** is measured by the Lie algebra 2-cocycle

$$\sigma_{\mathcal{F}}(X,Y) = \langle \mathbf{J}(f), [X,Y] \rangle - \bar{\omega}(\hat{X},\hat{Y})(f) = (\omega \cdot b\mathbf{d} \, i_Y i_X \mu)^{\hat{}}(f) - (\omega \cdot i_Y i_X \mu)^{\hat{}}(f)$$
$$= (\omega \cdot P i_X i_Y \mu)^{\hat{}}(f) = \int_S f^* \omega \wedge P i_X i_Y \mu$$

on the Lie algebra of exact divergence free vector fields, for $P = 1 - b\mathbf{d}$ the projection on the subspace of closed (m-2)-forms. It does not depend on $f \in \mathcal{F}$, because the cohomology class $[f^*\omega] \in H^2(S)$ does not depend on the choice of f. The cocycle $\sigma_{\mathcal{F}}$ is cohomologous to the Lichnerowicz cocycle $\sigma_{f^*\omega}$ defined in (13) [15]. Since $\int_S \mu = 1$, the cocycle $\sigma_{\mathcal{F}}$ is integrable if and only if the cohomology class of $f^*\omega$ is integral [8].

Remark 17. The two equivariant momentum maps on the symplectic manifold $\mathcal{F}(S, M)$, for suitable central extensions of the hamiltonian group $\text{Diff}_{ham}(M, \omega)$ and of the group $\text{Diff}_{ex}(S, \mu)$ of exact volume preserving diffeomorphisms, form the dual pair for ideal incompressible fluid flow [12] [4].

5. Appendix: Fiber integration

Chapter VII in [5] is devoted to the concept of integration over the fiber in locally trivial bundles. We particularize this fiber integration to the case of trivial bundles $S \times M \to M$, listing its main properties without proofs.

Let S be a compact k-dimensional manifold. Fiber integration over S assigns to $\omega \in \Omega^n(S \times M)$ the differential form $\oint_S \omega \in \Omega^{n-k}(M)$ defined by

$$(\oint_S \omega)(x) = \int_S \omega_x \in \Lambda^{n-k} T_x^* M, \quad \forall x \in M,$$

where $\omega_x \in \Omega^k(S, \Lambda^{n-k}T_x^*M)$ is the retrenchment of ω to the fiber over x:

$$\langle \omega_x(Z_s^1,\ldots,Z_s^{n-k}), X_x^1 \wedge \cdots \wedge X_x^k \rangle = \omega_{(s,x)}(X_x^1,\ldots,X_x^k,Z_s^1,\ldots,Z_s^{n-k})$$

for all $X_x^i \in T_x M$ and $Z_s^j \in T_s S$.

The properties of the fiber integration used in the text are special cases of the Propositions (VIII) and (X) in [5]:

• Pull-back of fiber integrals:

(15)
$$f^* \oint_S \omega = \oint_S (1_S \times f)^* \omega \,, \quad \forall f \in \mathcal{F}(M', M) \,,$$

with infinitesimal version

(16)
$$L_X \oint_S \omega = \oint_S L_{0_S \times X} \omega, \quad \forall X \in \mathfrak{X}(M).$$

• Invariance under pull-back by orientation preserving diffeomorphisms of S:

(17)
$$\int_{S} (\varphi \times 1_{M})^{*} \omega = \int_{S} \omega, \quad \forall \varphi \in \text{Diff}_{+}(S)$$

with infinitesimal version $\oint_S L_{Z \times 0_M} \omega = 0$, $\forall Z \in \mathfrak{X}(S)$.

• Insertion of vector fields into fiber integrals:

(18)
$$i_X \oint_S \omega = \oint_S i_{0_S \times X} \omega, \quad \forall X \in \mathfrak{X}(M)$$

• Integration along boundary free manifolds commutes with differentiation. When ∂S denotes the boundary of the k-dimensional compact manifold S and $i_{\partial} : \partial S \to S$ the inclusion,

(19)
$$\mathbf{d} \, \mathbf{f}_{S} \,\beta - \mathbf{f}_{S} \,\mathbf{d} \,\beta = (-1)^{n-k} \,\mathbf{f}_{\partial S} (i_{\partial} \times 1_{M})^{*} \beta$$

holds for any differential *n*-form β on $S \times M$.

References

- Alekseev, A., Strobl, T., Current algebras and differential geometry, J. High Energy Phys. 03 (2005), 14.
- Bonelli, G., Zabzine, M., From current algebras for p-branes to topological M-theory, J. High Energy Phys. 09 (2005), 15.
- Brylinski, J.-L., Loop spaces, characteristic classes and geometric quantization, vol. 107, Progr. Math., Birkhäuser, 1993.
- [4] Gay-Balmaz, F., Vizman, C., Dual pairs in fluid dynamics, Ann. Global Anal. Geom. (2011), D0I:10.1007/s10455-011-9267-z.
- [5] Greub, W., Halperin, S., Vanstone, R., Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, Pure and Applied Mathematics, vol. 47, Academic Press, New York–London, 1972.
- [6] Haller, S., Vizman, C., Non-linear Grassmannians as coadjoint orbits, Math. Ann. 329 (2004), 771–785.
- [7] Hirsch, M. W., Differential topology, vol. 33, Springer, 1976, Grad. Texts in Math.
- [8] Ismagilov, R. S., Representations of infinite-dimensional groups, vol. 152, Ams. Math. Soc., 1996, Translations of Mathematical Monographs.
- [9] Ismagilov, R. S., Losik, M., Michor, P. W., A 2-cocycle on a group of symplectomorphisms, Moscow Math. J. 6 (2006), 307–315.
- [10] Kriegl, A., Michor, P. W., The convenient setting of global analysis, vol. 53, Math. Surveys Monogr., 1997.
- [11] Marsden, J. E., Ratiu, T., Introduction to Mechanics and Symmetry, 2nd ed., Springer, 1999.

- [12] Marsden, J. E., Weinstein, A., Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Phys. D 7 (1983), 305–323.
- [13] Michor, P. W., Manifolds of differentiable mappings, vol. 3, Shiva Math. Series, Shiva Publishing Ltd., Nantwich, 1980.
- [14] Roger, C., Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations, Rep. Math. Phys. 35 (1995), 225–266.
- [15] Vizman, C., Lichnerowicz cocycles and central Lie group extensions, An. Univ. Vest Timis., Ser. Mat.-Inform. 48 (1-2) (2010), 285-297.

West University of Timişoara, Department of Mathematics *E-mail*: vizman@math.uvt.ro